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Abstract—This paper proposes a formal model for 

specifying multi agent systems, named SyPN (for 

Synchronized Petri Net).  This model allows the 

specification of various kinds of agent-based systems’ 

behaviors, such as individual and collective behaviors. SyPN 

is an extension of Recursive Petri net allowing 

synchronization of several nets. In fact, SyPN borrows the 

specification of dynamic processes from Recursive Petri net 

and introduces several valuable concepts that enable concise 

multi agent system specifications, such as: typed places, 

transitions and tokens, synchronization points, 

synchronization condition, synchronization relation and 

binding function. We illustrate our approach by two case 

studies of remote interactions between agents. 

 

Index Terms—Multi-agent systems, formal specification, 

recursive petri nets, abstraction, synchronization.  

 

I.  INTRODUCTION 

Multi Agent Systems (MAS for short) form a powerful 

paradigm to design complex software [7][22][33]. 

Generally, it resolves complex problems where reactivity, 

mobility [30], dynamicity and adaptation of the system to 

uncertain or unpredictable factors should be considered. 

MAS may be seen as societies made up of autonomous 

and independent entities, called agents. These agents 

interact together in order to solve a specific problem or to 

achieve collectively a common task. Agent is viewed as a 

computer system situated in some environment and that is 

capable of executing flexible autonomous actions in this 

environment in order to meet its design objectives [35] 

[56].The large majority of applications based-agents are 

designed by [48]: 

• Using methodologies based on  results of Object-

Oriented Software-Engineering [5][9][34];  

• Highlighting organizational aspects [17] or 

relations between  various aspects of MAS 

[10][40][44];  

• Applying construction techniques of expert 

systems [19];  

• Or using formal reasoning, based on Z- language 

[43] or on temporal logic [1]. 

Then, the domain for designing MAS is becoming very 

attractive. However, several functionalities of MAS like 

parallelism, dynamicity and communication may not be 

easily specified using existing specification models. In 

fact, these models are not defined specifically for MAS. 

Therefore, new specification models, new paradigms and 

new tools are required. Designing safe and sound MAS 

whose behaviors could be checked before its 

achievement, calls for a rigorous specification step, 

assisted by a formal specification model. This model 

should have a well-defined semantics and being able to 

take into account all MAS functionalities. Previous 

efforts toward modeling and verifying MAS can be found 

in the work of [29] [54]. They are based on reachability 

graph generation. In our work, this issue can be addressed 

likewise, by generating reachability graph from SyPN 

model. Such generation can be easily built by generating 

all possible firing sequences as follow: 

• Step 1: start from initial marking. 

• Step 2: fire all enabled transitions from the current 

marking (i. e. apply firing rules). 

• Step 3: re-iterate the second step from the new 

marking until no transition can be enabled. 

 In this context, we are mainly interested by formal 

specification model of MAS. In this field some basic 

questions arise: 

• How to preserve agent’s proprieties, such as 

autonomy, sociability, awareness...etc. 

• How to model dynamically agents’ interactions. 

• Asynchronous is a ubiquitous aspect 

characterizing concurrent interactions that must be 

straightforwardly modeled. 
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Several models were proposed in the literature, such as 

Petri nets [6], recursive Petri nets [15], colored Petri nets 

[16][45][57], finite state automata [52], Maude [46], Z 

language [50], Event-B [31][32]. As it will be shown in 

section 5, RPN has several advantages comparing to other 

models. Recursive Petri nets cover several functionalities 

of MAS such as modeling abstraction, dynamicity, 

concurrency, preemption, recursion …etc.  

In fact, Recursive Petri net (RPN) supports the 

specification of concurrent activities, reasoning about 

simultaneous actions and continuous processes, a theory 

of verification and mechanisms of transformation (e.g. 

abstraction, refinement, merging) [3] [4] [13] [24] [27]. 

Furthermore, RPN has aptitude to model threads which 

behave concurrently [15][16][25][26]. They are able to 

create new threads, until their respective ends. RPN 

distinguish elementary and abstract transitions. Moreover 

a starting marking is associated to each abstract transition 

and a semi-linear set of final markings is defined. The 

firing of an elementary transition updates the current 

marking using ordinary firing rule. The firing of an 

abstract transition refines it by a new sub-net (i.e. creation 

of new thread, named its child) which starts its own token 

game, from a starting marking whose value is attached to 

the abstract transition. Once a final marking is reached, a 

cut step closes the corresponding sub net, kills its 

children and produces tokens, indicated by the post 

matrix, in the appropriate output places of the abstract 

transition. 

However, there are some limitations [3]:     

• In recursive Petri net, there is no composition 

between nets, then there is no way to model 

interactions between agents modeled in terms of 

RPNs. 

• In RPN, processes are associated to the execution 

of an abstract transition; this execution is 

represented by the semantics associated to RPN. 

Then, the semantics doesn’t allow any choice 

initiated by the process. We just generate the 

marking graph which gives all possible behaviors. 

This semantics limits RPN for allowing process 

autonomy. 

• In RPN there is only one way to choose the 

refinement net.  (i. e. which limits the dynamic 

refinement process of abstract transitions.) 

To allow interaction between processes, in [8], authors 

extend RPN by shared places. Each process is specified 

by RPN and shared places ensure interactions between 

processes. This model is named ERPN (Enhanced RPN). 

It is enhanced by:  

• The possibility, for a given process, to control 

creation of its processes (i.e. children) with a new 

kind of outputs associated to the abstract 

transitions, namely immediate outputs.  

• New operational semantics that allows 

manipulation of both local and global places 

(shared places).  

On the other hand, ERPN has many limits such as [8]: 

• Some agent functionalities like autonomy and 

dynamic interaction may not be easily modeled in 

ERPN.  

• It does not deal systematically with the following 

contrast: with which group communicate each 

instance of agent? 

The main contribution of this paper is the proposition 

of a new formalism, named SyPN for (Synchronized Petri 

Net). As mentioned above, RPN doesn’t allow the 

specification of agents’ interactions. For this reason 

SyPN extends RPN by enabling dynamic interactions 

between several Petri nets, preserving agents’ proprieties 

specially autonomy and using ERPN’s shared place 

functionality. Effectively, interactions between agents are 

complicate and even uncontrollable [2]. When designing 

MAS, dynamic interaction should be well described and 

easily specified to ensure agents’ adaptation to the 

dynamic environment changes. To adapt themselves to 

these changes, agents must be able to change their roles 

and behaviors under several circumstances and adopt 

various protocols to interact with agents.[55] 

The paper is structured as follows: Section 2 presents 

MAS behaviors. Section 3 defines the SyPN model, 

presents a contextual definition of the model, its syntax, 

its graphical display and its formal semantics. Section 4 

presents two examples that illustrates SyPN modeling 

facilities among others synchronization between tasks 

and remote interactions. Section 5 discusses some related 

work. Section 6 concludes this work and discusses 

prospects to be continued in future. 

II. BEHAVIORAL CHARACTERISTICS OF MAS 

A MAS is an organized collection of agents that can be 

characterized by all or some of the following features 

[17]: 

• Each agent has incomplete information, or 

capabilities for solving the problem, thus each 

agent has a limited viewpoint; 

• There is no global system control; 

• Data is decentralized; and 

• Computation is asynchronous. 

