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Abstract—Format specifications of data input are critical to 
model-based fuzz testing. Present methods cannot describe 
the format accurately, which leads to high redundancy in 
testing practices. In order to improve testing efficiency, we 
propose a grammar-driven approach to fuzz testing. Firstly, 
we build a formal model of data format using higher-order 
attribute grammars, and construct syntax tree on the basis 
of data samples. Secondly, all nodes in the syntax tree are 
traversed and mutated to generate test cases according to 
the attribute rules. Experimental results show that the 
proposed approach can reduce invalid and redundant test 
cases, and discover potential vulnerabilities of software 
implementations effectively.  
 
Index Terms—Model-based fuzz testing, Higher-order 
attribute grammars, Syntax analysis tree, Test case 
generation 
 

I.  INTRODUCTION 

Fuzz testing or fuzzing is a kind of software testing 
technique, which involves providing random or malicious 
data as input to a software implementation [1]. Due to the 
high benefit-to-cost ratio, it has emerged as a key 
approach for discovering software vulnerabilities over the 
past few years. 

The key issue of fuzz testing is to generate semi-valid 
test cases that can bypass checks and verifications [2]. 
The unexpected input is usually rejected by the target 
software at a very early stage. Failure to produce well-
formed test cases will severely lower the chances to find 
any errors. Model-based fuzz testing is a form of fuzz 
testing, and a formal model of the input is used to 
generate well-formed inputs. Model-based fuzz testing 
can not only improve efficiency of fuzz testing, but also 
measure the comprehensiveness of testing and enhance 
the level of test automation. 

There are many previous works about model-based 
fuzz testing [3-11]. Although their test practices have 
found a large number of vulnerabilities, these approaches 
have certain limitations: 1) the model of format 
specification cannot describe the context-sensitive 
constraints; 2) the shared fields in different type of format 
lead to high redundancy in test practices; 3) format 
specification is not always consistent with the 
implementation of target software, and the resulting test 
cases may be invalid. 

Our work was motivated by these limitations. In this 
paper, we propose a grammar-driven approach to further 
improve the quality and efficiency of fuzz testing. The 
major idea is to build a formal model of input format 
using Higher-order Attribute Grammars (HAG), and 
apply it to automatically guide test case generation. The 
advantages of our approach are listed as follows: 1) We 
describe the context-sensitive constraints as attribute 
rules in HAG for reducing the production of invalid test 
cases; 2) By recording the tested model elements during 
testing process, we are able to lower the redundancy of 
test practices. To investigate the feasibility of our 
approach, we developed a prototype system based on the 
Peach platform [6], and tested it on a number of software 
implementations. 

The rest of this paper is organized as follows. Related 
work is introduced in section 2. Section 3 analyzes the 
properties of input data and proposes a formal model of 
format specification. In section 4, the process of 
grammar-driven fuzz testing is given. We detail the 
implementation of the assessment platform and the results 
obtained in testing experiments. Section 6 concludes the 
paper and highlights future works for our research. 

II.  RELATED WORK 

Fuzz testing was first explored by Barton Miller as an 
automatic black-box testing approach [12]. The original 
method has shown that it can successfully discover 
software vulnerabilities. However, without any 
knowledge about the implementation, most of the test 
cases are usually rejected. Combined with other testing 
technologies, intelligent fuzzing has been proposed to 
improve efficiency of test practices. Intelligent fuzzing is 
usually classified into white box fuzzing, evolution 
fuzzing and model-based fuzzing. 

White box fuzzing [13-15] takes advantage of 
symbolic execution and constraint solving. The approach 
symbolically evaluates the execution of software 
implementation and collects constraints on the input, then 
generates concrete test cases that satisfy the set of 
constrains. However, the white box fuzzing is far from 
effective as the number of feasible control paths may be 
infinite and because of the imprecision of symbolic 
execution, constraint solving is inherently limited [16]. 

Evolution fuzzing assumes no knowledge of the 
implementation under test. Instead of generating purely 
random input, the approach obtains feedback from each 
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execution of the system, and determines the next input 
according to received feedback.  Sparks, et al. [17] uses 
genetic algorithm to guide input selection based on basic 
block coverage of past inputs that have been tested. To 
obtain more complete coverage, [18,19] introduce sub-
instruction profiling to improve the effectiveness. 
However, evolution fuzzing still generates test cases in a 
random way, and thus cannot bypass checks and 
verifications efficiently. 

