
Efficient Model-based Fuzz Testing Using
Higher-order Attribute Grammars

Fan Pan, Ying Hou, Zheng Hong, Lifa Wu, Haiguang Lai

Institute of Command Automaton, PLA University of science and technology, Nanjing, Jiangsu, China
Email: dynamozhao@163.com, yinghou26@gmail.com, hongzhengjs@139.com, wulifa@vip.163.com, lite@263.net

Abstract—Format specifications of data input are critical to
model-based fuzz testing. Present methods cannot describe
the format accurately, which leads to high redundancy in
testing practices. In order to improve testing efficiency, we
propose a grammar-driven approach to fuzz testing. Firstly,
we build a formal model of data format using higher-order
attribute grammars, and construct syntax tree on the basis
of data samples. Secondly, all nodes in the syntax tree are
traversed and mutated to generate test cases according to
the attribute rules. Experimental results show that the
proposed approach can reduce invalid and redundant test
cases, and discover potential vulnerabilities of software
implementations effectively.

Index Terms—Model-based fuzz testing, Higher-order
attribute grammars, Syntax analysis tree, Test case
generation

I. INTRODUCTION

Fuzz testing or fuzzing is a kind of software testing
technique, which involves providing random or malicious
data as input to a software implementation [1]. Due to the
high benefit-to-cost ratio, it has emerged as a key
approach for discovering software vulnerabilities over the
past few years.

The key issue of fuzz testing is to generate semi-valid
test cases that can bypass checks and verifications [2].
The unexpected input is usually rejected by the target
software at a very early stage. Failure to produce well-
formed test cases will severely lower the chances to find
any errors. Model-based fuzz testing is a form of fuzz
testing, and a formal model of the input is used to
generate well-formed inputs. Model-based fuzz testing
can not only improve efficiency of fuzz testing, but also
measure the comprehensiveness of testing and enhance
the level of test automation.

There are many previous works about model-based
fuzz testing [3-11]. Although their test practices have
found a large number of vulnerabilities, these approaches
have certain limitations: 1) the model of format
specification cannot describe the context-sensitive
constraints; 2) the shared fields in different type of format
lead to high redundancy in test practices; 3) format
specification is not always consistent with the
implementation of target software, and the resulting test
cases may be invalid.

Our work was motivated by these limitations. In this
paper, we propose a grammar-driven approach to further
improve the quality and efficiency of fuzz testing. The
major idea is to build a formal model of input format
using Higher-order Attribute Grammars (HAG), and
apply it to automatically guide test case generation. The
advantages of our approach are listed as follows: 1) We
describe the context-sensitive constraints as attribute
rules in HAG for reducing the production of invalid test
cases; 2) By recording the tested model elements during
testing process, we are able to lower the redundancy of
test practices. To investigate the feasibility of our
approach, we developed a prototype system based on the
Peach platform [6], and tested it on a number of software
implementations.

The rest of this paper is organized as follows. Related
work is introduced in section 2. Section 3 analyzes the
properties of input data and proposes a formal model of
format specification. In section 4, the process of
grammar-driven fuzz testing is given. We detail the
implementation of the assessment platform and the results
obtained in testing experiments. Section 6 concludes the
paper and highlights future works for our research.

II. RELATED WORK

Fuzz testing was first explored by Barton Miller as an
automatic black-box testing approach [12]. The original
method has shown that it can successfully discover
software vulnerabilities. However, without any
knowledge about the implementation, most of the test
cases are usually rejected. Combined with other testing
technologies, intelligent fuzzing has been proposed to
improve efficiency of test practices. Intelligent fuzzing is
usually classified into white box fuzzing, evolution
fuzzing and model-based fuzzing.

White box fuzzing [13-15] takes advantage of
symbolic execution and constraint solving. The approach
symbolically evaluates the execution of software
implementation and collects constraints on the input, then
generates concrete test cases that satisfy the set of
constrains. However, the white box fuzzing is far from
effective as the number of feasible control paths may be
infinite and because of the imprecision of symbolic
execution, constraint solving is inherently limited [16].