Agent’s behavior depends on its own characteristics, 

such as autonomy, reactivity, pro-activity (i.e. agents do 

not simply act in response to their environment. They are 

able to exhibit goal-directed behavior by taking an 

initiative [56]), sociability, goals oriented, 

dynamicity…etc. Each property is present in an agent 

with more interest than another, this depends on agent 

functionalities. Each agent has an identity, a state and a 

behavior. A state consists of agent’s knowledge, beliefs 

and goals that it should perform.  Agent’s behavior is 

defined by roles it can perform (e.g. in E-Learning MAS 

[36], agent’s role can be: learner, instructor, author, 

reviewer, administrator...etc.), actions it can achieve and 

its reactions to different events. A role can be thought of 

as a set of behaviors and capabilities that agents can 

exploit to perform their tasks in a given context [28].  

Let us study agent’s behavior, by making abstraction 

on its internal architecture or any implantation choice. In 
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MAS, an agent must be able to handle very large numbers 

of concurrent tasks or processes in order to react to 

various external events.  To successfully ensure this 

management each agent achieves one or more behaviors.  

As far as agent’s behaviors are concerned, we adopt 

the following classification. Two main categories are 

distinguished: simple behavior being used to present 

simple tasks or processes and complex behavior being 

used to present complex tasks or processes. 

Simple behavior:  it includes cyclic, atomic and planed 

behavior. 

• Cyclic behavior:  this kind of behavior achieves 

its task recursively, for each call. 

• Atomic behavior:  it achieves a simple task and 

finishes. It includes three kinds of sub-behaviors: 

- Sender behavior:  It encapsulates an atomic 

unit that achieves an operation of sending 

message. 

- Receiver behavior: This behavior waits until 

reception of a message. It achieves an atomic 

operation of receiving message then it stops. 

- Generic behavior:  Models any behavior 

made up of any single atomic task other than 

sending or receiving messages. 

• Planed behavior: This behavior achieves a task 

within certain time. 

 Complex behavior: it includes sequential, parallel, 

exclusive and combined behaviors: 

• Sequential behavior: it models a sequence of 

actions. 

• Parallel behavior: it models a collection of 

behaviors that must be executed concurrently. 

• Exclusive behavior: it models the exclusive 

execution of several behaviors. 

• Combined behavior: it models combination of 

various behaviors in order to produce more 

complex one. 

III. SYNCHRONIZED PETRI NET SPECIFICATION MODEL 

The main characteristic of the SyPN model is its ability 

to specify easily several functionalities related to remote 

agents such as communication and synchronization. Also, 

the model distinguishes local or internal behavior of an 

agent among collective agent’s behaviors. Internal 

behavior is viewed as an organized collection of abstract 

actions which can be performed locally without 

interaction with other agents. In other words, an agent has 

its own requirements (i.e. capabilities and resources)   to 

accomplish this kind of actions. Contrary to internal 

behavior, actions of collective behavior need to be 

coordinated with other agent actions. SyPN extends 

recursive Petri net by:  

• Typed places, transitions and tokens;   

• New concepts, which are:  synchronization points, 

synchronization condition, synchronization 

relation and binding function. 

A.   SyPN  Syntax 

This section presents definitions and notations used for 

SyPN’s formalization. 

1) Typing of Place, Transition and Token: 

Places Types: The set of places is partitioned into two 

subsets: local places and synchronization places which 

are noted respectively ����and ��� . The local state of an 

agent is defined by its local places. The global state is 

composed of local and synchronization places. 

Transitions types: Four types of transitions are 

distinguished: 

• Elementary transition: It models a local 

elementary task.  This transition does not need any 

refinement.  The set of elementary transitions is 

denoted by	�	
	�. 

• Abstract transition: It models a local abstract 

task.  The execution of this task requires an 

adequate refinement that depends on execution 

context.  The set of abstract transitions is denoted 

by	��
�. 
• Elementary synchronization transition: It 

models an elementary task of synchronization 

which does not require any decomposition.  The 

set of elementary synchronization transitions is 

denoted by	�	
	���.  

• Abstract synchronization transition: Such 

transition is needed when an abstract task is 

associated to a synchronization occurrence 

between remote agents.  The abstract task is 

defined by its refinement process. The concurrent 

execution of abstract synchronization transitions 

leads to concurrent execution of the corresponding 

abstract tasks. The set of the abstract 

synchronization transitions is denoted by	��
��. 

Token types: Two token types are distinguished: 

• Local token: It is used in firing elementary and 

abstract transitions. 

• Synchronization token: It allows the evolution of 

several synchronization nets. This synchronization 

is defined by abstract synchronization transitions 

and elementary synchronization transitions. 

Definition 1 (Token): A token is a pair (type, id) where type ∈ {Local, Syn}  represents the token’s type and id 

represents the token’s identifier.  This identifier identifies 

a process (agent). 

Notations:   

• In the sequel, pairs ("#$%&, ') and (()*, ') will be 

noted "#$%&+  and ()*+ respectively. 

• Schematically, Fig. 1 presents notations that will 

be used. 

Remark: As it will be clarified in the sequel, a 

synchronization transition (elementary and abstract) is 

characterized by a synchronization point allowing their 

distinction.  
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Definition 2 (Net): A net R	is a triplet (P, T, A) where:   

• P is a finite set of places, such that  P 0 P123 ∪ P56. 

• T is a finite set of transitions, such that  T 0 	T789 ∪T:;:< ∪ T:;:<56 ∪ T7856 ;  

• A is a finite set of edges linking places and transitions 

such that A 0 	A= ∪ A5, where A= ⊆ P ? T, A5 ⊆ T ?P.  

Definition 3 (Marked Net): A marked net Rm is a pair (R,M) where:   

• R 0 	 (P, T, A)  is a net;   

• M	:	P → D ? D, is a marking function such that: ∀p ∈ P	, M(p) 0 (	x, y),	where	x	is the number of local 

tokens in the place p and y is the number of 

synchronization tokens in the place p. The number of 

local tokens and synchronization tokens are be also 

noted M(p). loc and M(p). syn respectively. In other 

words   M(p). loc 0 x and M(p). syn 0 y. 
Example 1: Fig. 2 represents a marked net, having 

three local places �I, �J and �K, three transitions �I, �J 

and �K, such that �I ∈ �	
	� 	, �J ∈ ��
� and	�K ∈ ��
�� 

and the following edges: (�I,�I),(�I,	�K),(�I, �J),(�K,	�K),(�J, �J) and (�J,	�K). The 

marking of these places is defined by: L(�I) 0 (1,1); 	L(�J) 0 (0,0); 	L(�K) 0 (0,0). 
 

 

 

 

 

 

 

 

 

 

 

B.  The intuition and Definitions behind SyPN  

Elementary and abstract transitions: The firing of 

elementary transitions is similar to the firing of 

transitions in Petri nets.  However, the firing of abstract 

transitions is similar to the firing of abstract transitions in 

recursive Petri nets, where two main phases are 

distinguished: consuming tokens defined by pre-condition 

of the abstract transition and creating a new process.  This 

process is modeled by a net, called the refinement net. 

Refinement net has an initial marking and a semi-

linear set of final markings. One or more refinement nets 

are associated to each abstract transition. The choice of 

refinement net is done by a binding function (see 

Definition 6). It should be noted that firing conditions of 

elementary and abstract transitions depend on local 

tokens only. The intuition of firing abstract transition is 

analogous to both RPN and SyPN models. However, 

RPN doesn’t define how the appropriate refinement net is 

chosen. As noted previously, SyPN uses a binding 

function to dynamically find a suitable refinement net 

(i.e. non deterministic). 

To clarify the idea, consider the SyPN of Fig.2. From 

this state, the elementary transition TI is enabled. The 

marking which is resulted from the firing of TI is shown 

in Fig.3.a. From this state, the transition TJ is enabled. 