Model-based fuzzing has detailed understanding of the 
format being tested to generate inputs more intelligently. 
The understanding is usually based on a specification. 
Using network protocol specification, PROTOS [3] and 
SPIKE [4] generates a set of inputs which can be 
accepted by the protocol implementation. Peach [5] and 
Sulley [6] are general fuzz platforms, which generate or 
mutate fields in data samples according to the format 
specification. Stateful protocol fuzzers such as SNOOZE 
[7] and KIF [8] use a specification of protocol state 
machine to reach deep protocol states. To build more 
automated, flexible and measurable fuzzers, formal 
approaches [9-11] have also been used in recent years. 

White box fuzzing and evolution fuzzing require 
profound knowledge in software debugging and reverse 
engineering, and test practices are usually tedious and 
time consuming. In contrast, model-based fuzzing defines 
test cases on the basis of input models and simplifies the 
overall analysis process. Therefore, model-based 
approach is widely adopted, and most successful fuzzers 
include facilities to model the structure of the data that is 
to be generated. 

However, models of these frameworks are not well 
described, which lead to high redundancy in test practices. 
Furthermore, unintentional differences between two 
implementations of the same specification are common. 
If the target of fuzzing is inconsistent with specification, 

test practices will be limited. In this paper, we give our 
solutions to these deficiencies for model-based fuzzing. 

III. FORMAT DESCRIPTION 

A.  Format Characteristics 
From the view of linguistics, format is a set of rules 

and regulations that define the lexeme, syntax and 
semantic of data elements. Lexeme describes the features 
of characters, syntax refers to the principles governing the 
structure of data, and semantic is the meaning used to 
understand human expression. There are two kinds of 
constraints between elements in structured data, namely, 
lexeme-related constraints and syntax-related constraints. 
Figure 1(a) shows the constraints between data elements 
in PNG (Portable Network Graphic) format. The lexeme 
features of DATA field should be consistent with 
LENGTH and CHECKSUM, and the syntax of CHUNK 
depends on the value of TYPE field. These constraints 
should be satisfied to generate semi-valid test cases. 

Various script languages have been used to describe 
data formats for fuzz testing. PROTOS [3], SPIKE [4], 
KIF [8] use block-based language in ABNF (Augmented 
Backus-Naur Form), which is the standard syntax 
definition of a protocol specification. However, neither of 
them can describe semantics and constraints between data 
elements as ABNF is context-free. Based on XML, Peach 
[6] and SNOOZE [7] define lexeme-related constraints as 
special attributes of tag, but both of them cannot describe 
syntax-related constraints. For the CHUNK structures 
shown in Figure 1 (b) and Figure 1 (c), existing methods 
generally define them respectively, and lead to high 
redundancy in test practices. 

 

 

 
Figure 1. Constraints between data elements in PNG format 

 

B.  Model Definition 
Attribute Grammar (AG) [20] is a formal way to define 

attributes for the productions of a formal grammar, and is 
suitable for data format with semantics. However, it is not 
powerful enough to model context-sensitive structure. 
Higher-order Attribute Grammar (HAG) [21] is an 
extension of AG in the sense that the distinction between 
the domain of parse-trees and the domain of attributes 

disappears, and attributes can appear in the left-hand side 
of a production. This extension allows HAG to select 
syntactically equivalent rules based on attribute value and 
describe context-sensitive structures. Furthermore, it has 
been  proven that HAG has the same expressive power as 
Turing machines [21]. We define data format as a special 
HAG form. 
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Definition 1.Data format model is a 7-tuple <F, S, P, Z, 
A, R, CS>, where 

─ F  is the set of atom fields in data. 
─ S  is the set of dividable structures in data. 
─ P is the finite set of productions, production p has the 

form x0→x1… xn, where x0 ∈S and xi ∈(F∪S), 1≤ i ≤n. 
─ Z  is the initial structure. 
─ A=∪A(x) is a finite set of attributes. The finite set of 

attributes A(x) is associated with each data element 
x∈(F∪S), and if a∈ A(x), x.a represents the attribute 
occurrence of x. 

─ R=∪R(p) is a finite set of attribute rules. Elements of 
R(p) have the form α=f(…, β, …), f  is the name of a 
function, α and β are the attribute occurrences of 
elements in production p. 

─ CS=∪CS(p) is the set of all context-sensitive 
structures. For each p∈P, CS(p) is defined as 
CS(p)={xj | xj=f(…)∈R(p) and 1≤j≤n }. 

