
Synchronized Petri Net: A Formal Specification

Model for Multi Agent Systems

Sofia Kouah
University of Oum El-Bouaghi, Algeria

MISC Laboratory, University Mentouri Constantine, Algeria

Email: kouah@misc-umc.org

Djamel Eddine Saïdouni
MISC Laboratory, University Mentouri Constantine, Algeria

Email: saidouni@misc-umc.org

Jean Michel Ilié
Lip6 Laboratory, University of Paris 6, Paris, France

Email: jean-michel.ilie@upmc.fr

Abstract—This paper proposes a formal model for

specifying multi agent systems, named SyPN (for

Synchronized Petri Net). This model allows the

specification of various kinds of agent-based systems’

behaviors, such as individual and collective behaviors. SyPN

is an extension of Recursive Petri net allowing

synchronization of several nets. In fact, SyPN borrows the

specification of dynamic processes from Recursive Petri net

and introduces several valuable concepts that enable concise

multi agent system specifications, such as: typed places,

transitions and tokens, synchronization points,

synchronization condition, synchronization relation and

binding function. We illustrate our approach by two case

studies of remote interactions between agents.

Index Terms—Multi-agent systems, formal specification,

recursive petri nets, abstraction, synchronization.

I. INTRODUCTION

Multi Agent Systems (MAS for short) form a powerful

paradigm to design complex software [7][22][33].

Generally, it resolves complex problems where reactivity,

mobility [30], dynamicity and adaptation of the system to

uncertain or unpredictable factors should be considered.

MAS may be seen as societies made up of autonomous

and independent entities, called agents. These agents

interact together in order to solve a specific problem or to

achieve collectively a common task. Agent is viewed as a

computer system situated in some environment and that is

capable of executing flexible autonomous actions in this

environment in order to meet its design objectives [35]

[56].The large majority of applications based-agents are

designed by [48]:

• Using methodologies based on results of Object-

Oriented Software-Engineering [5][9][34];

• Highlighting organizational aspects [17] or

relations between various aspects of MAS

[10][40][44];

• Applying construction techniques of expert

systems [19];

• Or using formal reasoning, based on Z- language

[43] or on temporal logic [1].

Then, the domain for designing MAS is becoming very

attractive. However, several functionalities of MAS like

parallelism, dynamicity and communication may not be

easily specified using existing specification models. In

fact, these models are not defined specifically for MAS.

Therefore, new specification models, new paradigms and

new tools are required. Designing safe and sound MAS

whose behaviors could be checked before its

achievement, calls for a rigorous specification step,

assisted by a formal specification model. This model

should have a well-defined semantics and being able to

take into account all MAS functionalities. Previous

efforts toward modeling and verifying MAS can be found

in the work of [29] [54]. They are based on reachability

graph generation. In our work, this issue can be addressed

likewise, by generating reachability graph from SyPN

model. Such generation can be easily built by generating

all possible firing sequences as follow:

• Step 1: start from initial marking.

• Step 2: fire all enabled transitions from the current

marking (i. e. apply firing rules).

• Step 3: re-iterate the second step from the new

marking until no transition can be enabled.

 In this context, we are mainly interested by formal

specification model of MAS. In this field some basic

questions arise:

• How to preserve agent’s proprieties, such as

autonomy, sociability, awareness...etc.

• How to model dynamically agents’ interactions.

• Asynchronous is a ubiquitous aspect

characterizing concurrent interactions that must be

straightforwardly modeled.

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 587

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.3.587-602

Several models were proposed in the literature, such as

Petri nets [6], recursive Petri nets [15], colored Petri nets

[16][45][57], finite state automata [52], Maude [46], Z

language [50], Event-B [31][32]. As it will be shown in

section 5, RPN has several advantages comparing to other

models. Recursive Petri nets cover several functionalities

of MAS such as modeling abstraction, dynamicity,

concurrency, preemption, recursion …etc.

In fact, Recursive Petri net (RPN) supports the

specification of concurrent activities, reasoning about

simultaneous actions and continuous processes, a theory

of verification and mechanisms of transformation (e.g.

abstraction, refinement, merging) [3] [4] [13] [24] [27].

Furthermore, RPN has aptitude to model threads which

behave concurrently [15][16][25][26]. They are able to

create new threads, until their respective ends. RPN

distinguish elementary and abstract transitions. Moreover

a starting marking is associated to each abstract transition

and a semi-linear set of final markings is defined. The

firing of an elementary transition updates the current

marking using ordinary firing rule. The firing of an

abstract transition refines it by a new sub-net (i.e. creation

of new thread, named its child) which starts its own token

game, from a starting marking whose value is attached to

the abstract transition. Once a final marking is reached, a

cut step closes the corresponding sub net, kills its

children and produces tokens, indicated by the post

matrix, in the appropriate output places of the abstract

transition.