The firing of TJ is achieved in two steps:  The 

consumption of local tokens specified by the pre-

condition of TJ (i. e. token of place	PJ) and the creation of 

a process, modeled by a refinement net (see the net at net 

on the right of Fig.3.b). This net starts its evolution with 

an initial marking (represented, in Fig.3.c by the 

annotation (1,0). PP associated to the transition TJ). A set 

of final marking is defined in order to describe its 

termination (i.e. λI		 0 {	M(pR). loc S 1}). Starting from 

the configuration described by Fig.3.b, the transition TP is 

also enabled. The firing of transition	TP produces a token 

in place PR (i. e. Fig. 3.c).  

 

 

 

 

 

 

 

 

 

 

 

 

In fact, the main interests of refining abstract 

transitions are:  

• Allowing concise modeling and easier verification. 

In other words, refinement process offers the 

designers a scalable support for the development of 

 

 

 

 

 

 

 

 

 

 

 
Figure1. SyPN annotations 

Elementary transition and 
Elementary synchronization transition  
  
Abstract transition and  
Abstract synchronization transition  
  
Local place and Synchronization place 
  

Local token 

Synchronization token 

 

 

 

 

 

 

 

 

 
Figure 2. Example of a marked net. 

 

T2 

T3 
T1 

P2 

P3 

P1 

P2 

   (1,0). P4 

P1 

 

TI		 0 {	L	(UR). &#$	 S 	1	}	 
(3.b) Firing of  �J 
 

(3. a) Firing of  �I 

T2 

T3 
 T1 

P2 

P3 

P1 

 (1,0). P4 

T3 
 T1 

P3 

T4 

P5 

P4 

T4 

TI		 0 {	L	(UR). &#$	 S 	1	}	 

 T4 

(3.d) Firing of the cut VI 
 

(1,0). P4 

  T2 

 T3 

 T1 

  P2 

P3 

P1 

 P5 

P4 

TI		 0 {	L	(UR). &#$	 S 	1	}	 
(3.c) Firing of 	�P 
 

(1,0). P4 

  T2 

T3  T1 

 P2 

P3 

P1 

 P5 

 P4 

Figure 3.Evolution of the net of Fig. 2. 
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Figure 4. Synchronization point. 

 

 

 

 

 

 

 

 

 
 

Figure 5.Synchronization condition and synchronization 

relation 

 

MAS. In a top-down refinement-based approach, 

development starts from an abstract specification 

level of a system that models the most necessary 

functional requirements in non-deterministic manner. 

A sequence of refinement steps is needed to 

gradually reduce non-determinism and introduce 

more details [49]. 

• Allowing flexible capturing of agents properties such 

as autonomy, awareness, dynamicity, etc. 

Local cut-steps: Several cut-steps for refinement net 

may be distinguished. Each local cut-step	VW corresponds 

to final marking set TW. Once a final marking is reached 

the corresponding cut-step will take place.  At first, it 

destroys process which is created by the firing of the 

abstract transition that gave birth to this process. Then, it 

produces tokens indicated by the post-conditions of this 

transition.  

For instance, the marking that results from the firing of 

transition �P (Fig.3.c), corresponds to a configuration in 

which the process can be finished by achieving a local 

cut-step.  This cut-step is restricted by the final marking 

indicated by the set TI	. The firing of the cut-step VI is 

done in two steps:  destroying the created process from 

the firing of the abstract transition �J and producing a 

token in the output places of the transition �J (Fig.3.d). 

Synchronization condition: Synchronization condition 

is a relevant aspect to model synchronization between 

several nets in SyPN model.  The main interest of this 

concept is for capturing autonomy agent’s property and 

expressing clearly conditions that must be fulfilled to join 

a rendez-vous. Agents participate to a rendez-vous if they 

intend to such interaction and the necessary conditions of 

this interaction fulfilled. The first condition captures 

autonomy property of agents however the second one 

expresses the constraints to be satisfied. This condition 

concerns only incoming edge of abstract synchronization 

transitions. As an example, see the synchronization 

condition (X	%*Y	)) of figure 5.   

Elementary synchronization transitions and abstract 

synchronization transition: Contrary to the refinement of 

abstract transitions, the refinement of abstract 

synchronization transitions is constrained by a condition. 

This condition is called synchronization condition (see 

Definition 4). It also invokes, simultaneously with other 

abstract synchronization transitions, a refinement net 

which differs from the refinement nets associated to 

abstract transitions. This net is named synchronization 

point. The synchronization points model all 

synchronization’s relations between nets (Definition 5).  

A synchronization point is defined by a marked net which 

is described by:  

• Synchronization condition (pre-conditions),  

• Synchronization relation,  

• Synchronization places,  

• Synchronization elementary transitions,  

• Synchronization tokens,  

• Initial marking and semi-linear sets of final 

markings. 

Example 2: Fig. 4 shows the graphical representation 

of a synchronization point having three synchronization 

places (PII, PIJ, PIK) and two elementary synchronization 

transitions (TII, TIJ).  

Remarks and notations: 

• Nets associated to synchronization points depend on 

the synchronization relation. 

• PS denotes the set of nets related to synchronization 

points.  The set of other nets is noted R with the 

hypothesis that PS and R are disjoint. 

 

 

 

 

 

 

 

 

 

 Synchronization relation: Each abstract 

synchronization transition is labeled by a synchronization 

relation. The intuition behind this labeling is to specify, 

for n nets and n abstract synchronization transitions the 

synchronization relation (i.e. the rendez-vous) to be 

ensured by a synchronization point.  Thus, a 

synchronization relation is a relation between abstract 

synchronization transitions of 	n nets according to a 

synchronization operator. 

As an example, the synchronization relation (RI. TII ∥RJ. TIJ ) in figure 5 relates transitions TII and TIJ of 

respectively nets  RI and RJ; according to the parallel 

synchronization operator.   

 

 

 

 

 

 

 

 

 

A synchronization operator Op is defined by the 

following BNF syntax: Op ∷	0 ]	|				||				|			|||		| 	__ |⨁.   Where: 

• + is the nondeterministic choice. 

• |	| is the synchronous parallel composition. 

• |	|	| is the asynchronous parallel composition. 

• __ is the sequential composition. 

• ⨁ is the exclusive composition. 

Note that, the operators “||, |||” have different meaning: 

“||” is the synchronous parallel composition. This 

operator relates parallel abstract synchronization 

transitions which must be synchronized (rendez-vous). 

However, “|||” is the asynchronous parallel composition. 

Parallel abstract synchronization transitions evolve 

asynchronously (i.e. independently). 

λII		 0 {	M	(pIJ). syn S 1	}									λIJ	 0 {	M	(pIK). syn S 1	}	 

T 12 T 11 

P 12  P 13 

P 1 

(x	and	y) RI. TII 	 ∥ RJ. TIJ 

T2 

T3 T1 

P2 

P3 

P1 
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Figure 6. Firing of the abstract synchronization 

transitions. 

Formally, synchronization condition and 

synchronization relation are defined as follows: 

Definition 4 (Synchronization condition): Let I be a 

finite set of indices; var	 0 {x+ such that i ∈ I} is a finite 

set of variables. 

The set of synchronization condition ranged over by β	I, β	J , …, β	+ … is defined inductively as follow: 

• Con(x), a boolean expression of parameter the 

variable	x	 . Con(x)	is an elementary synchronization 

condition. As an example, for a variable x of natural 

numbers, x > 5 is an elementary condition. 