Take PNG format in Figure 1 for instance, an 
abbreviated description of data model is given as follows: 

F:={pid,length,type,crc,width,height,…} 

S:={PNG,CHUNKS,CHUNK,DATA,DATA1,DATA2,…} 

P:={<PNG>→<pid><CHUNKS>, 

<CHUNKS>→<CHUNK><CHUNKS>, 

<CHUNK>→<length><type><DATA><crc>, 

<DATA1>→<width><height><depth><colortype>…, 

<DATA2>→…} 

Z:=PNG 

A:={len,val,sem,…} 

R:={length.val=DATA.len, 

crc.val=CRC32(chunktype.val,DATA.val), 

DATA=FUNC(type.val),…} 

CS:={DATA} 

In this model, the properties and semantics are viewed 
as field attributes. Moreover, both lexeme-related 
constraints and syntax-related constraints are defined as 
attribute rules. The structure of DATA is context-sensitive 
and can be calculated by function FUNC. We describe 
FUNC as a set of ordered pairs {<IHDR, DATA1>, 
<PLTE, DATA2>,…}. The first element of a pair is the 
value of TYPE field, and the second is the corresponding 
structure of DATA. The model describes data format more 
accurately than previous works. 

IV. GRAMMAR-DRIVEN FUZZ TESTING 

A.  Overview 
Once we formalize the description of data format, it is 

used to guide model-based fuzz testing. Many protocols 
are proprietary, or involve proprietary extensions to 
published specifications. In order to ensure the validity of 
test practices, we adopted mutation-based approach rather 
than generation-based approach to create test cases. Since 
single data sample only covers parts of file or network 
protocol format, it is essential to perform fuzz testing 

over multiple data samples [2]. However, if these samples 
are mutated blindly, the shared elements in different 
samples usually lead to numerous reduplications of test 
cases. 

To improve efficiency of test practices, we propose a 
grammar-driven approach for fuzz testing. The process 
involves several phases, as shown in Figure 2. 

 

 
Figure 2. Overview of Grammar-driven fuzz testing 

• Syntax tree construction. After data samples are 
collected, the corresponding format description model 
is formalized. Based on the model, the data samples 
are parsed, and syntax trees are constructed in top-
down order. 

• Node selection. In this phase, the syntax tree of each 
data sample is traversed to find untested node for 
mutation. To avoid redundancy in test practices, we 
record model elements that are tested and skip them in 
the future. 

• Test case generation. The selected node is mutated 
according to its attributes, and it is combined with 
other nodes in the syntax tree to generate new test 
cases. To bypass checks and verification, we also 
modify the value of other nodes on the basis of 
attribute rules in the format model. 

B.  Syntax Tree Construction 
Syntax trees serve as the basis for sample mutation and 

test case generation. A syntax tree can be defined as a 2-
tuple (N, E), where N is the set of nodes, and E⊆N×N is 
the set of directed edges that indicate the hierarchical 
relation between nodes. Each node is labeled with the 
concrete value in data sample. Algorithm 1 recursively 
constructs the syntax tree of data samples in top-down 
order. 

 
Algorithm 1 (Construction of Syntax Tree) 
Input: format model M, data sample D, syntax tree ST, structure s; 
Output: complete syntax tree ST; 
ST_Construct(M, D, ST, s){ 
1.        p:=searchProduction(M, s); 
2.        for each x in the right-hand side of p do 
3.        n:=createNode(x); 
4.              if (x∈F) 
5.                   label n with the concrete value of x in D; 
6.              N:=N∪{n}; 
7.              E:=E∪{<node of  s,n>}; 
8.              if (x∈S) 
9.                      if (x∈CS) 
10.                            x:=CS_evaluate(M, ST, x); 
11.                    ST:=ST_Construct(M, D, ST, x); 
12.     return ST; 
} 
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Figure 3. Syntax tree of PNG sample 

Initially, ST_Construct is called where ST = 
<∅,{Z},∅> and n=Z. We use function searchProduction 
to find the production p, which indicates the composition 
of s. For each element x in the right-hand side of p, node 
n is generated as an instance of x (line 2-3). If x belongs 
to F, we label n with the concrete value of x, and add n to 
ST as a child node of s (line 6-7). If x belongs to S, 
function ST_Construct will be called recursively to 
construct sub ST (line 11). If x also belongs to CS, the 
specific form of x is evaluated in advance according to 
attribute rules (line 9-10). 

We have formalized the description of PNG format in 
section 3.2. Taking data sample in table 1 and the format 
model as input, we are able to construct a syntax tree as 
illustrated in Figure 3. Compared with original data 
sample, syntax tree is more suitable to guide fuzz testing, 
since it contains information about structure and 
constraints. 