Evolution fuzzing assumes no knowledge of the
implementation under test. Instead of generating purely
random input, the approach obtains feedback from each

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 645

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.3.645-651

execution of the system, and determines the next input
according to received feedback. Sparks, et al. [17] uses
genetic algorithm to guide input selection based on basic
block coverage of past inputs that have been tested. To
obtain more complete coverage, [18,19] introduce sub-
instruction profiling to improve the effectiveness.
However, evolution fuzzing still generates test cases in a
random way, and thus cannot bypass checks and
verifications efficiently.

Model-based fuzzing has detailed understanding of the
format being tested to generate inputs more intelligently.
The understanding is usually based on a specification.
Using network protocol specification, PROTOS [3] and
SPIKE [4] generates a set of inputs which can be
accepted by the protocol implementation. Peach [5] and
Sulley [6] are general fuzz platforms, which generate or
mutate fields in data samples according to the format
specification. Stateful protocol fuzzers such as SNOOZE
[7] and KIF [8] use a specification of protocol state
machine to reach deep protocol states. To build more
automated, flexible and measurable fuzzers, formal
approaches [9-11] have also been used in recent years.

White box fuzzing and evolution fuzzing require
profound knowledge in software debugging and reverse
engineering, and test practices are usually tedious and
time consuming. In contrast, model-based fuzzing defines
test cases on the basis of input models and simplifies the
overall analysis process. Therefore, model-based
approach is widely adopted, and most successful fuzzers
include facilities to model the structure of the data that is
to be generated.

However, models of these frameworks are not well
described, which lead to high redundancy in test practices.
Furthermore, unintentional differences between two
implementations of the same specification are common.
If the target of fuzzing is inconsistent with specification,

test practices will be limited. In this paper, we give our
solutions to these deficiencies for model-based fuzzing.

III. FORMAT DESCRIPTION

A. Format Characteristics
From the view of linguistics, format is a set of rules

and regulations that define the lexeme, syntax and
semantic of data elements. Lexeme describes the features
of characters, syntax refers to the principles governing the
structure of data, and semantic is the meaning used to
understand human expression. There are two kinds of
constraints between elements in structured data, namely,
lexeme-related constraints and syntax-related constraints.
Figure 1(a) shows the constraints between data elements
in PNG (Portable Network Graphic) format. The lexeme
features of DATA field should be consistent with
LENGTH and CHECKSUM, and the syntax of CHUNK
depends on the value of TYPE field. These constraints
should be satisfied to generate semi-valid test cases.

Various script languages have been used to describe
data formats for fuzz testing. PROTOS [3], SPIKE [4],
KIF [8] use block-based language in ABNF (Augmented
Backus-Naur Form), which is the standard syntax
definition of a protocol specification. However, neither of
them can describe semantics and constraints between data
elements as ABNF is context-free. Based on XML, Peach
[6] and SNOOZE [7] define lexeme-related constraints as
special attributes of tag, but both of them cannot describe
syntax-related constraints. For the CHUNK structures
shown in Figure 1 (b) and Figure 1 (c), existing methods
generally define them respectively, and lead to high
redundancy in test practices.

Figure 1. Constraints between data elements in PNG format

B. Model Definition
Attribute Grammar (AG) [20] is a formal way to define

attributes for the productions of a formal grammar, and is
suitable for data format with semantics. However, it is not
powerful enough to model context-sensitive structure.
Higher-order Attribute Grammar (HAG) [21] is an
extension of AG in the sense that the distinction between
the domain of parse-trees and the domain of attributes

disappears, and attributes can appear in the left-hand side
of a production. This extension allows HAG to select
syntactically equivalent rules based on attribute value and
describe context-sensitive structures. Furthermore, it has
been proven that HAG has the same expressive power as
Turing machines [21]. We define data format as a special
HAG form.

646 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

Definition 1.Data format model is a 7-tuple <F, S, P, Z,
A, R, CS>, where

─ F is the set of atom fields in data.
─ S is the set of dividable structures in data.
─ P is the finite set of productions, production p has the

form x0→x1… xn, where x0 ∈S and xi ∈(F∪S), 1≤ i ≤n.
─ Z is the initial structure.
─ A=∪A(x) is a finite set of attributes. The finite set of

attributes A(x) is associated with each data element
x∈(F∪S), and if a∈ A(x), x.a represents the attribute
occurrence of x.