• For synchronization conditions β	I and β	J, not(β	I	), (β	Iorβ	J) and (	β	Iandβ	J) are 

synchronization conditions. 

Definition 5 (Synchronization relation):  

• Let f be a finite set of indices ranged over by, ', g, … 

and let i be a finite set of nets ranged over by R+, Rj, … 

• Let Messages be a set of messages ranged over by Msg, that can be sent and received by processes (i.e. 

agents). We assume that elements of “Messages” 

respect ACL-Language
1
 (Agent Communication 

Language) syntax, such as KQML [18] and FIPA-

ACL [20] [21]. 

• The set of senders is ranged over by Sender. 
• The set of receivers is ranged over by Receiver. 
• Let GetReceiver	(	) be a function that may be 

invoked by a sender process. This function returns as 

a result the set of potential receivers of the sent 

messages. 

According to these definitions and notations, the 

synchronization relation Rsy built on the set of nets R and 

a set of abstract synchronization transition T (ranged over 

by Tm, T;) is defined by: Rsy ∷0 ∅	|R+. Tm	Op	Rj. T; 
|Send(	Sender, GetReceiver(	), Msg	) |Receive	(Receiver, Sender,Msg)2

.  

with	i o j and Op a synchronization operator such that Tm ∈ R+ and T; ∈ Rj. GetReceiver ( ) must be evaluated during the sending 

operation. 

Where: Send(	Sender, Rset, Msg	) means that a sender 

agent send a message Msg to receivers of the set Rset 
(the result of GetReceiver( ) function) and Receive	(Receiver, Sender,Msg) means that Receiver 
receives a message from a process (i.e. agent). 

Sending a message is an asynchronous operation so the 

sender will not wait for the message either to arrive at the 

destination or to be received. 

 

Notations: 

• Let q be an incoming edge of the transition t, rs(q) denotes a function that evaluates the 

synchronization condition associated to q. Which 

constrains the firing of transition  t. 
• ruvw	(t) denotes a function that returns the 

synchronization relation. This synchronization relation 

is the label of the abstract transition  t.  
• We assume that:    

─ For any incoming edge		e		of an abstract transition, rs(e) 0 false	.	   
─ For any abstract transition t in T789  , ruvw	(t) 0	∅	. 
Let us now consider the firing of abstract 

synchronization transitions providing from different nets 

and contributing to the same rendez-vous. The necessary 

and sufficient condition of such firing is that all 

synchronization conditions corresponding to these 

transitions are fulfilled. To illustrate this refinement 

process, let us consider the example of Fig. 7.  In the 

initial configuration of this system, it is clear that the 

necessary and sufficient condition for the simultaneous 

firing of TK and T′I is satisfied (i.e. (x	and	y) 0 true and	 (r	and		s) 0 true). This firing creates a new process 

having as control structure a synchronization point 

(shown in Fig. 4).  The created process starts its 

execution from its initial marking (i.e. M(PII) 0 (0,2)). 
From the current marking concerning the processes in 

which the abstract synchronization transitions are 

enabled, the firing of these transitions consists of 

consuming tokens indicated by the pre-conditions of the 

abstract synchronization transitions (here a token ()*|}of the place �I and a token	()*|~  of place �’	I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Synchronization points and synchronization cut-steps: 

Let us clarify the intuition of the synchronization point 

through the example shown in Fig. 4:  In this initial 

configuration, transitions TII and TIJ are enabled.  TII is 

enabled by Syn�} , however TIJ is enabled by Syn�~ .  The 

(x	and	y) RI. TII 	 ∥ RJ. TIJ 

T2 

 T1 

P2 

P3 

P1 

RI 

RJ 

		(RI. TII 	 ∥ RJ. TIJ) 
(r	and		s) 0 true						 

T’2 T ’1 

P’2 

P’ 1 

 

(1): The reader is invited to see [18] and [21] for messages examples 
written in ACL-Language. 

(2): in Send(Sender,Rset,Msg) and Receive (Receiver,Sender,Msg) 
operations, the reader may note that Sender and Receiver parameters may 

be known from the context. However we leave them according to ACL-

Language syntax. 
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firing of TII consumes the token Syn�}  of the place PII, 

however the firing of TIJ consumes the token	Syn�~ of 

the place PII. Marking that results from these firing 

consists of producing a token Syn�}  in the place PIJ and a 

token Syn�~  in the place PIK. The configuration 

described; by marking that results from the firing of  TII 

and  TIJ corresponds to a configuration in which the two 

processes can be finished by carrying out a 

synchronization cut-step (see Fig. 7).   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Refinement process of abstract synchronization transitions and 

a possible cut-step. 

Two cases are distinguished for this type of cut-step:  

• Differed termination: The processes implied in the 

synchronization point have different termination’s 

configurations.  To express this kind of termination, 

we introduce the operator "and" between the sets of 

final markings associated to these processes. Thus, 

each terminated process will be destroyed. Once the 

last process is terminated and destroyed, the 

synchronization point will be achieved. 

• Common termination:  The processes implied in the 

synchronization point converge to the same 

termination.  The final markings associated to these 

processes contribute to the formalization of this 

termination, expressed by a conjunctive combination 

of the final’s markings sets. Thus, the synchronization 

point is achieved as soon as all processes terminate 

their executions. Terminated processes are destroyed 

simultaneously. 

Example 3: Fig. 7 presents succession of firing for a 

refinement process that concerns the abstract 

synchronization transitions (	TK, T′I) and a common cut-

step associated to the termination set {	λII	 0{M	(pIJ). loc S 1}	and			λIJ 0 {	M	(pIK). loc S 1	}}. 
See the caption of figure 7 for more explanation. 

C.  SyPN  Formalization 

Definition 6 (Synchronized Petri Net): Let SP be a 

synchronized Petri net. SP is a sextuple (Rm,W, Var, Binding, Ω, Υ)  such that: 

• Rm 0 	 (i,M) where R 0 (P, T, A) is a marked net. 

• W is an incidence matrix defined as follows: 

─ W�(p, t)	 0 

�WI�(p, t)	if	t ∈ T789 ∪	T:;:< .																																																																			WJ�(p, t) if t ∈ T7856 ∪	T:;:<56.                                                                								
Where:		WI� ∶ 	 P123 ? (T789 ∪	T:;:<) → D ? D, and  								WJ� ∶ 	P ? �T7856 ∪	T:;:<56� → D ? D.					 
─ W�(p, t)	 0

�WI�(p, t)	if t ∈ T789 ∪	T:;:<.                                                                                																														WJ�(p, t) if t ∈ T7856 ∪	T:;:<56.                                                                          																																		
Where 	WI� ∶ 	 P123 ? (T789 ∪	T:;:<) → D ? D and 

 													WJ� ∶ 	P ? �T7856 ∪	T:;:<56� → D ? D. 
• Var	is a set of net’s variables.   

• Binding is a function defined as follows: for e an 

incoming edge of a transition	t, Binding�t, rs(e), ruvw	(t)� 0	 
	
���
��
��r	where	r ∈ R.		 if  ( (t	 ∈ T789) ∧ rs(e) 0 false																									∧ ruvw	(t) 0 ∅).ps	where 	ps ∈ PS.	 if	(�t	 ∈ 	 T7856� ∧ 	rs(e) 0 true∧ ruvw	(t) o ∅).'*Y�'*qY	#t�q��'vq.																																																					  

It associates to each abstract transition a refinement 

net, and to each abstract synchronization transition a 

synchronization point according to the type of this 

synchronization (i.e. relation of synchronization). 

