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Abstract—To efficiently deal with the face recognition 
problem, a novel face recognition algorithm based on 
enhancing kernel maximum margin projection(MMP) is 
proposed in this paper. The main contributions of this work 
are as follows. First, the nonlinear extension of MMP 
through kernel trick is adopted to capture the nonlinear 
structure of face images. Second, the kernel deformation 
technique is proposed to increase the discriminating 
capability of original input kernel function. Third, the 
feature vector selection approach is applied to improve 
computational efficiency of kernel MMP. Finally, the 
multiplicative update rule is employed to enhance training 
speed of SVM classifier for face recognition. Experimental 
results on face recognition demonstrate the effectiveness and 
efficiency of the proposed algorithm. 
 
Index Terms—face recognition, kernel maximum margin 
projection, support vector machine(SVM), pattern 
recognition 
 

I.  INTRODUCTION 

The appearance-based face recognition has received 
extensive attention during the past decades for its huge 
potentials in many applications, such as human-computer 
interface, biometric identity authentication and 
multimedia surveillance. However, a major challenge of 
face recognition is that the captured face image data often 
lies in a high-dimensional space. For example, a face 
image of size 1 2n n× is represented as a vector in the face 
image space 1 2n n×� . Due to the consideration of the curse 
of dimensionality, it is often necessary to conduct 
dimensionality reduction to acquire an efficient and 
discriminative lower-dimensionality feature 
representation before formally conducting classification. 
To this end, principal component analysis(PCA) and 
linear discriminant analysis(LDA)[1] are the most well-
known techniques. 

PCA is an unsupervised dimensionality reduction 
method which aims at extracting a linear subspace in 

which the variance of the projected data is maximized. As 
a supervised dimensionality reduction technique, LDA 
aims to seek a linear transformation by maximizing the 
ratio of between-class variance and within-class variance. 
Some researchers have shown that LDA outperforms 
PCA for face recognition because discriminant 
information is utilized in LDA[2]. However, the global 
linearity of PCA and LDA prohibit their effectiveness for 
describing the non-linear distributed face images. To deal 
with this limitation, nonlinear extensions of PCA and 
LDA through kernel trick have been proposed, such as 
kernel PCA(KPCA)[3] and kernel LDA(KDA)[4] were 
used for face recognition and they were found to 
outperform their linear variants. While the 
aforementioned methods have attained reasonably good 
performance in face recognition, they may fail to discover 
the underlying nonlinear manifold structure as they seek 
only a compact Euclidean subspace for face recognition. 
Recent studies show that the face images are sampled 
from a nonlinear low-dimensional manifold which is 
embedded in the high-dimensional ambient space[5]. To 
discover the intrinsic manifold structure of the face image 
data, manifold learning algorithms for dimensionality 
reduction such as ISOMAP[6], locally linear embedding 
(LLE)[7] and Laplacian eigenmap (LE)[8] were recently 
developed. Although the above manifold learning 
algorithms can preserve the local or global geometric 
properties of the nonlinear manifold structure, these 
algorithms only define an embedding of the training data 
points and do not present a method for mapping new data 
points that do not exist in the training set, which is the 
well-known out of sample problem. A common way to 
resolve this problem is to use a linearization procedure to 
construct explicit maps over new testing data, the most 
representative examples is LPP[9]. Meanwhile, analyses 
and interpretations about these algorithms are given in 
view of graph embedding framework[10]. However, 
these algorithms are designed to best preserve data 
locality or similarity in the embedding space rather than 
good discriminating capability. Therefore, they might not 
be optimal in discriminating different face images which 
is the ultimate goal of face recognition. 
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In this paper, we propose a novel face recognition 
algorithm by using kernel maximum margin projection 
(KMMP). Different from traditional manifold learning 
algorithms, which only consider the intraclass geometry 
structure, while ignoring the interactions of samples from 
different classes. KMMP simultaneously considers both 
the intraclass geometry and interclass discrimination 
information for dimensionality reduction. In addition, 
unlike the linearity of the original MMP, KMMP can 
capture the nonlinear structure of face images with kernel 
trick. Therefore, KMMP can have more discriminating 
power. Moreover, we also adopted the kernel deformation 
technique to further increase the discriminating capability 
and applied the feature vector selection approach to 
reduce the computational cost of KMMP. Once the high-
dimensional face image data are projected into a lower-
dimensional feature space, we can apply traditional 
classification algorithms to classify and recognize 
different face images. 