However, there are some limitations [3]:

• In recursive Petri net, there is no composition

between nets, then there is no way to model

interactions between agents modeled in terms of

RPNs.

• In RPN, processes are associated to the execution

of an abstract transition; this execution is

represented by the semantics associated to RPN.

Then, the semantics doesn’t allow any choice

initiated by the process. We just generate the

marking graph which gives all possible behaviors.

This semantics limits RPN for allowing process

autonomy.

• In RPN there is only one way to choose the

refinement net. (i. e. which limits the dynamic

refinement process of abstract transitions.)

To allow interaction between processes, in [8], authors

extend RPN by shared places. Each process is specified

by RPN and shared places ensure interactions between

processes. This model is named ERPN (Enhanced RPN).

It is enhanced by:

• The possibility, for a given process, to control

creation of its processes (i.e. children) with a new

kind of outputs associated to the abstract

transitions, namely immediate outputs.

• New operational semantics that allows

manipulation of both local and global places

(shared places).

On the other hand, ERPN has many limits such as [8]:

• Some agent functionalities like autonomy and

dynamic interaction may not be easily modeled in

ERPN.

• It does not deal systematically with the following

contrast: with which group communicate each

instance of agent?

The main contribution of this paper is the proposition

of a new formalism, named SyPN for (Synchronized Petri

Net). As mentioned above, RPN doesn’t allow the

specification of agents’ interactions. For this reason

SyPN extends RPN by enabling dynamic interactions

between several Petri nets, preserving agents’ proprieties

specially autonomy and using ERPN’s shared place

functionality. Effectively, interactions between agents are

complicate and even uncontrollable [2]. When designing

MAS, dynamic interaction should be well described and

easily specified to ensure agents’ adaptation to the

dynamic environment changes. To adapt themselves to

these changes, agents must be able to change their roles

and behaviors under several circumstances and adopt

various protocols to interact with agents.[55]

The paper is structured as follows: Section 2 presents

MAS behaviors. Section 3 defines the SyPN model,

presents a contextual definition of the model, its syntax,

its graphical display and its formal semantics. Section 4

presents two examples that illustrates SyPN modeling

facilities among others synchronization between tasks

and remote interactions. Section 5 discusses some related

work. Section 6 concludes this work and discusses

prospects to be continued in future.

II. BEHAVIORAL CHARACTERISTICS OF MAS

A MAS is an organized collection of agents that can be

characterized by all or some of the following features

[17]:

• Each agent has incomplete information, or

capabilities for solving the problem, thus each

agent has a limited viewpoint;

• There is no global system control;

• Data is decentralized; and

• Computation is asynchronous.

Agent’s behavior depends on its own characteristics,

such as autonomy, reactivity, pro-activity (i.e. agents do

not simply act in response to their environment. They are

able to exhibit goal-directed behavior by taking an

initiative [56]), sociability, goals oriented,

dynamicity…etc. Each property is present in an agent

with more interest than another, this depends on agent

functionalities. Each agent has an identity, a state and a

behavior. A state consists of agent’s knowledge, beliefs

and goals that it should perform. Agent’s behavior is

defined by roles it can perform (e.g. in E-Learning MAS

[36], agent’s role can be: learner, instructor, author,

reviewer, administrator...etc.), actions it can achieve and

its reactions to different events. A role can be thought of

as a set of behaviors and capabilities that agents can

exploit to perform their tasks in a given context [28].

Let us study agent’s behavior, by making abstraction

on its internal architecture or any implantation choice. In

588 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

MAS, an agent must be able to handle very large numbers

of concurrent tasks or processes in order to react to

various external events. To successfully ensure this

management each agent achieves one or more behaviors.

As far as agent’s behaviors are concerned, we adopt

the following classification. Two main categories are

distinguished: simple behavior being used to present

simple tasks or processes and complex behavior being

used to present complex tasks or processes.

Simple behavior: it includes cyclic, atomic and planed

behavior.

• Cyclic behavior: this kind of behavior achieves

its task recursively, for each call.

• Atomic behavior: it achieves a simple task and

finishes. It includes three kinds of sub-behaviors:

- Sender behavior: It encapsulates an atomic

unit that achieves an operation of sending

message.

- Receiver behavior: This behavior waits until

reception of a message. It achieves an atomic

operation of receiving message then it stops.

- Generic behavior: Models any behavior

made up of any single atomic task other than

sending or receiving messages.

• Planed behavior: This behavior achieves a task

within certain time.

 Complex behavior: it includes sequential, parallel,

exclusive and combined behaviors:

• Sequential behavior: it models a sequence of

actions.