TABLE I. 
DATA SAMPLE OF PNG FILE 

 Field Size Value 
1 pid 8 0x89504E470… 
2 length 1 13 
3 chunktype 4 IHDR 
4 width 1 12 
5 height 1 12 
6 depth 1 8 
7 colortype 1 0 
8 compression 1 0 
9 filter 1 0 
10 interlace 1 0 
11 crc 4 0x731E033B 
12 length 1 2 
13 chunktype 4 bKGB 
14 DATA 1 0 
15 crc 4 0xAA8D2332 
16 length 1 99 
17 chunktype 4 IDAT 
18 … … …… 

C.  Node Selection 
The purpose of the node selection phase is to find an 

instance of untested model elements in the syntax tree. 
The algorithm is given below. 

 

Algorithm 2 (Node Selection) 
Input: format model M, syntax tree ST, set of tested model 
elements Ω, intermediate node n; 
node_Select(M,ST, Ω, n){ 
1.        for each child node v of node n do 
2.                if v.label=NULL                /* v is intermediate node*/ 
3.                        node_Select(ST, Ω, v); 
4.                s is the corresponding model element of v; 
5.                if (s∉Ω) 
6.                        testcase_Generate(M,ST, v); 
7.                        Ω:=Ω∪{s}; 
} 

 
Algorithm 2 selects both leaf nodes and intermediate 

nodes as the objects of mutation. Since the concrete value 
of an intermediate node depends on its children, 
Algorithm 2 traverses the syntax tree in post order (line 
1-3). If the model element of traversed node is untested, 
we add it to set Ω and mutate the node to generate test 
cases (line 5-7). Obviously, the efficiency of algorithm 2 
depends on the expressive power of format model. For 
the redundancy existed in the format description will lead 
to repeated and pointless test cases (see Section 3.1), our 
approach is more efficient than previous work. 

D.  Test case Generation 
In this phase, we generate test cases by node mutation. 

Depending on node type, there are mainly two different 
policies for node mutation. 

• Leaf node mutation. Leaf nodes are instances of atom 
fields. Similar to PROTOS [3], we mutate leaf nodes 
to abnormal values according to semantic attributes to 
reduce meaningless test cases. For example, we 
concatenate ‘../’ to valid string of file directory to 
trigger path traverse vulnerability. 

• Intermediate node mutation. Intermediate nodes are 
instances of structures. Based on the policies in 
[10,22], we mutate them in the following ways: 1) 
remove or add a child node; 2) exchange location of 
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child nodes in data sample; 3) replace a child node 
with another node with different attributes. 

After node mutation, we combine all the nodes of 
syntax tree into test cases. To meet the constraints 
between data elements, values of other nodes are 
modified according to attribute rules in format model. 
Take Figure 3 as an instance, the length of DATA node 
depends on the value of length node. If DATA is 
mutated, we will recount its bytes and modify the value 
of length node. Compared with previous works [4-6], 
our approach describes context sensitive constraints as 
attribute rules in HAG, and reduces the production of 
invalid test cases. 

V. EXPERIMENTS AND EVALUATION 

A.  Testing Framework 
To verify the effectiveness of our approach, we 

implemented GDFT (Grammar-Driven Fuzzing Tool) 
based on Peach platform. The framework is illustrated in 
Figure 4, and the extensions of GDFT are shaded. 

GDFT includes five modules: model editor, model 
parser, grammar-driven engine, testing agent and 
monitoring agent. Initially, model parser constructs 
syntax tree for each data sample. As the core of GDFT, 
the grammar-driven engine takes attribute rules and 
syntax tree as input, and guides the testing agent to 
generate test cases. In order to investigate crashes of 
target software, monitoring agent is used to interact with 

virtual execution environment and feedback runtime 
information. Compared with Peach platform, our 
approach has two advantages: 1) grammar model is used 
to guide test case generation instead of script language; 2) 
the attribute-based mutation policy is more intelligent and 
directed. 

GDFT have been tested on a number of software 
implementations. The testing was performed on Windows 
7, with Intel CoreE7500 CPU and 4GB memory. In 
addition, the overhead and performance of GDFT were 
compared with those of well-known fuzzing tools. 

B.  Case Study: Libpng1.2.43 
We choose libpng [23] as case study for the format of 

PNG. Ligpng is the official reference library, and 
supports almost all PNG features. We tested FileFuzz 
[24], Peach [6] and GDFT on visualPNG [25] that 
embedded with libpng1.2.43. Only five abnormal values 
were used for FileFuzz to mutate bytes, or the overhead 
will be overwhelming. 