─ R=∪R(p) is a finite set of attribute rules. Elements of
R(p) have the form α=f(…, β, …), f is the name of a
function, α and β are the attribute occurrences of
elements in production p.

─ CS=∪CS(p) is the set of all context-sensitive
structures. For each p∈P, CS(p) is defined as
CS(p)={xj | xj=f(…)∈R(p) and 1≤j≤n }.

Take PNG format in Figure 1 for instance, an
abbreviated description of data model is given as follows:

F:={pid,length,type,crc,width,height,…}

S:={PNG,CHUNKS,CHUNK,DATA,DATA1,DATA2,…}

P:={<PNG>→<pid><CHUNKS>,

<CHUNKS>→<CHUNK><CHUNKS>,

<CHUNK>→<length><type><DATA><crc>,

<DATA1>→<width><height><depth><colortype>…,

<DATA2>→…}

Z:=PNG

A:={len,val,sem,…}

R:={length.val=DATA.len,

crc.val=CRC32(chunktype.val,DATA.val),

DATA=FUNC(type.val),…}

CS:={DATA}

In this model, the properties and semantics are viewed
as field attributes. Moreover, both lexeme-related
constraints and syntax-related constraints are defined as
attribute rules. The structure of DATA is context-sensitive
and can be calculated by function FUNC. We describe
FUNC as a set of ordered pairs {<IHDR, DATA1>,
<PLTE, DATA2>,…}. The first element of a pair is the
value of TYPE field, and the second is the corresponding
structure of DATA. The model describes data format more
accurately than previous works.

IV. GRAMMAR-DRIVEN FUZZ TESTING

A. Overview
Once we formalize the description of data format, it is

used to guide model-based fuzz testing. Many protocols
are proprietary, or involve proprietary extensions to
published specifications. In order to ensure the validity of
test practices, we adopted mutation-based approach rather
than generation-based approach to create test cases. Since
single data sample only covers parts of file or network
protocol format, it is essential to perform fuzz testing

over multiple data samples [2]. However, if these samples
are mutated blindly, the shared elements in different
samples usually lead to numerous reduplications of test
cases.

To improve efficiency of test practices, we propose a
grammar-driven approach for fuzz testing. The process
involves several phases, as shown in Figure 2.

Figure 2. Overview of Grammar-driven fuzz testing

• Syntax tree construction. After data samples are
collected, the corresponding format description model
is formalized. Based on the model, the data samples
are parsed, and syntax trees are constructed in top-
down order.

• Node selection. In this phase, the syntax tree of each
data sample is traversed to find untested node for
mutation. To avoid redundancy in test practices, we
record model elements that are tested and skip them in
the future.

• Test case generation. The selected node is mutated
according to its attributes, and it is combined with
other nodes in the syntax tree to generate new test
cases. To bypass checks and verification, we also
modify the value of other nodes on the basis of
attribute rules in the format model.

B. Syntax Tree Construction
Syntax trees serve as the basis for sample mutation and

test case generation. A syntax tree can be defined as a 2-
tuple (N, E), where N is the set of nodes, and E⊆N×N is
the set of directed edges that indicate the hierarchical
relation between nodes. Each node is labeled with the
concrete value in data sample. Algorithm 1 recursively
constructs the syntax tree of data samples in top-down
order.

Algorithm 1 (Construction of Syntax Tree)
Input: format model M, data sample D, syntax tree ST, structure s;
Output: complete syntax tree ST;
ST_Construct(M, D, ST, s){
1. p:=searchProduction(M, s);
2. for each x in the right-hand side of p do
3. n:=createNode(x);
4. if (x∈F)
5. label n with the concrete value of x in D;
6. N:=N∪{n};
7. E:=E∪{<node of s,n>};
8. if (x∈S)
9. if (x∈CS)
10. x:=CS_evaluate(M, ST, x);
11. ST:=ST_Construct(M, D, ST, x);
12. return ST;
}

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 647

© 2013 ACADEMY PUBLISHER

Figure 3. Syntax tree of PNG sample

Initially, ST_Construct is called where ST =
<∅,{Z},∅> and n=Z. We use function searchProduction
to find the production p, which indicates the composition
of s. For each element x in the right-hand side of p, node
n is generated as an instance of x (line 2-3). If x belongs
to F, we label n with the concrete value of x, and add n to
ST as a child node of s (line 6-7). If x belongs to S,
function ST_Construct will be called recursively to
construct sub ST (line 11). If x also belongs to CS, the
specific form of x is evaluated in advance according to
attribute rules (line 9-10).