• Parallel behavior: it models a collection of

behaviors that must be executed concurrently.

• Exclusive behavior: it models the exclusive

execution of several behaviors.

• Combined behavior: it models combination of

various behaviors in order to produce more

complex one.

III. SYNCHRONIZED PETRI NET SPECIFICATION MODEL

The main characteristic of the SyPN model is its ability

to specify easily several functionalities related to remote

agents such as communication and synchronization. Also,

the model distinguishes local or internal behavior of an

agent among collective agent’s behaviors. Internal

behavior is viewed as an organized collection of abstract

actions which can be performed locally without

interaction with other agents. In other words, an agent has

its own requirements (i.e. capabilities and resources) to

accomplish this kind of actions. Contrary to internal

behavior, actions of collective behavior need to be

coordinated with other agent actions. SyPN extends

recursive Petri net by:

• Typed places, transitions and tokens;

• New concepts, which are: synchronization points,

synchronization condition, synchronization

relation and binding function.

A. SyPN Syntax

This section presents definitions and notations used for

SyPN’s formalization.

1) Typing of Place, Transition and Token:

Places Types: The set of places is partitioned into two

subsets: local places and synchronization places which

are noted respectively ����and ��� . The local state of an

agent is defined by its local places. The global state is

composed of local and synchronization places.

Transitions types: Four types of transitions are

distinguished:

• Elementary transition: It models a local

elementary task. This transition does not need any

refinement. The set of elementary transitions is

denoted by	�	
	�.

• Abstract transition: It models a local abstract

task. The execution of this task requires an

adequate refinement that depends on execution

context. The set of abstract transitions is denoted

by	��
�.
• Elementary synchronization transition: It

models an elementary task of synchronization

which does not require any decomposition. The

set of elementary synchronization transitions is

denoted by	�	
	���.

• Abstract synchronization transition: Such

transition is needed when an abstract task is

associated to a synchronization occurrence

between remote agents. The abstract task is

defined by its refinement process. The concurrent

execution of abstract synchronization transitions

leads to concurrent execution of the corresponding

abstract tasks. The set of the abstract

synchronization transitions is denoted by	��
��.

Token types: Two token types are distinguished:

• Local token: It is used in firing elementary and

abstract transitions.

• Synchronization token: It allows the evolution of

several synchronization nets. This synchronization

is defined by abstract synchronization transitions

and elementary synchronization transitions.

Definition 1 (Token): A token is a pair (type, id) where type ∈ {Local, Syn} represents the token’s type and id

represents the token’s identifier. This identifier identifies

a process (agent).

Notations:

• In the sequel, pairs ("#$%&, ') and (()*, ') will be

noted "#$%&+ and ()*+ respectively.

• Schematically, Fig. 1 presents notations that will

be used.

Remark: As it will be clarified in the sequel, a

synchronization transition (elementary and abstract) is

characterized by a synchronization point allowing their

distinction.

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 589

© 2013 ACADEMY PUBLISHER

T2

Definition 2 (Net): A net R	is a triplet (P, T, A) where:

• P is a finite set of places, such that P 0 P123 ∪ P56.

• T is a finite set of transitions, such that T 0 	T789 ∪T:;:< ∪ T:;:<56 ∪ T7856 ;

• A is a finite set of edges linking places and transitions

such that A 0 	A= ∪ A5, where A= ⊆ P ? T, A5 ⊆ T ?P.

Definition 3 (Marked Net): A marked net Rm is a pair (R,M) where:

• R 0 	 (P, T, A) is a net;

• M	:	P → D ? D, is a marking function such that: ∀p ∈ P	, M(p) 0 (x, y),	where	x	is the number of local

tokens in the place p and y is the number of

synchronization tokens in the place p. The number of

local tokens and synchronization tokens are be also

noted M(p). loc and M(p). syn respectively. In other

words M(p). loc 0 x and M(p). syn 0 y.
Example 1: Fig. 2 represents a marked net, having

three local places �I, �J and �K, three transitions �I, �J

and �K, such that �I ∈ �	
	� 	, �J ∈ ��
� and	�K ∈ ��
��

and the following edges: (�I,�I),(�I,	�K),(�I, �J),(�K,	�K),(�J, �J) and (�J,	�K). The

marking of these places is defined by: L(�I) 0 (1,1); 	L(�J) 0 (0,0); 	L(�K) 0 (0,0).

B. The intuition and Definitions behind SyPN

Elementary and abstract transitions: The firing of

elementary transitions is similar to the firing of

transitions in Petri nets. However, the firing of abstract

transitions is similar to the firing of abstract transitions in

recursive Petri nets, where two main phases are

distinguished: consuming tokens defined by pre-condition

of the abstract transition and creating a new process. This

process is modeled by a net, called the refinement net.