• Initial marking function, defined by:   Ω(t) 0 	 � ΩI(t)	if	t	 ∈ 	 T789.	ΩJ(t)	if	t	 ∈ 	 T7856.   , Where: 

─ ΩI(t) ∶	 A function associating an initial marking to 

the refinement net related to each abstract 

transition.   

─ ΩJ(t): A function associating an initial marking to 

the synchronization point related to each abstract 

synchronization transition.  

• � : A semi-linear set of final markings, defined by Υ 0 	Υ	I 	∪ 	Υ	J where : 

T3 
T ' 1 T’2 

�� �� 

 P’2 

P’1 

  T2 

T1 

P2 

 P3 

P1 

{	TII		%	*Y				TIJ	}  
T 12  T 11 

     P 12  P 13 

   P 11 

{ TII			%*Y	TIJ	} 

T 12 
    

T 11 

P 12  P 13 

    P 11 

1 

 

6 

 
6 

 

2 

 

3 

 

5 

 4 

 

5 

 

5 

 

Caption: 
1: Concurrent firing of 	�K and �′I. 

2: Creation of a synchronization point. 

3: Concurrent firing of 	�II and �IJ 

4: Production of tokens in the outgoing places of   �II and �IJ. 

5: Common termination of threads associated with �K , �′I and    

destruction of the synchronization point. 

6:  Production of tokens in the post-condition of  �K	, �′I. 

×: Destruction 
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─ Υ	I: Indexed family of final markings, associated to 

the refinement’s net concerning abstract transitions. 

─ Υ	J: Indexed family of final markings associated to 

the synchronization points. 

Definition 7 (Extended marking): An extended 

marking of a synchronized Petri net noted SP	 0		(	Rm,W, Var, Binding	, Ω	, Υ)	is a labeled tree Tr 0(S,M, E, A), where:  

• S is the finite set of nodes, where each node v ∈ S  is 

labeled by a marked SyPN , noted < SP	(s	), M	(s	) _. 
• M is a marking function from S	 ? P	to	N	 ? N. 
• E	 ⊆ S	 ? S, is the set of edges, such that E 0{< s, s� _ s′ is the child of s}; 
• A	 is a labeling function from E → (R	 ? 	T789 ?Local) ∪ 2��5		?	� ¡¢£	?		56¤� such that Syn explores the 

set of synchronization tokens. 

 Extended marking is a labeled transition system. 

A marked synchronized Petri net (SP, Tr¥) is a 

synchronized Petri net SP together with an initial 

extended marking Tr¥. 

Notations
1
  

For each node  s	 ∈ S, Succ	(s) denotes the set of its 

direct and indirect successors including s (∀	s	 ∈ S,Succ	(s) 0 {s′ ∈ S	|(s, s′) 	 ∈ 	 E∗} the transitive closure of 

child relation).  

• Moreover, when s  is not the root of the tree;	pred	(s) 
denotes its single predecessor. 

• The empty tree noted ⊥. 

• When we treat several nets, the elements of the net are 

noted by a function (example:  local places of a 

network r are noted by P123(r)). 
• Thereafter, we admit that for each synchronization cut-

step τs	; a conjunctive or disjunctive combination of 

termination’s sets is associated.  These sets are 

indexed by λ+	j	, where i identifies the net contributing 

to the synchronization point and j identifies the 

transition having invoked this synchronization.  The 

intuition under this indexing is the preservation of 

processes identifiers having invoking this 

synchronization point. 

D.   Formal Semantics of Synchronized Petri Net   

The operational semantics of synchronized Petri net is 

given in terms of state and change of state.  If the current 

state of Petri net is completely defined by its marking, the 

state of a synchronized Petri net is defined as a tree of 

marked synchronized Petri nets, built by following 

successive refinements of both abstract transitions and 

abstract synchronization transitions. The intuitive 

interpretation of a state is as follows: 

• The root of the tree corresponds to the initial state; it 

includes all synchronized Petri nets of the system.  

Each edge represents either a firing of abstract 

transition or a concurrent firing of the abstract 

synchronization transitions concerned by the same 

synchronization relation; where the extremity of the 

edge designates an unfolded net (i. e. synchronized 

Petri net) or a synchronization point. 

• Each node is a set of marked synchronized Petri nets. 

This tree evolves according to the synchronized Petri 

net’s semantics, given through the firing rules of each 

type of transition. These rules will be detailed thereafter. 

Definition 8 (Firing of elementary transition and 

elementary synchronization transition): An elementary 

transition (respectively elementary synchronization 

transition) t	 is enabled for a synchronized Petri net SP+,	a 

local token (respectively synchronization token) t#©q*+ , 
from a node s, of an extended marking Tr 0(S,M, E, A),	noted Tr 5�ª	,«,			¬�­	®ª	,9	°̄°°°°°°°°°± 	Tr� 0 (S�, M�, E�, A�) 
if and only if for any  	p	in	P;23	(respectively	in	P56)	, M	(s)(p) 	S W�(p, t). 
Such that: 

• S� 0 	S; 
• ∀	s� ∈ S	 ∖ {s}	, M�(s�) 0 	M	(s�). 
• For any p	in	P123(respectively	in	P56)	, M�(s)(p) 0M	(s)(p) −	W�(p, t) ]	W�(p, t). 
• E� 0 	E. 
• ∀	e	 ∈ E, A�(e) 0 	A	(e). 

Definition 9 (Firing of an abstract transition): An 

abstract transition t	is enabled for a synchronized Petri 

net SP+, a token local	+, from  a node s of an extended 

marking Tr	 0 (	S,M, E, A)	, noted by Tr 5�ª	,«,			;237;	ª	,9	°̄°°°°°°°°± 	Tr� 0	 (	S′, M′, E′, A′), if and only if ∀	p	 ∈ Ṕ 	, M	(s)(p) 	S W�(p, t) such that: 

• Let s’ be a fresh identifier, such that: s� ∉ S  and Binding�t, β(e), Rsy	(t)� 0 s	,	with e is an incoming 

edge of t. 
• S� 0 	S	 ∪ {s�}. 
• ∀	s" ∈ S	 ∖ {s}	, M�(s") 0 	M	(s"). 
• ∀	p	 ∈ 	 P123	, M�(s)(p) 0 M	(s)(p) −	W�(p, t). 
• M�(s�) 0 	ΩI		(t)	is the initial marking associated to 

the refinement net. 

• E� 0 	E	 ∪ {(s, s�)}. 
• ∀	e	 ∈ E, A�(e) 0 	A	(e). 
• A��(s, s�)� 0 (	SP+		, t,			local	+) 
• Υ	(t) 0 	Υ	I	(t). 

Definition 10 (Firing of abstract synchronization 

transition): Let t+ be an abstract synchronization 

transition, for a synchronized Petri net SP+, a 

synchronization token Syn+ from a node s. 
• Let |	t+	| 	0  {t+	}	∪ {t	where			ruvw		(t	) 0ruvw		(t+	)}.  
• Let 	R+ 0 {	Sp where  t	∈ (	|	t+	| ∩ 	T7856(Sp	)	)}	. 
• Let |Syn	| 0 {	Synj where  tj is enabled by Synj	}	. 