We have formalized the description of PNG format in
section 3.2. Taking data sample in table 1 and the format
model as input, we are able to construct a syntax tree as
illustrated in Figure 3. Compared with original data
sample, syntax tree is more suitable to guide fuzz testing,
since it contains information about structure and
constraints.

TABLE I.
DATA SAMPLE OF PNG FILE

 Field Size Value
1 pid 8 0x89504E470…
2 length 1 13
3 chunktype 4 IHDR
4 width 1 12
5 height 1 12
6 depth 1 8
7 colortype 1 0
8 compression 1 0
9 filter 1 0
10 interlace 1 0
11 crc 4 0x731E033B
12 length 1 2
13 chunktype 4 bKGB
14 DATA 1 0
15 crc 4 0xAA8D2332
16 length 1 99
17 chunktype 4 IDAT
18 … … ……

C. Node Selection
The purpose of the node selection phase is to find an

instance of untested model elements in the syntax tree.
The algorithm is given below.

Algorithm 2 (Node Selection)
Input: format model M, syntax tree ST, set of tested model
elements Ω, intermediate node n;
node_Select(M,ST, Ω, n){
1. for each child node v of node n do
2. if v.label=NULL /* v is intermediate node*/
3. node_Select(ST, Ω, v);
4. s is the corresponding model element of v;
5. if (s∉Ω)
6. testcase_Generate(M,ST, v);
7. Ω:=Ω∪{s};
}

Algorithm 2 selects both leaf nodes and intermediate

nodes as the objects of mutation. Since the concrete value
of an intermediate node depends on its children,
Algorithm 2 traverses the syntax tree in post order (line
1-3). If the model element of traversed node is untested,
we add it to set Ω and mutate the node to generate test
cases (line 5-7). Obviously, the efficiency of algorithm 2
depends on the expressive power of format model. For
the redundancy existed in the format description will lead
to repeated and pointless test cases (see Section 3.1), our
approach is more efficient than previous work.

D. Test case Generation
In this phase, we generate test cases by node mutation.

Depending on node type, there are mainly two different
policies for node mutation.

• Leaf node mutation. Leaf nodes are instances of atom
fields. Similar to PROTOS [3], we mutate leaf nodes
to abnormal values according to semantic attributes to
reduce meaningless test cases. For example, we
concatenate ‘../’ to valid string of file directory to
trigger path traverse vulnerability.

• Intermediate node mutation. Intermediate nodes are
instances of structures. Based on the policies in
[10,22], we mutate them in the following ways: 1)
remove or add a child node; 2) exchange location of

648 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

child nodes in data sample; 3) replace a child node
with another node with different attributes.

After node mutation, we combine all the nodes of
syntax tree into test cases. To meet the constraints
between data elements, values of other nodes are
modified according to attribute rules in format model.
Take Figure 3 as an instance, the length of DATA node
depends on the value of length node. If DATA is
mutated, we will recount its bytes and modify the value
of length node. Compared with previous works [4-6],
our approach describes context sensitive constraints as
attribute rules in HAG, and reduces the production of
invalid test cases.

V. EXPERIMENTS AND EVALUATION

A. Testing Framework
To verify the effectiveness of our approach, we

implemented GDFT (Grammar-Driven Fuzzing Tool)
based on Peach platform. The framework is illustrated in
Figure 4, and the extensions of GDFT are shaded.