Refinement net has an initial marking and a semi-

linear set of final markings. One or more refinement nets

are associated to each abstract transition. The choice of

refinement net is done by a binding function (see

Definition 6). It should be noted that firing conditions of

elementary and abstract transitions depend on local

tokens only. The intuition of firing abstract transition is

analogous to both RPN and SyPN models. However,

RPN doesn’t define how the appropriate refinement net is

chosen. As noted previously, SyPN uses a binding

function to dynamically find a suitable refinement net

(i.e. non deterministic).

To clarify the idea, consider the SyPN of Fig.2. From

this state, the elementary transition TI is enabled. The

marking which is resulted from the firing of TI is shown

in Fig.3.a. From this state, the transition TJ is enabled.

The firing of TJ is achieved in two steps: The

consumption of local tokens specified by the pre-

condition of TJ (i. e. token of place	PJ) and the creation of

a process, modeled by a refinement net (see the net at net

on the right of Fig.3.b). This net starts its evolution with

an initial marking (represented, in Fig.3.c by the

annotation (1,0). PP associated to the transition TJ). A set

of final marking is defined in order to describe its

termination (i.e. λI		 0 {	M(pR). loc S 1}). Starting from

the configuration described by Fig.3.b, the transition TP is

also enabled. The firing of transition	TP produces a token

in place PR (i. e. Fig. 3.c).

In fact, the main interests of refining abstract

transitions are:

• Allowing concise modeling and easier verification.

In other words, refinement process offers the

designers a scalable support for the development of

Figure1. SyPN annotations

Elementary transition and
Elementary synchronization transition

Abstract transition and
Abstract synchronization transition

Local place and Synchronization place

Local token

Synchronization token

Figure 2. Example of a marked net.

T2

T3
T1

P2

P3

P1

P2

 (1,0). P4

P1

TI		 0 {	L	(UR). &#$	 S 	1	}	
(3.b) Firing of �J

(3. a) Firing of �I

T2

T3
 T1

P2

P3

P1

 (1,0). P4

T3
 T1

P3

T4

P5

P4

T4

TI		 0 {	L	(UR). &#$	 S 	1	}	

 T4

(3.d) Firing of the cut VI

(1,0). P4

 T2

 T3

 T1

 P2

P3

P1

 P5

P4

TI		 0 {	L	(UR). &#$	 S 	1	}	
(3.c) Firing of 	�P

(1,0). P4

 T2

T3 T1

 P2

P3

P1

 P5

 P4

Figure 3.Evolution of the net of Fig. 2.

590 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

Figure 4. Synchronization point.

Figure 5.Synchronization condition and synchronization

relation

MAS. In a top-down refinement-based approach,

development starts from an abstract specification

level of a system that models the most necessary

functional requirements in non-deterministic manner.

A sequence of refinement steps is needed to

gradually reduce non-determinism and introduce

more details [49].

• Allowing flexible capturing of agents properties such

as autonomy, awareness, dynamicity, etc.

Local cut-steps: Several cut-steps for refinement net

may be distinguished. Each local cut-step	VW corresponds

to final marking set TW. Once a final marking is reached

the corresponding cut-step will take place. At first, it

destroys process which is created by the firing of the

abstract transition that gave birth to this process. Then, it

produces tokens indicated by the post-conditions of this

transition.

For instance, the marking that results from the firing of

transition �P (Fig.3.c), corresponds to a configuration in

which the process can be finished by achieving a local

cut-step. This cut-step is restricted by the final marking

indicated by the set TI	. The firing of the cut-step VI is

done in two steps: destroying the created process from

the firing of the abstract transition �J and producing a

token in the output places of the transition �J (Fig.3.d).

Synchronization condition: Synchronization condition

is a relevant aspect to model synchronization between

several nets in SyPN model. The main interest of this

concept is for capturing autonomy agent’s property and

expressing clearly conditions that must be fulfilled to join

a rendez-vous. Agents participate to a rendez-vous if they

intend to such interaction and the necessary conditions of

this interaction fulfilled. The first condition captures

autonomy property of agents however the second one

expresses the constraints to be satisfied. This condition

concerns only incoming edge of abstract synchronization

transitions. As an example, see the synchronization

condition (X	%*Y)) of figure 5.

Elementary synchronization transitions and abstract

synchronization transition: Contrary to the refinement of

abstract transitions, the refinement of abstract

synchronization transitions is constrained by a condition.

This condition is called synchronization condition (see

Definition 4). It also invokes, simultaneously with other

abstract synchronization transitions, a refinement net

which differs from the refinement nets associated to

abstract transitions. This net is named synchronization

point. The synchronization points model all

synchronization’s relations between nets (Definition 5).