The simultaneous firing of the transitions 	t		( t	 ∈|	t+	|	), for the synchronized Petri nets designated by	R+, 
the tokens designated by |Syn|, from a node s of an 

extended marking Tr	 0 	 (	S, M, E, A), denoted by Tr 	�ª,|	«ª	|,|56¤	|,9	°̄°°°°°°°°± 	Tr’ 0 	 (S�, M�, E�, A�) is possible if and 

only if: 

 

(1) Some notations are borrowed from RPN model [26]. 
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(((	∀		Sp ∈ 	R+, t ∈ (	|t+	| ∩ 	T7856(SP+	)), º∀p ∈P123(SP+	),			M(s)(p) S W�(p, t)»	&	(∀t ∈ |	t+	|, ∃e	/		e 	is an incoming edge of  t, rs(e) 0 	true)))  Such that: 

• Let s’ be a fresh identifier, such that s� ∉ S and Binding�t, rs(e), ruvw	(t)� 0 s′. 
• S� 0 	S	 ∪ {s�}; 
• ∀	s" ∈ S	 ∖ {s}	, M�(s") 0 	M	(s"). 
• ∀	SP+	 	 ∈ 	 	R+, t	 ∈ (	|	t+	| ∩ 	T7856(SPj	))	, ∀	p	 ∈	P123(SP+	)	, M�(s)(p) 0 M	(s)(p) −	W�(p, t). 
• M�(s�) 0 	ΩJ		(t), initial marking associated to the 

synchronization point. 

• E� 0 	E	 ∪ {(s, s�)}. 
• ∀	e	 ∈ E, A�(e) 0 	A	(e). 
• A��(s, s�)� 0 	2��ª			?		|	«ª¿	?|	56¤|). 
• Υ	(t) 0 	Υ	J(t).  

Definition  11 (Firing of local cut-step): The firing of a 

local cut step τ+ relating to the set of final marking γ+from 

a node s for an extended markingTr	 0 	 (S,M, E, A) leads 

to the extended marking Tr’ 0 	 (V’, M’, E’, A’),		noted Tr Áª,9	¯± 	Tr′, if and only if M(s) 	∈ Υ+   such that : 

• If s is the root of the tree and one of final markings is 

reached, the reduction leads to the empty tree (i.e.  Tr’ 0⊥). 

• Else, the semantics of the cu-step is as follow: 

─ S� 0 	S	 ∖ succ	(s). 
─ ∀	s� ∈ S� ∖ {	pred(s)}	, M�(s′) 0 	M	(s′). 
─ ∀	p	 ∈ 	 P123	, M�(pred	(s))(p) 0M	(pred	(s))(p) ]		W�(p, t). 
─ E� 0 	E	 ∩ (S� ? S�). 
─ ∀	e	 ∈ E, A�(e) 0 	A	(e). 
Definition 12 (Firing of synchronization cut-step): A 

synchronization cut-step τs+	relating  to the set of final 

markings Υ	J(t), such that t	 belongs  to the set of 

transitions having contributed to the creation of a node  s, 
is enabled from that node, for an extended marking Tr	 0 (S,M, E, A), noted Tr Á9ª 	±̄ 	Tr’ 0 	 (	S′, M′, E′, A′), if 

and only if the final marking described by Υ	J(t) is 

reached. Two cases may be distinguished: 

 Differed Cut-stept: 

• If  Υ	J(t) has a disjunctive combination form of 

termination’s set associated to the synchronization 

point then:  

─ If s	is the root of the tree and one of final markings 

is reached, the reduction leads, after exploring all 

final markings, to an empty tree (i.e. Tr’ 0	⊥	).  
• Else, the semantic of synchronization cut-step relating 

to the set of final markings Υ	J(t) is as follows: 

─ Let  λ 0 {	λ+	j		/λ+	j	Appear in Υ	J(t)}. 
─ If (λ+	j	 	 ∈ 	λ)		and ( λ+	j	 is reached) then: 

o ∀	p	 ∈ 	P	(	SP+)	, M�(pred	(s))(p) 0M	(pred	(s))(p) ]		W��p, tj�.  

o λ 0 	λ − Âλ+	j	Ã. 
─ If (λ	 o 	∅) then:  

o S� 0 	S	 ∖ succ	(s). 
o ∀	s� ∈ S� ∖ {	pred(s)},			M�(s′) 0 	M	(s′)	. 
o E� 0 	E	 ∩ (S� ? S�). 
o ∀	e	 ∈ E, A�(e) 0 	A	(e). 

Common Cu-stept: 

• If  Υ	J(t) has a conjunctive combination form of 

termination’s sets associated to the synchronization 

point then: 

─ If s is the root of the tree and all final markings are 

reached, then the reduction leads to an empty tree 

(Tr′ 0	⊥). 

• Else, the semantic of synchronization cut-step relating 

to the set of final markings Υ	J(t)		is as follows: 

─ Let	λ 0 {	λ+	j		where λ+	j	 appear in Υ	J(t)}.  
─ ∀	λ+	j	 ∈ 	λ	, 	λ+	j	is reached then: 

o S� 0 	S	 ∖ succ	(s). 
o ∀	s′ ∈ S� ∖ {	pred(s)},			M�(s′) 0 	M	(s′)	.		 
o ∀	SP+	 	 ∈ R+, t	 ∈ |t+|,∀	p	 ∈ 	P	(SP+	)	, M�(pred	(s))(p) 0M	(pred	(s))(p) ]		W�(p, t). 
o E� 0 	E	 ∩ (S� ? S�). 
o ∀	e	 ∈ E, A�(e) 0 	A	(e). 

IV. SYNCHRONIZED PETRI NET EXPRESSIVITY 

This section gives two examples showing the SyPN 

modeling adequacy for MAS.  

A.  Generic Example of MAS Planning (synchronization 

between agents’ tasks) 

In fact, Multi-agent Planning (MAP for short) [12] [23] 

[37], extends traditional Artificial Intelligence (AI) 

planning to domains where multiple agents are involved 

in a plan and need to act together. Research in MAP is 

promising for real-world problems, as well to provide 

powerful tools for solving problems and ensure 

coordination between agents [13] [14] [38]. In fact, RPN 

has been proposed especially to model MAP problem 

[15]. 

Let us consider three agents A, B, and C which 

collaborate together in order to achieve a common goal 

concretized by a multi agent plan, noted Plan. Agents’ 

capabilities and tasks’ constraints are described as follow: 

• Capability	(A) 0 {TI, TÅ, TÆ},  
• Capability	(B) 0 {TJ, TP}      
• Capability	(C) 0 {TK, TR, TÇ}. 
• TI and  TJ could be achieved independently. 

• The post condition of TI enables the precondition 

of both TR	and TÅ. 

• The post condition of  TP enables the precondition 

of TK. 

• The executions of both TR and TÅ are in mutual 

exclusion. 

•  TÆ and TÈ could be performed concurrently. 

Each task T+ has a pre-condition and a post-condition, 

respectively denoted	PreCond. T+ and PostCond. T+. A 

pre-condition represents the necessary conditions that 

must be fulfilled before the task execution and, a post-

condition represents necessary condition that must be 
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fulfilled after the task execution. . Tasks plan should be 

performed within the following sub order, by respecting 

tasks’ constraints:  Plan	 0 	 (TI||	|TJ, TP 	<< TK, TR	⨁TÅ, TÇ |	|TÆ}.	
Observe that at this level, any agents’ internal behavior 

is voluntarily abstracted. Fig. 8 illustrates a possible 

modeling of example 1 using the SyPN formalism. 

Initially, the agent B can simultaneously interact with 

both agents A and C by invoking respectively the 

synchronization points SP2 and SP1. SP1 models the part (TI||	|TJ) and SP2 models the part (TP 	<< TK), such that 

both parts can be executed simultaneously. 