The rest of paper is organized as follows. In Section II, 
we give a brief review of MMP algorithm. Section III 
introduces the enhancing kernel MMP algorithm for face 
recognition. Extensive experimental results on face 
recognition are reported in Section IV. Finally, we 
provide concluding remarks in Section V. 

II.  BRIEF REVIEW OF MMP 

Maximum margin projection(MMP)[11] is a recently 
proposed manifold learning algorithm for dimensionality 
reduction. It is based on locality preserving neighbor 
relations and explicitly exploits the class information for 
classification. It is a graph-based approach for learning a 
linear approximation to the intrinsic data manifold by 
making use of both labeled and unlabeled data. Its goal is 
to discover both geometrical and discriminant structures 
of the data manifold. 

Given a set of face images { }1, , m
nx x ⊂K �  and the 

corresponding class label { }1 2, , , 1, 2, ,nc c c p∈K K , let 

[ ]1 2, , , nX x x x= K . MMP aims to seek a facial feature 
subspace that preserves the local geometrical and 
discriminant structures of the high-dimensional face 
manifold. Let bS and wS  denote weight matrices of 

between-class graph bG and within-class graph 

wG respectively. MMP attempts to ensure that the 

connected points of wG are as close together as possible 

while the connected points of bG  are as far apart as 
possible, it can be obtained by solving the following 
optimization problem: 

( )
( )

2

,
1 1

arg min

arg min

n n
T T

i j w ija i j
T T

w wa

a x a x S

a X D S X a
= =
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= −
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a XL X a
= =
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with the constraint 
1T T

wa XD X a =                                  (3) 

where bbb SDL −= is  the Laplacian matrix of bG , 

bD is a diagonal matrix whose entries on diagonal are 

column sum of bS , i.e., 
, ,

1

n

b ii b ij
j

D S
=

= ∑ , wD  is a diagonal 

matrix whose entries on diagonal are column sum of wS , 

i.e., , ,
1

n

w ii w ij
j

D S
=

= ∑ . 

The definitions of weight matrices bS and wS  are as 
follows: 

( ) ( ),

, if and share thesamelabel
1, if or is unlabeled but or  
0, otherwise

i j

w ij i j i w j j w i

x x
S x x x N x x N x

γ⎧
⎪= ∈ ∈⎨
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( ) ( )
,

1, if or
0, otherwise

i b j j b i
b ij

x N x x N xS ⎧ ∈ ∈= ⎨
⎩

            (5) 

where ( ) { }k
iii xxxN ,,1 K= denote the set of its k 

nearest neighbors, ( )ixl  represents the label of ix , 

( ) ( ) ( ){ }kjxlxlxxN i
j

i
j

iib ,,1, K=≠= contains the 

neighbors having different labels, and 
( ) ( ) ( )ibiiw xNxNxN −=  contains the rest of the 

neighbors. 
Then, minimizing (1) and maximizing (2) under the 

constraint (3) can be reduced to the following 
optimization problem: 

( )( )arg max 1T T
b wa

a X L S X aβ β+ −        (6) 

where [ ]1,0∈β  is a suitable constant which controls the 
weight between the within-class graph and  between-class 
graph. 

Finally, by using simple algebraic transformation, the 
projection vectors of MMP are the eigenvectors 
associated with the largest eigenvalues of the following 
generalized eigenvalue problem: 

( )( ) aXXDaXSLX T
w

T
wb λββ =−+ 1        (7) 

Since T
wXD X is nonsingular after applying PCA to 

throw away the components corresponding to zero 
eigenvalues, the projection vector of MMP can be 
regarded as the eigenvectors of the matrix 

( ) ( )( )1
1T T

w b wXD X X L S Xβ β
−

+ −  associated with the 
largest eigenvalues. 

III.  THE ENHANCING KERNEL MMP ALGORITHM 

A.  Kernel MMP 
As a linear dimensionality reduction algorithm, MMP 

is easy to understand and is very simple to implement, but 
it often fails to deliver good performance when face 
images are subject to complex nonlinear changes due to 
large pose, expression or illumination variations, for it is 
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a linear method in nature. To deal with this limitation, the 
nonlinear extensions of MMP through “kernel trick” are 
proposed in the following. Such a generalization is of 
great importance since the kernel MMP (KMMP) would 
generally achieve better recognition accuracy, and relax 
the restriction of MMP being only a linear manifold 
learning algorithm. 