A synchronization point is defined by a marked net which

is described by:

• Synchronization condition (pre-conditions),

• Synchronization relation,

• Synchronization places,

• Synchronization elementary transitions,

• Synchronization tokens,

• Initial marking and semi-linear sets of final

markings.

Example 2: Fig. 4 shows the graphical representation

of a synchronization point having three synchronization

places (PII, PIJ, PIK) and two elementary synchronization

transitions (TII, TIJ).

Remarks and notations:

• Nets associated to synchronization points depend on

the synchronization relation.

• PS denotes the set of nets related to synchronization

points. The set of other nets is noted R with the

hypothesis that PS and R are disjoint.

 Synchronization relation: Each abstract

synchronization transition is labeled by a synchronization

relation. The intuition behind this labeling is to specify,

for n nets and n abstract synchronization transitions the

synchronization relation (i.e. the rendez-vous) to be

ensured by a synchronization point. Thus, a

synchronization relation is a relation between abstract

synchronization transitions of 	n nets according to a

synchronization operator.

As an example, the synchronization relation (RI. TII ∥RJ. TIJ) in figure 5 relates transitions TII and TIJ of

respectively nets RI and RJ; according to the parallel

synchronization operator.

A synchronization operator Op is defined by the

following BNF syntax: Op ∷	0]	|				||				|			|||		| 	__ |⨁. Where:

• + is the nondeterministic choice.

• |	| is the synchronous parallel composition.

• |	|	| is the asynchronous parallel composition.

• __ is the sequential composition.

• ⨁ is the exclusive composition.

Note that, the operators “||, |||” have different meaning:

“||” is the synchronous parallel composition. This

operator relates parallel abstract synchronization

transitions which must be synchronized (rendez-vous).

However, “|||” is the asynchronous parallel composition.

Parallel abstract synchronization transitions evolve

asynchronously (i.e. independently).

λII		 0 {	M	(pIJ). syn S 1	}									λIJ	 0 {	M	(pIK). syn S 1	}	

T 12 T 11

P 12 P 13

P 1

(x	and	y) RI. TII 	 ∥ RJ. TIJ

T2

T3 T1

P2

P3

P1

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 591

© 2013 ACADEMY PUBLISHER

Figure 6. Firing of the abstract synchronization

transitions.

Formally, synchronization condition and

synchronization relation are defined as follows:

Definition 4 (Synchronization condition): Let I be a

finite set of indices; var	 0 {x+ such that i ∈ I} is a finite

set of variables.

The set of synchronization condition ranged over by β	I, β	J , …, β	+ … is defined inductively as follow:

• Con(x), a boolean expression of parameter the

variable	x	 . Con(x)	is an elementary synchronization

condition. As an example, for a variable x of natural

numbers, x > 5 is an elementary condition.

• For synchronization conditions β	I and β	J, not(β	I), (β	Iorβ	J) and (β	Iandβ	J) are

synchronization conditions.

Definition 5 (Synchronization relation):

• Let f be a finite set of indices ranged over by, ', g, …

and let i be a finite set of nets ranged over by R+, Rj, …

• Let Messages be a set of messages ranged over by Msg, that can be sent and received by processes (i.e.

agents). We assume that elements of “Messages”

respect ACL-Language
1
 (Agent Communication

Language) syntax, such as KQML [18] and FIPA-

ACL [20] [21].

• The set of senders is ranged over by Sender.
• The set of receivers is ranged over by Receiver.
• Let GetReceiver	() be a function that may be

invoked by a sender process. This function returns as

a result the set of potential receivers of the sent

messages.

According to these definitions and notations, the

synchronization relation Rsy built on the set of nets R and

a set of abstract synchronization transition T (ranged over

by Tm, T;) is defined by: Rsy ∷0 ∅	|R+. Tm	Op	Rj. T;
|Send(Sender, GetReceiver(), Msg) |Receive	(Receiver, Sender,Msg)2

.

with	i o j and Op a synchronization operator such that Tm ∈ R+ and T; ∈ Rj. GetReceiver () must be evaluated during the sending

operation.

Where: Send(Sender, Rset, Msg) means that a sender

agent send a message Msg to receivers of the set Rset
(the result of GetReceiver() function) and Receive	(Receiver, Sender,Msg) means that Receiver
receives a message from a process (i.e. agent).

Sending a message is an asynchronous operation so the

sender will not wait for the message either to arrive at the

destination or to be received.