The PNG specification defines twenty-one chunk types. 
Three chunk types are mandatory, and others are optional. 
In this case study, we randomly selected 20 PNG samples 
from Internet through Google Image Search, and 
calculated the redundancy of chunktype in these samples. 
Results are shown in Figure 5. As expected, all samples 
contain the mandatory IHDR, IDAT and IEND chunks, 
and most of the chunk types occurred more than twice in 
these samples. 

 

 
Figure 4. Framework of Grammar-Driven Fuzzing Tool 

 
Figure 5. The redundancy of chunk type in samples 
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We measured the number of generated test cases of 
fuzz testing while the number of file samples increases 
from 1 to 20, as shown in figure 6. It can be seen that test 
cases generated by GDFT were obviously fewer than 
those generated by FileFuzz and Peach as the number of 
file samples increases. The number of test cases 
generated by FileFuzz and Peach are approximately 
linearly increased as the number of PNG samples 
increases, while the number of test cases generated by 
GDFT will reach saturation when the sample set exceeds 
a certain scale. This is because FileFuzz and Peach 
mutate all the chunks in PNG samples, while GDFT only 
mutates untested elements. It should be noted that GDFT 
generated more test cases for the first sample since more 
complex mutation policies were adopted. 

In figure 7, we show the code coverage (calculated by 
Paimei [26]) of fuzz testing as the amount of PNG 
samples increases. Although there is not necessarily a 
correlation between code coverage and vulnerabilities 
uncovered, it is undoubtedly that unexecuted code will 
not reveal any vulnerability. GDFT achieved a higher 
level of code coverage than FileFuzz and Peach. 

 
Figure 6. Number of generated test cases for visualPNG 

 
Figure 7. Code coverage of fuzz testing on visualPNG 

TABLE II. 
THE PERFORMANCE OF FUZZ TESTING ON VISUALPNG 

tool 
Test 
cases 

Code 
coverage

Time(hr.) Vulnerabilities

FileFuzz 353,318 15% 152.1 1 
Peach 224,908 53% 102 3 
GDFT 58,763 67% 27 5 

To evaluate the performance of fuzz testing, we 
measured the code coverage, time cost and discovered 
vulnerabilities of these three tools when the amount of 
file samples increased to 20, as shown in table 2. 

It can be seen that GDFT clearly outperforms Peach 
with multiple samples on visualPNG. We found that most 
of the test cases generated by FileFuzz were rejected by 
the checksum verification in visualPNG. Due to the 
inefficiency of random mutation policy, FileFuzz 
discovered just one known vulnerability with limited 
code coverage of 15%. Under the guidance of format 
specification in XML script, Peach tested visualPNG in 
depth with fewer test cases, and verified three known 
vulnerabilities (CVE-2010-2249, CVE-2011-3328, CVE-
2011-3045). However, because of the generation of 
numerous repeated test cases, the testing process of Peach 
was still time-consuming and unacceptable. 

Testing results show that GDFT took only one-quarter 
of the time cost of Peach and achieved higher code 
coverage. In addition to the three vulnerabilities verified 
by Peach, GDFT discovered two more vulnerabilities. 
One is CVE-2010-1205 and another is an unknown 
vulnerability. Take CVE-2010-1205 for instance, libpng 
contains a bug whereby visualPNG could receive an extra 
row of image data beyond the height reported in the 
header, potentially leading to out-of-bounds memory 
indexing. Because the structure of image data is context-
sensitive, the bug was only detected by GDFT. The 
unknown vulnerability can be triggered by an abnormal 
sCAL chunk, which is also context-sensitive. 

Furthermore, we found that sCAL chunk is uncommon 
in PNG format, and only the 14th and 17th samples 
contain instances for sCAL chunk. This confirms the 
necessity of fuzz testing with multiple samples. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a grammar-driven approach 
for fuzz testing. Our approach proceeds in three steps: 
Firstly, we construct syntax trees of data samples 
according to the formal model of format specification. 
Secondly, each syntax tree is traversed to select untested 
nodes. Finally, we apply mutation-based technique to 
selected nodes and combine the syntax tree into test cases. 
Compared with previous work, our approach can 
significantly reduce invalid and duplicated test cases. 
Moreover, our approach is able to generate more 
intelligent test cases to trigger vulnerabilities. In the 
future, we plan to combine protocol state machine with 
our model, and research on stateful protocol fuzz testing. 
In addition, we will introduce reverse engineering 
techniques to extract the description of input format 
automatically. 
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