GDFT includes five modules: model editor, model
parser, grammar-driven engine, testing agent and
monitoring agent. Initially, model parser constructs
syntax tree for each data sample. As the core of GDFT,
the grammar-driven engine takes attribute rules and
syntax tree as input, and guides the testing agent to
generate test cases. In order to investigate crashes of
target software, monitoring agent is used to interact with

virtual execution environment and feedback runtime
information. Compared with Peach platform, our
approach has two advantages: 1) grammar model is used
to guide test case generation instead of script language; 2)
the attribute-based mutation policy is more intelligent and
directed.

GDFT have been tested on a number of software
implementations. The testing was performed on Windows
7, with Intel CoreE7500 CPU and 4GB memory. In
addition, the overhead and performance of GDFT were
compared with those of well-known fuzzing tools.

B. Case Study: Libpng1.2.43
We choose libpng [23] as case study for the format of

PNG. Ligpng is the official reference library, and
supports almost all PNG features. We tested FileFuzz
[24], Peach [6] and GDFT on visualPNG [25] that
embedded with libpng1.2.43. Only five abnormal values
were used for FileFuzz to mutate bytes, or the overhead
will be overwhelming.

The PNG specification defines twenty-one chunk types.
Three chunk types are mandatory, and others are optional.
In this case study, we randomly selected 20 PNG samples
from Internet through Google Image Search, and
calculated the redundancy of chunktype in these samples.
Results are shown in Figure 5. As expected, all samples
contain the mandatory IHDR, IDAT and IEND chunks,
and most of the chunk types occurred more than twice in
these samples.

Figure 4. Framework of Grammar-Driven Fuzzing Tool

Figure 5. The redundancy of chunk type in samples

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 649

© 2013 ACADEMY PUBLISHER

We measured the number of generated test cases of
fuzz testing while the number of file samples increases
from 1 to 20, as shown in figure 6. It can be seen that test
cases generated by GDFT were obviously fewer than
those generated by FileFuzz and Peach as the number of
file samples increases. The number of test cases
generated by FileFuzz and Peach are approximately
linearly increased as the number of PNG samples
increases, while the number of test cases generated by
GDFT will reach saturation when the sample set exceeds
a certain scale. This is because FileFuzz and Peach
mutate all the chunks in PNG samples, while GDFT only
mutates untested elements. It should be noted that GDFT
generated more test cases for the first sample since more
complex mutation policies were adopted.

In figure 7, we show the code coverage (calculated by
Paimei [26]) of fuzz testing as the amount of PNG
samples increases. Although there is not necessarily a
correlation between code coverage and vulnerabilities
uncovered, it is undoubtedly that unexecuted code will
not reveal any vulnerability. GDFT achieved a higher
level of code coverage than FileFuzz and Peach.

Figure 6. Number of generated test cases for visualPNG

Figure 7. Code coverage of fuzz testing on visualPNG

TABLE II.
THE PERFORMANCE OF FUZZ TESTING ON VISUALPNG

tool
Test
cases

Code
coverage

Time(hr.) Vulnerabilities

FileFuzz 353,318 15% 152.1 1
Peach 224,908 53% 102 3
GDFT 58,763 67% 27 5

To evaluate the performance of fuzz testing, we
measured the code coverage, time cost and discovered
vulnerabilities of these three tools when the amount of
file samples increased to 20, as shown in table 2.

It can be seen that GDFT clearly outperforms Peach
with multiple samples on visualPNG. We found that most
of the test cases generated by FileFuzz were rejected by
the checksum verification in visualPNG. Due to the
inefficiency of random mutation policy, FileFuzz
discovered just one known vulnerability with limited
code coverage of 15%. Under the guidance of format
specification in XML script, Peach tested visualPNG in
depth with fewer test cases, and verified three known
vulnerabilities (CVE-2010-2249, CVE-2011-3328, CVE-
2011-3045). However, because of the generation of
numerous repeated test cases, the testing process of Peach
was still time-consuming and unacceptable.

Testing results show that GDFT took only one-quarter
of the time cost of Peach and achieved higher code
coverage. In addition to the three vulnerabilities verified
by Peach, GDFT discovered two more vulnerabilities.
One is CVE-2010-1205 and another is an unknown
vulnerability. Take CVE-2010-1205 for instance, libpng
contains a bug whereby visualPNG could receive an extra
row of image data beyond the height reported in the
header, potentially leading to out-of-bounds memory
indexing. Because the structure of image data is context-
sensitive, the bug was only detected by GDFT. The
unknown vulnerability can be triggered by an abnormal
sCAL chunk, which is also context-sensitive.