Notations:

• Let q be an incoming edge of the transition t, rs(q) denotes a function that evaluates the

synchronization condition associated to q. Which

constrains the firing of transition t.
• ruvw	(t) denotes a function that returns the

synchronization relation. This synchronization relation

is the label of the abstract transition t.
• We assume that:

─ For any incoming edge		e		of an abstract transition, rs(e) 0 false	.	
─ For any abstract transition t in T789 , ruvw	(t) 0	∅	.
Let us now consider the firing of abstract

synchronization transitions providing from different nets

and contributing to the same rendez-vous. The necessary

and sufficient condition of such firing is that all

synchronization conditions corresponding to these

transitions are fulfilled. To illustrate this refinement

process, let us consider the example of Fig. 7. In the

initial configuration of this system, it is clear that the

necessary and sufficient condition for the simultaneous

firing of TK and T′I is satisfied (i.e. (x	and	y) 0 true and	 (r	and		s) 0 true). This firing creates a new process

having as control structure a synchronization point

(shown in Fig. 4). The created process starts its

execution from its initial marking (i.e. M(PII) 0 (0,2)).
From the current marking concerning the processes in

which the abstract synchronization transitions are

enabled, the firing of these transitions consists of

consuming tokens indicated by the pre-conditions of the

abstract synchronization transitions (here a token ()*|}of the place �I and a token	()*|~ of place �’	I).

Synchronization points and synchronization cut-steps:

Let us clarify the intuition of the synchronization point

through the example shown in Fig. 4: In this initial

configuration, transitions TII and TIJ are enabled. TII is

enabled by Syn�} , however TIJ is enabled by Syn�~ . The

(x	and	y) RI. TII 	 ∥ RJ. TIJ

T2

 T1

P2

P3

P1

RI

RJ

		(RI. TII 	 ∥ RJ. TIJ)
(r	and		s) 0 true						

T’2 T ’1

P’2

P’ 1

(1): The reader is invited to see [18] and [21] for messages examples
written in ACL-Language.

(2): in Send(Sender,Rset,Msg) and Receive (Receiver,Sender,Msg)
operations, the reader may note that Sender and Receiver parameters may

be known from the context. However we leave them according to ACL-

Language syntax.

592 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

firing of TII consumes the token Syn�} of the place PII,

however the firing of TIJ consumes the token	Syn�~ of

the place PII. Marking that results from these firing

consists of producing a token Syn�} in the place PIJ and a

token Syn�~ in the place PIK. The configuration

described; by marking that results from the firing of TII

and TIJ corresponds to a configuration in which the two

processes can be finished by carrying out a

synchronization cut-step (see Fig. 7).

Figure 7: Refinement process of abstract synchronization transitions and

a possible cut-step.

Two cases are distinguished for this type of cut-step:

• Differed termination: The processes implied in the

synchronization point have different termination’s

configurations. To express this kind of termination,

we introduce the operator "and" between the sets of

final markings associated to these processes. Thus,

each terminated process will be destroyed. Once the

last process is terminated and destroyed, the

synchronization point will be achieved.

• Common termination: The processes implied in the

synchronization point converge to the same

termination. The final markings associated to these

processes contribute to the formalization of this

termination, expressed by a conjunctive combination

of the final’s markings sets. Thus, the synchronization

point is achieved as soon as all processes terminate

their executions. Terminated processes are destroyed

simultaneously.

Example 3: Fig. 7 presents succession of firing for a

refinement process that concerns the abstract

synchronization transitions (TK, T′I) and a common cut-

step associated to the termination set {	λII	 0{M	(pIJ). loc S 1}	and			λIJ 0 {	M	(pIK). loc S 1	}}.
See the caption of figure 7 for more explanation.

C. SyPN Formalization

Definition 6 (Synchronized Petri Net): Let SP be a

synchronized Petri net. SP is a sextuple (Rm,W, Var, Binding, Ω, Υ) such that:

• Rm 0 	 (i,M) where R 0 (P, T, A) is a marked net.

• W is an incidence matrix defined as follows:

─ W�(p, t)	 0

�WI�(p, t)	if	t ∈ T789 ∪	T:;:< .																																																																			WJ�(p, t) if t ∈ T7856 ∪	T:;:<56. 								
Where:		WI� ∶ 	 P123 ? (T789 ∪	T:;:<) → D ? D, and 								WJ� ∶ 	P ? �T7856 ∪	T:;:<56� → D ? D.					
─ W�(p, t)	 0

�WI�(p, t)	if t ∈ T789 ∪	T:;:<. 																														WJ�(p, t) if t ∈ T7856 ∪	T:;:<56. 																																		
Where 	WI� ∶ 	 P123 ? (T789 ∪	T:;:<) → D ? D and

 													WJ� ∶ 	P ? �T7856 ∪	T:;:<56� → D ? D.
• Var	is a set of net’s variables.