The idea of KMMP is to solve the problem of MMP in 
a implicit feature space F  which is constructed by the 
kernel trick[12]. The intuition of kernel trick is map the 
input data x  from the original feature space into a higher 
dimensional Hilbert space F  constructed by the 
nonlinear mapping 

( ): mx x Fϕ ϕ∈ → ∈�                            (8) 
in which the face image data may be linearly separable. 
Then building linear MMP algorithms in the feature 
space implement nonlinear counterparts in the input data 
space. The map, rather than being given in an explicit 
form, is presented implicitly by specifying a kernel 
function ( ),K as the inner product between each pair of 
points in the feature space. 

( ) ( ) ( )( ),i j i jK x x x xϕ ϕ= ⋅                        (9) 

Performing KMMP in the feature space F means the 
connected points of wG are as close together as possible 

while the connected points of bG  are as far apart as 
possible. This is equivalent to solving the below 
optimization problem: 
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with the constraint 

( ) ( ) 1TT
wa X D X aϕ ϕ =                              (12) 

Then, under the constraint of (12), the optimal 
objective function of  (10) can be rewritten  as follows: 
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arg min 1
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−

= −

=

∑∑
     (13) 

Finally, the optimal objective function of KMMP can 
be formulated as follows by simultaneously considering 
(10) and (11) with the constraint of  (12). 

( ) ( )( ) ( )arg max 1 TT
b wa

a X L S X aϕ β β ϕ+ −  (14) 

Then, the transformation vector a  that maximizes the 
above objective function is given by the maximum 

eigenvalue solution to the generalized eigenvalue 
problem: 

( ) ( )( ) ( )
( ) ( )

1 T
b w

T
w

X L S X a
X D X a

ϕ β β ϕ
λϕ ϕ

+ −
=

         (15) 

Since the eigenvectors of (15) must lie in the span of 
all the samples in the feature space F , there exist 
coefficients , 1, 2, ,i i nω = K such that 

( ) ( )
1

n

i i
i

a x Xωϕ ϕ ω
=

= =∑                        (16) 

where [ ]1 2, , , T
nω ω ω ω= K . 

By using (16) and (9), we can rewrite (15) as follows: 
( )( )1 T T

b w wK L S K KD Kβ β ω λ ω+ − =      (17) 
Then, the problem of KMMP is converted into finding 

the leading eigenvectors of the matrix 
( ) ( )( )1

1T T
w b wKD K K L S Kβ β

−
+ − .  Let  1 2, , , lω ω ωK be the 

solution of (17) ordered according to their eigenvalues 

1 2 lλ λ λ> > >L . Thus, for a new face image data x , 

its projection onto a  in the feature space F  can be 
calculated as follows: 

( )( ) ( )
1

,
n

i i
i

x y a x K x xϕ ω
=

→ = ⋅ =∑               (17) 

For face recognition, a problem arises that the matrix 
T

wKD K  can be singular, which stems from the fact that 
the dimension of the kernel feature space is usually much 
higher than that of the empirical feature space, a 
deficiency that is generally known as small sample size 
(SSS) problem. One possible way to address the SSS 
problem is by performing kernel PCA (KPCA) projection 
to reduce the dimension of the feature space and make the 
matrix T

wKD K  nonsingular. 

B.  Kernel Deformation Technique 
Since the choice of kernel functions can significantly 

affect the performance of kernel methods, a good choice 
of the kernel is imperative to the success of any kernel 
method. Therefore, substantial efforts have been made to 
design appropriate kernels for the problems at hand. Until 
now, how to select a suitable kernel function for a given 
application is still an open issue. Traditionally, the kernel 
function has been chosen to be either linear, polynomial, 
or Gaussian kernel. But these kernel functions do not take 
full advantage of the specific characteristics of face 
image data. Here a new kernel function ( ),K x y , which 
is based on kernel deformation technique[13], is proposed 
to improve the performance of KMMP as follows: 