• SP 1 can be invoked if and only if TA1 and TB1 are 

simultaneously fired. This implied that TA1 and TB1 

must be enabled (i.e.Gard1 is satisfied and 	(L(�É1). v)*		 S 1		%*Y	L(�Ê1) S 1)). 
• SP 2 can be invoked if and only if TB2 and TC1 are 

simultaneously fired. This implied that TB2 and TC1 

must be enabled (i.e. Gard2 is satisfied and 	(L(�Ê1). v)*		 S 1		%*Y	L(�Ë1) S 1)). 
• SP 3 can be invoked if and only if TA2 and TC2 are 

simultaneously fired. This implied that TA2 and TC2 

must be enabled (i.e. Gard3 is satisfied and 	(L(�É2). v)*		 S 1		%*Y	L(�Ë21) S 1)). 
• SP 4 can be invoked if and only if TA3 and TC3 are 

fired. This implied that TA3 and TC3 must be 

enabled (i.e.	Gard4 is satisfied and (L(�É3). v)*		 S 1		%*Y	L(�Ë3) S 1)). 
Finally, observe that such a modeling where several 

nets models each one a special agent, agent 

synchronization tasks that can run concurrently, is not 

really handled by standard RPN formalisms. It is 

probably the reason why in [3], the proposed example 

dealing with a similar use case, only showed local agent 

behaviors modeling. In fact, the difficulty was to 

demonstrate both local and collective behaviors together. 

(See section 1, paragraph that explains the limitation of 

the RPN model for specifying synchronization aspects).   

B.  FIPA Contract Net Interaction Protocol (Concurrency 

of Interaction) 

To enhance the SyPN modeling capabilities when 

considering dynamic interactions, we now consider the 

most widely used protocol in MAS area, which is the 

contract net protocol. In the FIPA standardized version, 

there are two distinct agent’s roles: initiator (one agent) 

and participants (numerous instances). For sake of clarity 

we refer to the Contract-Net’s explanation of [21]. A 

similar case study has been specified by Colored RPN 

[39]. However, this model allows only the representation 

of collective behavior whereas SyPN can specify both 

collective and internal behaviors. In fact SyPN preserves 

intuition of firing abstract and elementary transitions of 

RPN, and by the way it allows automatically agents’ 

internal behaviors representation. 

“The initiator solicits Î proposals from other agents 

by issuing a call for proposals (CFP) act , which specifies  

the  task, as well any conditions  the  Initiator  is placing 

upon  the execution of  the  task. Agents (participants) 

receiving the call for proposals are viewed as potential 

contractors and are able to generate * responses. Of 

these, g  are proposals to perform the task, specified as 

propose acts. The participant’s proposal includes  the 

preconditions that  the participant is setting out  for  the  

task, which may be  the  price,  time  when  the  task will  

be  done,  etc.  Alternatively, the ' 0 * − g  participants 

may refuse to propose. Once the deadline passes, the 

initiator evaluates the received 	g proposals and selects 

agents to perform the task; one, several or no agents may 

be chosen. The  & agents of  the  selected proposal(s) will 

be  sent an  accept-proposal  act  and  the  remaining  ©  

agents  will  receive  a  reject-proposal  act .  The  

proposals  are  binding  on  the  participant,  so  that  

once  the  initiator  accepts  the  proposal,  the  

participant  acquires  a  commitment  to  perform  the  

task.  Once  the  participant  has  completed  the  task, it  

sends  a  completion message  to  the  initiator  in  the  

form of an inform-done or a more explanatory version  in  

the  form of an  inform-result. However, if the participant 

fails to complete the task, a failure message is sent.” 

We ask the question: how to model such interactions? 

Let us consider the following scenario: m 0 3, n 0 j 03, k 0 1	and	l 0 2. A potential modeling of such scenario 

is given in Fig. 10. Initially, the initiator (I) is ready to 

send a call for proposal (CFP) to all participants who are 

ready to interact with it in order to achieve such proposal 

(here m corresponding to Fig 9 is equal to 3): participant 

1, participant 2 and participant 3 noted respectively P, P’ 

and P”. Synchronization conditions corresponding to this 

remote synchronization are noted G1, G11P, G11P’ and 

G11P” where G1 presents task announcement arrival, 

G11P, G11P’ and G11P” present conditions behind 

capabilities to achieve the task corresponding to each 

participant. When G1, G11P, G11P’ and G11P” are 

fulfilled and (L(�11). v)*	 S 1	%*Y	L(��1). v)*	 S1	%*Y	L(�’1). v)*	 S 1	%*Y	L(�”1). v)*	 S 1) is 

satisfied then T11, TP1, T’1and T”1 are consequently 

enabled. Concurrent firing of these transitions invokes a 

rendez-vous; concretized by a synchronization point SP1 

(Fig. 11). Once the participants receive CFP, they start 

evaluating the proposal. Based on their capabilities and 

resources availability, they make decision to perform the 

proposed task or refuse the request. Note that decisions 

are made locally (internal behavior, we have made 

abstraction of such behavior). After making decisions, P 

and P’ have to prepare their bids that satisfy the criteria 

specified in the CFP. However, P” refuse the request (i is 

equal to 1and j is equal to 2; in Fig. 9). Then, initiator is 

waiting for bids or for time out. Synchronization 

conditions corresponding to second remote 

synchronization are: G2= time-expiration (deadline), and 

G22P, G22P’, G22P” present deliberate-proposal 

corresponding respectively to P, P’ and P”. when G22, 

G22P, G22P’ and G22P” are fulfilled and (M	(P12). syn	 S 1	and	M	(PP2). syn	 S	1	and	M	(P’2). syn	 S 1	and	M	(P”2) S 1)	is satisfied 

then T12, TP2, T’2 and T”2 are consequently enabled. 

The concurrent firing of these transitions invokes a 

rendez-vous concretized by SP2 (Fig. 11).  
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Then, the initiator starts evaluating the received bids 

and decides to accept the bid corresponding to P1 and 

reject the second one (bid of P’). Initiator have to 

prepare an accept proposal message to P1 and a reject 

proposal message to P’. The synchronization point SP3 

(Fig. 11) can be invoked when T13, TP3, T’3 and T”3 

are enabled (i.e. (G3= G33P = G33P’= true) and (M 

(P13).syn ≥ 1 and M (PP3).syn ≥ 1and M (P’3).syn ≥ 1 

and M (P”3).syn ≥ 1) is fulfilled). Participant P has to 

accomplish the proposed task and prepare the result to 

be sent to the initiator. When (G4=G44= true) and (M 

(P14).syn ≥ 1 and M (PP4).syn ≥ 1)) is fulfilled then 

the last rendez-vous for this scenario took place (SP4, 

Fig. 11). Note that, all send and receive primitives are 

evaluated during synchronization. For instance, the 

primitive SendI1 is evaluated before sending the 

message as follow: sender= I, GetReceiver ( ) = 

{P,P’,P”} and Msg= CFP respecting ACL- 

presentation message. Also, the primitives RcvP1( ), 

RcvP’( ) and RcvP”( ) are evaluated during receiving 

message. Synchronization points are chosen 

dynamically by the binding function (variables 

indicated in the Fig. 9 are evaluated during execution: 

m=3, j=2, i = k = l =1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Modeling generic example of multi agent planning by means SyPN. 

Caption 
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• SP1 presents sending of CFP by Initiator (I.T1) 

and receiving of this later by P, P’ and P” (P.T2, 

P’.T3 and P”.T4). 