• Binding is a function defined as follows: for e an

incoming edge of a transition	t, Binding�t, rs(e), ruvw	(t)� 0	
	
���
��
��r	where	r ∈ R.		 if ((t	 ∈ T789) ∧ rs(e) 0 false																									∧ ruvw	(t) 0 ∅).ps	where 	ps ∈ PS.	 if	(�t	 ∈ 	 T7856� ∧ 	rs(e) 0 true∧ ruvw	(t) o ∅).'*Y�'*qY	#t�q��'vq.																																																					

It associates to each abstract transition a refinement

net, and to each abstract synchronization transition a

synchronization point according to the type of this

synchronization (i.e. relation of synchronization).

• Initial marking function, defined by: Ω(t) 0 	 � ΩI(t)	if	t	 ∈ 	 T789.	ΩJ(t)	if	t	 ∈ 	 T7856. , Where:

─ ΩI(t) ∶	 A function associating an initial marking to

the refinement net related to each abstract

transition.

─ ΩJ(t): A function associating an initial marking to

the synchronization point related to each abstract

synchronization transition.

• � : A semi-linear set of final markings, defined by Υ 0 	Υ	I 	∪ 	Υ	J where :

T3
T ' 1 T’2

�� ��

 P’2

P’1

 T2

T1

P2

 P3

P1

{	TII		%	*Y				TIJ	}
T 12 T 11

 P 12 P 13

 P 11

{ TII			%*Y	TIJ	}

T 12

T 11

P 12 P 13

 P 11

1

6

6

2

3

5

 4

5

5

Caption:
1: Concurrent firing of 	�K and �′I.

2: Creation of a synchronization point.

3: Concurrent firing of 	�II and �IJ

4: Production of tokens in the outgoing places of �II and �IJ.

5: Common termination of threads associated with �K , �′I and

destruction of the synchronization point.

6: Production of tokens in the post-condition of �K	, �′I.

×: Destruction

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 593

© 2013 ACADEMY PUBLISHER

─ Υ	I: Indexed family of final markings, associated to

the refinement’s net concerning abstract transitions.

─ Υ	J: Indexed family of final markings associated to

the synchronization points.

Definition 7 (Extended marking): An extended

marking of a synchronized Petri net noted SP	 0		(Rm,W, Var, Binding	, Ω	, Υ)	is a labeled tree Tr 0(S,M, E, A), where:

• S is the finite set of nodes, where each node v ∈ S is

labeled by a marked SyPN , noted < SP	(s), M	(s) _.
• M is a marking function from S	 ? P	to	N	 ? N.
• E	 ⊆ S	 ? S, is the set of edges, such that E 0{< s, s� _ s′ is the child of s};
• A	 is a labeling function from E → (R	 ? 	T789 ?Local) ∪ 2��5		?	� ¡¢£	?		56¤� such that Syn explores the

set of synchronization tokens.

 Extended marking is a labeled transition system.

A marked synchronized Petri net (SP, Tr¥) is a

synchronized Petri net SP together with an initial

extended marking Tr¥.

Notations
1

For each node s	 ∈ S, Succ	(s) denotes the set of its

direct and indirect successors including s (∀	s	 ∈ S,Succ	(s) 0 {s′ ∈ S	|(s, s′) 	 ∈ 	 E∗} the transitive closure of

child relation).

• Moreover, when s is not the root of the tree;	pred	(s)
denotes its single predecessor.

• The empty tree noted ⊥.

• When we treat several nets, the elements of the net are

noted by a function (example: local places of a

network r are noted by P123(r)).
• Thereafter, we admit that for each synchronization cut-

step τs	; a conjunctive or disjunctive combination of

termination’s sets is associated. These sets are

indexed by λ+	j	, where i identifies the net contributing

to the synchronization point and j identifies the

transition having invoked this synchronization. The

intuition under this indexing is the preservation of

processes identifiers having invoking this

synchronization point.

D. Formal Semantics of Synchronized Petri Net

The operational semantics of synchronized Petri net is

given in terms of state and change of state. If the current

state of Petri net is completely defined by its marking, the

state of a synchronized Petri net is defined as a tree of

marked synchronized Petri nets, built by following

successive refinements of both abstract transitions and

abstract synchronization transitions. The intuitive

interpretation of a state is as follows:

• The root of the tree corresponds to the initial state; it

includes all synchronized Petri nets of the system.

Each edge represents either a firing of abstract

transition or a concurrent firing of the abstract

synchronization transitions concerned by the same

synchronization relation; where the extremity of the

edge designates an unfolded net (i. e. synchronized

Petri net) or a synchronization point.

• Each node is a set of marked synchronized Petri nets.

This tree evolves according to the synchronized Petri

net’s semantics, given through the firing rules of each

type of transition. These rules will be detailed thereafter.