( ) ( ) ( )( ) 1
, , ,K x y k x y I Lk x y

−
= +             (19) 

where ( ),k x y is the original input kernel function, we 

chose the Gaussian kernel ( ) ( )2, expk x y x yγ= − − since it  
achieves the superior performance in many pattern 
classification applications, I  is the identity matrix, L is 
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the  graph Laplacian matrix that models the underlying 
geometry structure of face image data, and the graph 
Laplacian is defined as L D W= − , where D  is a 
diagonal matrix given by ii iji

D W=∑  and 

( )2 22
, if and are adjacent

0, otherwise

i jx x

i je x xW
σ− −⎧⎪= ⎨

⎪⎩
         (20) 

The main idea of the above kernel deformation 
technique is to estimate the intrinsic manifold structure 
via a nearest neighbor graph which preserves the local 
geometry structure of the face image space, then 
incorporate them into the kernel deformation procedure. 
Thus, the resulting new kernel can take advantage of both 
local geometry structure and discrimination information. 
In fact, recent researches reveal that the locality features 
and intrinsic geometric structures in the input space may 
take on additional discriminating power for classification. 
Therefore, when an input kernel ( ),k x y  is deformed 
according to the local geometry structure, the resulting 
kernel function ( ),K x y  may be able to perform much 
better than the original input kernel. Detailed 
performance evaluation of the deformation kernel is 
reported in Section III. 

C.  Feature Vector Selection Approach 
From (16), we can observe that the kernel trick-based 

KMMP algorithm is computationally expensive in the 
training phase since its computational complexity is 
proportional to the number of training points needed to 
represent the transformation vectors. In fact, the 
dimensionality of the data subspace spanned by ( )ixϕ  

is given by the rank of kernel matrix K , and the 
( )rank K n�  for massive training data set. If we 

replace n  with ( )rank K  and select a corresponding 

subset of feature vectors in the feature space F , which 
will greatly improve the computational efficiency of 
KMMP. Based on the above consideration, we adopt the 
feature vector selection approach[14] to accelerate the 
running speed of KMMP. 

The essential idea of the feature vector selection is to 
find a subset which is sufficient to express all the data as 
a linear combination of the selected subset in the feature 
space F . Let the selected feature vector subset 

( ) ( ) ( ){ }1 2, , ,s s srS x x xϕ ϕ ϕ= K  in the feature space F is 
known, where r denotes the number of selected feature 
vector, then we can estimate the mapping ( )ixϕ) of any 

input data ix as a linear combination of Sϕ  in feature 

space F . The formal description is as follows: 
( )i S ixϕ ϕ β= ⋅)

                                   (21) 

where ( )1 2, , , r
i i i iβ β β β= K is the coefficient vector. 

Then, the goal of feature vector selection is to find the 
coefficients iβ  so that the estimated mapping 

( )ixϕ) approaches to the real mapping ( )ixϕ as far as 
possible, which can be attained by minimizing the 
following objective function: 

( ) ( )
( )

2

2
i i

i

i

x x

x

ϕ ϕ
δ

ϕ

−
=

)

                             (22) 

The above optimization problem is performed by 
setting the partial derivative of iδ  with respect to iβ  to 
zero. By using matrix form, the optimal objective 
function of (22) can be rewritten as follow: 

1

min 1
T
Si SS Si

i
ii

K K K
K

δ
−

= −                         (23) 

where SSK is a square matrix of dot products of the 

selected vectors, and SiK is the vector of dot product 

between ix  and the selected vector set S . 
Then, the ultimate goal of feature vector selection 

method is make (23) apply to all the sample data, which 
can be summarized as the following form: 

11max
i

T
Si SS Si

SS x X ii

K K KJ
n K

−

∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑                   (24) 

The solution of the above optimal problem can be 
obtained with an iterative algorithm described in [14], 
and the algorithm stops when SSK  is no longer invertible 
or the predefined number of selected vectors is reached. 