Furthermore, we found that sCAL chunk is uncommon
in PNG format, and only the 14th and 17th samples
contain instances for sCAL chunk. This confirms the
necessity of fuzz testing with multiple samples.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a grammar-driven approach
for fuzz testing. Our approach proceeds in three steps:
Firstly, we construct syntax trees of data samples
according to the formal model of format specification.
Secondly, each syntax tree is traversed to select untested
nodes. Finally, we apply mutation-based technique to
selected nodes and combine the syntax tree into test cases.
Compared with previous work, our approach can
significantly reduce invalid and duplicated test cases.
Moreover, our approach is able to generate more
intelligent test cases to trigger vulnerabilities. In the
future, we plan to combine protocol state machine with
our model, and research on stateful protocol fuzz testing.
In addition, we will introduce reverse engineering
techniques to extract the description of input format
automatically.

ACKNOWLEDGMENT

This work is supported by Natural Science Foundation
of Jiangsu China under Grant No. BK2011115, and also
supported by Laboratory of Military Network
Technology of PLA University of Science and
Technology.

650 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

REFERENCES

[1] Michael Sutton, Adam Greene, Pedram Amini: Fuzzing:
Brute Force Vulnerability Discovery. Addison-Wesley,
USA, 2007.

[2] Xueyong Zhu, Zhiyong Wu, J. William Atwood, “A New
Fuzzing Method Using Multi Data Samples Combination”.
Journal of Computers, vol.6, no.5, pp.881–888, May, 2011.

[3] Oulu University Secure Programming Group, PROTOS,
http://www.ee.oulu.fi/research/ouspg/protos/index.ht
ml, visited on March 2012.

[4] Dave Aitel, The advantages of block-based protocol
analysis for security testing, http://www.netsecurity.org
/dl/articles/advantages_of_block_based_analysis.pdf,
visited on March 2012.

[5] Pedram Amini, Sulley, http://code.google.com/p/sulley,
visited on March 2012.

[6] Michael Eddington, Peach, http://www.peachFuzz.com,
visited on March 2012.

[7] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R.
Kemmerer, G. Vigna, “SNOOZE: toward a Stateful
NetwOrk prOtocol fuzZEr”, In Information Security
Conference (ISC). LNCS, vol. 4176, Springer, Heidelberg,
2006, pp.343–358.

[8] Humberto J. Abdelnur, Radu State, Olivier Festor, “KiF: a
stateful SIP fuzzer”, In Proceedings of the 1st international
conference on Principles, systems and applications of IP
telecommunications, ACM, New York, 2007, pp.47–56

[9] Guoxiang Yao, Quanlong Guan, Kaibin Ni, “Test Model
for Security Vulnerability in Web Controls based on
Fuzzing”, Journal of Computers, vol.7, no.4, pp.773–778,
Apr, 2012.

[10] Chuanming Jing, Zhiliang Wang, Xia Yin, Jianping Wu,
“A Formal Approach to Robustness Testing of Network
Protocol. In:Network and Parallel Computing”, LNCS, vol.
5245, Springer, Heidelberg, 2008, pp.24-37.

[11] Yang Yang, Huanguo Zhang, Mi Pan, Jian Yang, Fan He,
Zhide Li, “A Model-Based Fuzz Framework to the
Security Testing of TCG Software Stack Implementations”,
In IEEE MINES 09, IEEE Press, New York, 2009, pp.149–
152.

[12] Barton P. Miller, Lars Fredriksen, Bryan So, “An
Empirical Study of the Reliability of Unix Utilities”,
Communications of the ACM, ACM, vol.33, no.12, pp.32–
44, December, 1990

[13] Cristian Cadar, Paul Twohey, Vijay Ganesh, Dawson
Engler, “EXE: A System for Automatically Generating
Inputs of Death Using Symbolic Execution”, ACM
Transactions on Information and System Security, ACM,
vol.12, no.2, pp.1–38, February 2008.