• SP2 presents sending of bids, by P, P’; sending of 

reject proposal by P” (P.T5, P’.T6 and P”.T7), and 

receiving of bids by initiator (I.T8). 

• SP3 presents sending of response to P and P” after 

deliberation (I.T9), and receiving of these 

responses by P and P’ (P.T10 and P’.T11).  

• SP4 presents sending of the result after executing 

the CFP by P (P.T12) and receiving of this 

response by the initiator (I.T13). 

Each SPi has an initial marking and a semi linear set 

of final marking. In our modeling, we have chosen to 

abstract the internal behavior of agents, to focus on the 

modeling of concurrent synchronization tasks, 

however, the modeling can be augmented to deal with 

internal agent behaviors, without difficulty. 

V. RELATED WORK 

Several powerful formalisms have been proposed in 

MAS’ specification area. This section reviews some of 

them: 

Z-Specification Language: The Z-Specification 

Language was developed, initially for formal 

specification of software systems [46]. It is applied in 

MAS as well. For instance, d’Inverno et al. [11] have 

adapted this formalism to construct a formal agent 

framework. The Z-Specification Language has the 

following advantages: 

• It deals with a clear, precise and unambiguous 

specification.  

• The use of schemas and schemas-inclusion allows 

the description of system at different level of 

abstraction. 

• It has a suitable expressiveness that allows a 

consistent, unified and structured description of a 

computer system and its associated operations. 

As a result of many applications of Z-based 

framework, it has been argued [11] [43] [51] that Z is 

inappropriate to model interactions between agents. 

Also, the use of Z makes MAS reactive aspects 

difficult to specify and the specifications are not 

executable.  

To address these issues, one can combine two or 

more formalisms in order to specify easily and 

naturally the system. For instance, combining Z and 

CSP, combining Z; object paradigm and State charts 

[51]. The main criticism of multi formalism is the 

complexity inherent from this composition. Also, the 

consistency of such combination is not ensured.   

Colored Petri Net: As noted in [16], interactions 

between agents may be modeled by means of colored 

Petri net (CPN). Indeed, CPN are suitable for 

specifying concurrency and the dynamic nature of 

MAS. Nevertheless this model is very limited when it 

is necessary to specify the system at different level of 

abstraction. In other words, CPN does not support 

abstraction and refinement paradigm, which is a key 

element of MAS. 

Maude: In the same context of specifying 

interactions between agents, authors in [46] have 

proposed an approach to formal specification of 

interactions protocols by means of Maude language. 

Figure 9. FIPA Contract Net Interaction Protocol. 
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Maude is a specification and programming language, 

based on rewriting logic. It allows specifying different 

kinds of concurrent systems. However, Maude cannot 

deal with asynchronous aspect that represents a 

fundamental characteristic of MAS.  

 Logic: Temporal logic has been widely used in MAS 

area. It is argued that logic provides a precise and 

unambiguous formal tool to specify and reason about 

complex systems [40]. However, logic specifications 

do not provide constructive methodologies for building 

distributed systems, and so they can be of only limited 

significance in practice.  

These different views have led to divergence of 

theoretical and practical distributed computing fields 

[41][42]. 

 As it may be noticed, the above modeling approaches 

prohibit modeling of at least one of the following 

characteristics: abstraction and refinement, 

asynchronous aspects, synchronization between several 

processes. Anyway SyPN covers all these 

functionalities. It has the following characteristics: 

• Generality: SyPN is a general model in the 

sense that it allows expressing all MAS’s 
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SendI12 = Send (I, GetReceiver ( ) = {P, P’, P’’}, M) such that: M= CFP.                     G1= Task announcement. 

RcvP1= Receive (I, P, M: Message).                                                                                G11P=G11P’=G11P” have capabilities for carrying out the task.   

RcvP’1= Receive (I, P’, M: Message).                                                                              G2= time expiration (deadline). 

RcvP’1= Receive (I, P’, M: Message).                                                                              G22P=G22P’=G22P”= deliberate proposal.  

SendP1= Send (P, I, M1) such that M1= Propose.                                                            G3= choice potential proposals. 

SendP’1= Send (P, I, M2) such that M2= Propose.                                                           G33P=G33P’= wait response. 

SendP’’1= Send (P, I, M3) such that M3= Refuse.                                                            G4=final choice. 

RcvI2 = Receive (I, Participant, n, M: Message)                                                               G44= Task execution. 

SendI2=Send (I, GetReceiver ( ) = {P, P’}, M: Message) 

RcvP2= Receive (P, I, M: Message) such that M= Accept Proposal. 

RcvP’2= Receive (P’, I, M: Message), such that M=Reject Proposal 

SendP2= Send (P, I, M: Message), such that M= Inform Done. 

RcvI3= Receive (I, P, M: Message). 

Figure10. Modeling ContractNet Protocol by means of SyPN. 
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3 

functionalities independently of their 

applicability or their architecture.  

• Abstraction and refinement: The concept of 

abstract transition makes it possible to consider a 

complex behavior or a refinement task at 

different levels of abstraction, so one can be free 

from non-relevant details at a given level of 

abstraction, hence controlling system’s 

complexity become possible. 

• Synchronization and concurrency: The 

concepts of abstract synchronization transition, 

elementary synchronization transition, 

synchronization point and synchronization places 

allows the modeling of synchronization between 

several nets and thus expressing precisely 

various mechanisms of rendez-vous (i.e. various 

interaction’s schemas between several agents). 

The concept of synchronization relation allows 

one to express clearly and precisely various 

kinds of synchronization. Concurrency can be 

easily achieved without extra effort in designing 

communication and synchronization mechanism 

because SyPN expresses them implicitly.  

• Preservation of agent’s properties:  The token 

typing preserves agents’ proprieties such as 

autonomy, awareness (i.e. local token) and 

sociability (i.e. synchronization token).  

• Dynamicity: The dynamic nature of MAS can be 

easily reflected by SyPN’s features such as non-

determinism, abstraction, etc. 

• Creation and destruction of agents can be easily 

modeled by a transition. 

Although, the above arguments show the interests of 

the SyPN model for specifying MAS, a formal 

comparison against existing models remain to be done. 

VI. CONCLUSION 

In this paper, we presented a recursive Petri net 

based formal specification model covering various 

functionalities of MAS. We enriched RPN by several 

features enabling among others modeling both internal 

and collective behaviors of MAS. Firstly, we presented 

different behaviors of MAS. Secondly we defined 

syntax and formal semantic of the model; either we 

showed intuition behind all novel concepts. Thirdly, we 

clarified the effectiveness and expressiveness of SyPN 

through two examples. The former one showed SyPN’s 

efficiency for rigorous specification of multi agent 

planning. It confirmed the significance of interaction 

operators. The second one gave suitability of SyPN to 

remote interactions modeling. Consequently, we saw 

how SyPN can specify both local synchronization and 

remote interaction. Fourthly, we discussed roughly 

several existing formalisms in MAS specification area 

and explained their inadequacy to rigorously specifying 

main features of MAS. Moreover, we provided 

numerous gained advantages for SyPN. 

This work may be continued in several ways. Firstly, 

we investigate this model for proposing a design 

methodology for MAS based on SyPN specification 

model. Also, the automatic generation of the 

reachability graph allows using existing formal 

checking tools. Other alternatives are: investigating 

mobility feature of SyPN, through a concrete example 

and defining a formal semantic of true concurrency 

[53] for SyPN. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Synchronization Points associated to Fig.10.  
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