D.  Classification Method 
After the transformation by KMMP, the facial feature 

matrix is obtained for each face image. Then, face 
recognition becomes a pattern classification task, the 
SVM classifier is used for classification because of its 
good generalization ability in minimizing the VC 
dimension and achieving a minimal structural risk[12]. 
The optimal objective function of SVM is as follows: 

( ) ( )
1 , 1

1max ,
2

n n

i i j i j i j
i i j

Q y y K x x
α

α α α α
= =

= −∑ ∑   (25) 

with the constraint 

1
0

n

i i
i

yα
=

=∑  and  0 i Cα≤ ≤ , 1, 2, ,i n= K .    (26) 

Once the optimal α  is obtained by solving the 
quadratic programming (QP) problem of (25), the 
classification decision function of SVM classifier is given 
as follows: 

( ) ( )
1

sgn ,
n

i i i
i

f x y K x x bα
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑              (27) 

Although the quadratic programming (QP) problem of 
(25) has the important computational advantage of not 
suffering from of local minima, given n  training samples, 
the naive implementation of QP solver is of 
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( )3O n computational complexity, which is 

computationally infeasible on very large face image data 
sets. Hence, a replacement of the naive method for 
solving QP solutions posed by the SVM classifier is 
highly desirable. To this end, we applied the following 
multiplicative update rule-based method[15] to improve 
the training speed of  SVM classifier. 

( ) ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ ++
← +

−+

i

ii
ii A

AA
α

αα
αα

2
411

               (28) 

where 
( )jijiij xxKyyA ,=                               (29) 

, 0

0 ,
ij ij

ij

A if A
A

otherwise
+

≥⎧
= ⎨
⎩

                           (30) 

, 0

0 ,
ij ij

ij

A if A
A

otherwise
−

⎧ <⎪= ⎨
⎪⎩

                             (31) 

The remarkable advantages of the multiplicative 
iterative updates in (28) is that it can be parallel 
implemented and never violate the nonnegativity 
condition constraints. Furthermore, it has been proved 
that the multiplicative updates rule can monotonically 
improve the optimal objective function of (25). 

E.  The Whole Algorithm Description 
Based on the above statements, we summarize our 

proposed enhancing KMMP algorithm for face 
recognition as follows: 

1) PCA Preprocessing. We project the face images 

ix  into the PCA subspace by throwing away the 
components corresponding to zero eigenvalue. 

2) Computing the weight matrices bS and wS of the 

between-class graph bG and the within-class 

graph wG  according to (5) and (4), respectively. 
3) Constructing the optimal objective function of 

kernel MMP according to (14) and (12). 
4) Computing the adaptive kernel function 

according to the kernel deformation technique 
defined in (19). 

5) Obtaining the subset of feature vectors in the 
feature space by solving the optimal problem 
defined in (24). 

6) Obtaining the transformation vectors of KMMP 
by solving the generalized eigen-problem defined 
in (17). 

7) Projecting the face images into the lower-
dimensional feature space via (17). 

8) Constructing the optimal objective function of 
SVM in the lower-dimensional feature space via 
(25) and (26). 

9) Obtaining the optimal support vectors via the 
multiplicative update rule defined in (28). 

10) The face images can be classified and recognized 
in terms of (27). 

In summary, the face recognition process has three 
steps. We first calculate the face subspace by 
dimensionality reduction algorithm KMMP. Then, facial 
images are projected into the face subspaces. Finally, the 
SVM classifier which is trained via multiplicative update 
rule is adopted to recognize new facial images. 

IV.  EXPERIMENTAL RESULTS 

To demonstrate the performance of our proposed 
enhancing KMMP algorithm for face recognition, the 
extensive experiments are carried out on a hybrid face 
image database of 123 persons and 1925 images, which is 
a collection of the following three databases: 

1) The Yale database (http://cvc.yale.edu/projects/ 
yalefaces/yalefaces.html) contains 165 images of 
15 individuals, each person has 11 different 
images under various facial expressions and 
lighting conditions. 

2) The ORL database (http://www.uk.research.att. 
com/ facedatabase.html) contains images from 40 
individuals, each providing 10 different face 
images. 

3) The subset of the CMU PIE database[16]. There 
are 68 peoples and each person has 20 different 
face images. 

All the face images are manually aligned, cropped, and 
then resized to 32 32×  pixels. Histogram equalization 
was used for the normalization of the facial image 
luminance. Some sample face images after preprocessing 
of the three databases are shown in Figure 1-Figure 3. 
The mixture face image database is splitted into two non-
overlapping set for training and testing. Each database 
partition is performed with one-half images per person 
for training, and the rest of these databases for testing. To 
reduce statistical variability, final results are based on 
averages over ten random repetitions. 