[14] Cristian Cadar, Daniel Dunbar, Dawson Engler, “Klee:
Unassisted andAutomatic Generation of High-coverage
Tests for Complex Systems Programs”, In Proceedings of
the 8th USENIX conference on Operating systems design
and implementation, ACM, New York , 2008, pp 209–224.

[15] Hyoung Chun Kim, Young Han Choi, Dong Hoon Lee,
“Efficient File Fuzz Testing using Automated Analysis of
Binary File Format”, Journal of Systems Architecture,
Elsevier, vol.57, no.3, pp.259–268, March 2011.

[16] Patrice Godefroid, Adam Kiezun, Michael Y. Levin,
“Grammar-based Whitebox Fuzzing”, In PLDI '08, ACM
SIGPLAN Notices, ACM, New York, Vol 43, no.6, 2008,
pp.206–215.

[17] Sherri Sparks, Ryan Cunningham, Shawn Embleton, Cliff
C. Zou, “Automated Vulnerability Analysis: Leveraging
Control Flow for Evolutionary Input Crafting”, In 23rd
Annual Computer Security Softwares

Conference(ACSAC), IEEE Press, New York, 2007,
pp.477–486.

[18] Will Drewry, Tavis Ormandy, “Flayer: Exposing
Application Internals”, In Proceedings of the first USENIX
workshop on Offensive Technologies, USENIX
Association, Boston, 2007, pp.1–9

[19] Bekrar S., Bekrar C., Groz R., Mounier L, “Finding
Software Vulnerabilities by Smart Fuzzing”, In Fourth
International Conference on Verification and Validation,
IEEE Press, New York, 2011, pp 427–430.

[20] JukkaPaakki, “Attribute Grammar Paradigms: a High-level
Methodology in Language Implementation”, ACM
Computing Surveys, ACM, vol.27, no.2, pp.196–255,
February, 1995

[21] Vogt H.H., Swierstra S.D., M.F. Kuiper, “High order
Attribute Grammar”, In Attribute Grammars, Applications
and Systems, LNCS, vol. 545, Springer, Heidelberg, 1991,
pp.256–296

[22] Petar Tsankov, Mohammad Torabi Dashti, David Basin,
In-depth fuzz testing of IKE implementations,
ftp://ftp.inf.ethz.ch/pub/publications/techreports/7xx/
747.pdf, visited on March 2012.

[23] Greg Roelofs, libpng, http://www.libpng.org/pub/png/,
visited on March 2012.

[24] Michael Sutton, FileFuzz, http://www.fileguru.com/
FileFuzz/info, visited on March 2012.

[25] Willem Van Schaik, visualPNG, ttp://www.schaik.com
png/visualpng.html, visited on March 2012.

[26] Pedram Amini, Paimei, htp://code.google.com/p/paimei,
visited on March 2012.

Fan Pan is a PhD candidate at the Institute of Command
Automation, PLA University of Science and Technology
(PLAUST). His research interests include network security, and
protocol reverse engineering. He received MS degree in
computer science from the Uni. of Sci. & Tech in 2009. Contact
him at Institute of Command Automation, PLA Uni. of Sci. &
Tech., Haifu Road 1, Nanjing China, 210007; Email:
dynamozhao@163.com.

Ying Hou is a Master candidate at the Institute of Command
Automation, PLAUST. His research interests include network
security, and protocol reverse engineering. He received BS
degree in computer science from the Uni. of Elec. Sci. & Tech
in 2010. Her email address is yinghou26@gmail.com.

Zheng Hong is an associate professor at the Institute of
Command Automation, PLAUST. He received PhD degree in
computer science from PLAUST in 2007. His research interests
include malware detection and network security. His email
address is hongzhengjs@139.com.

Lifa Wu is a professor at the Institute of Command Automation,
PLAUST. He received PhD degree in computer science from
the Nanjing University. His research interests include network
security and protocol reverse engineering. His email address is
wulifa@vip.163.com.

Haiguang Lai is an associate professor at the Institute of
Command Automation, PLAUST. He received PhD degree in
computer science from Nanjing University in 2006. His
research interests include network security and management.
His email address is hongzhengjs@139.com.

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 651

© 2013 ACADEMY PUBLISHER