In our experiments, the proposed KMMP algorithm is 
compared with kernel PCA(KPCA)[3], kernel 
LDA(KDA)[4], kernel LPP(KLPP)[9], and MMP[11]. 
The original input Gaussian kernel function ( ),k x y  

with parameters set to ( )20 2.5
02 nγ γ−= , 0,1, , 20n = K  

are used, where 0γ is the stand deviation of the training 
set. We report the best result of each algorithm from 
among the 21 experiments. The parameter C in SVM 
classifier is tuned by 10-cross validation for data sets. 
The experimental results are shown in Figure 4. From 
these results, we can make the following observations. 

1) Our proposed KMMP algorithm consistently 
outperforms KPCA, KDA, KLPP, and MMP 
algorithms, which demonstrate that KMMP can 
effectively utilize local manifold structure as 
well as the discriminant information for face 
recognition. Meanwhile, KMMP can capture the 
nonlinear structure of face images with kernel 
trick. Therefore, KMMP can have more 
discriminating power. Besides the factor such as 
choosing KMMP for dimensionality reduction, 
the selection of kernel deformation technique, 
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feature vector selection approach, and the 
training SVM classifier based on multiplicative 
update rule also play an important role. 

2) KPCA performs the worst, this is probably 
because KPCA is an unsupervised algorithm 
that ignores the valuable label information for 
classification. 

3) The performance of KDA and KLPP very close 
to each other. A possible explanation is as 
follows: Although KDA is a supervised method, 
it does not consider the manifold structure; For 
KLPP, it aims to discover the local manifold 
structure rather than discriminating information. 
Thus, it is debatable whether the label 
information or local manifold structure is more 
important. 

4) Since MMP considers both local manifold 
structure and label information, it achieves 
higher performance than KPCA, KDA and 
KLPP. However, as a linear algorithm, MMP 
may fail to capture the nonlinear structure due 
to the high variability of the image content and 
style. Therefore, the performance of MMP is 
inferior to KMMP. 

In addition, the construction of kernel is one of the key 
techniques in our enhancing KMMP algorithm, we use 
the kernel deformation technique in constructing the 
kernel function. We can also use other kinds of kernel 
function such as linear, polynomial, or Gaussian kernel. 
In this experiment, we test the KMMP recognition 
performance under different kernel functions. The 
recognition results are show in Figure 5. As can be seen, 
our proposed kernel deformation technique performs 
much better than linear, polynomial, and Gaussian kernel. 
This is mainly because the kernel deformation technique 
can takes advantage of both local geometry structure and 
discrimination information, and the intrinsic geometric 
structures in the input space may take on additional 
discriminating power for classification. Therefore, the 
kernel deformation technique achieves better recognition 
rates than traditional kernel functions. 

Finally, to verify the efficiency of our proposed 
enhancing KMMP algorithms, we only record the 
computational times of the above three kernel-based 
algorithms in this experiment. The running time 
comparisons are reported in Table I. The experimental 
results show that the proposed enhancing KMMP 
algorithms are much more efficient than the other kernel-
based algorithms(such as KPCA, KDA and KLPP). The 
main reason could be attributed to the fact that the feature 
vector selection strategy accelerates the running speed of 
KMMP, and the multiplicative update rule-based method 
further improve the training speed of  SVM classifier. 
Therefore, our proposed KMMP algorithm could 
dramatically reduce the computational time when 
compared to other kernel-based algorithms on large scale 
face recognition problem. 

V.  CONCLUSIONS 

In face recognition, dimensionality reduction 
techniques are widely employed to reduce the 
dimensionality of face image data and enhance the 
discriminatory information. In this paper, an enhancing 
KMMP algorithm for face recognition is proposed. The 
experimental results demonstrate the effectiveness and 
efficiency of the proposed algorithm. 

APPENDIX A  FIGURE(1-5) AND TABLE I 

 

 
Figure 1.  Face image examples of the ORL database. 

 

 
Figure 2.  Face image examples of the Yale database. 

 

 
Figure 3.  Face image examples of the PIE database. 
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Figure 4.  Comparison results of the five algorithms. 
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Figure 5.  Comparison results of different kernel functions. 
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TABLE I.   
RUNNING TIME COMPARISON ON THE FACE IMAGE DATABASE 

Algorithms Running time(s) 

KPCA 67.2 

KDA 83.5 

KLPP 59.3 

KMMP 34.8 
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