Definition 8 (Firing of elementary transition and

elementary synchronization transition): An elementary

transition (respectively elementary synchronization

transition) t	 is enabled for a synchronized Petri net SP+,	a

local token (respectively synchronization token) t#©q*+ ,
from a node s, of an extended marking Tr 0(S,M, E, A),	noted Tr 5�ª	,«,			¬�­	®ª	,9	°̄°°°°°°°°°± 	Tr� 0 (S�, M�, E�, A�)
if and only if for any 	p	in	P;23	(respectively	in	P56)	, M	(s)(p) 	S W�(p, t).
Such that:

• S� 0 	S;
• ∀	s� ∈ S	 ∖ {s}	, M�(s�) 0 	M	(s�).
• For any p	in	P123(respectively	in	P56)	, M�(s)(p) 0M	(s)(p) −	W�(p, t)]	W�(p, t).
• E� 0 	E.
• ∀	e	 ∈ E, A�(e) 0 	A	(e).

Definition 9 (Firing of an abstract transition): An

abstract transition t	is enabled for a synchronized Petri

net SP+, a token local	+, from a node s of an extended

marking Tr	 0 (S,M, E, A)	, noted by Tr 5�ª	,«,			;237;	ª	,9	°̄°°°°°°°°± 	Tr� 0	 (S′, M′, E′, A′), if and only if ∀	p	 ∈ Ṕ 	, M	(s)(p) 	S W�(p, t) such that:

• Let s’ be a fresh identifier, such that: s� ∉ S and Binding�t, β(e), Rsy	(t)� 0 s	,	with e is an incoming

edge of t.
• S� 0 	S	 ∪ {s�}.
• ∀	s" ∈ S	 ∖ {s}	, M�(s") 0 	M	(s").
• ∀	p	 ∈ 	 P123	, M�(s)(p) 0 M	(s)(p) −	W�(p, t).
• M�(s�) 0 	ΩI		(t)	is the initial marking associated to

the refinement net.

• E� 0 	E	 ∪ {(s, s�)}.
• ∀	e	 ∈ E, A�(e) 0 	A	(e).
• A��(s, s�)� 0 (SP+		, t,			local	+)
• Υ	(t) 0 	Υ	I	(t).

Definition 10 (Firing of abstract synchronization

transition): Let t+ be an abstract synchronization

transition, for a synchronized Petri net SP+, a

synchronization token Syn+ from a node s.
• Let |	t+	| 	0 {t+	}	∪ {t	where			ruvw		(t) 0ruvw		(t+)}.
• Let 	R+ 0 {	Sp where t	∈ (|	t+	| ∩ 	T7856(Sp))}	.
• Let |Syn	| 0 {	Synj where tj is enabled by Synj	}	.

The simultaneous firing of the transitions 	t		(t	 ∈|	t+	|), for the synchronized Petri nets designated by	R+,
the tokens designated by |Syn|, from a node s of an

extended marking Tr	 0 	 (S, M, E, A), denoted by Tr 	�ª,|	«ª	|,|56¤	|,9	°̄°°°°°°°°± 	Tr’ 0 	 (S�, M�, E�, A�) is possible if and

only if:

(1) Some notations are borrowed from RPN model [26].

594 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

(((∀		Sp ∈ 	R+, t ∈ (|t+	| ∩ 	T7856(SP+)), º∀p ∈P123(SP+),			M(s)(p) S W�(p, t)»	&	(∀t ∈ |	t+	|, ∃e	/		e 	is an incoming edge of t, rs(e) 0 	true))) Such that:

• Let s’ be a fresh identifier, such that s� ∉ S and Binding�t, rs(e), ruvw	(t)� 0 s′.
• S� 0 	S	 ∪ {s�};
• ∀	s" ∈ S	 ∖ {s}	, M�(s") 0 	M	(s").
• ∀	SP+	 	 ∈ 	 	R+, t	 ∈ (|	t+	| ∩ 	T7856(SPj))	, ∀	p	 ∈	P123(SP+)	, M�(s)(p) 0 M	(s)(p) −	W�(p, t).
• M�(s�) 0 	ΩJ		(t), initial marking associated to the

synchronization point.

• E� 0 	E	 ∪ {(s, s�)}.
• ∀	e	 ∈ E, A�(e) 0 	A	(e).
• A��(s, s�)� 0 	2��ª			?		|	«ª¿	?|	56¤|).
• Υ	(t) 0 	Υ	J(t).

Definition 11 (Firing of local cut-step): The firing of a

local cut step τ+ relating to the set of final marking γ+from

a node s for an extended markingTr	 0 	 (S,M, E, A) leads

to the extended marking Tr’ 0 	 (V’, M’, E’, A’),		noted Tr Áª,9	¯± 	Tr′, if and only if M(s) 	∈ Υ+ such that :

• If s is the root of the tree and one of final markings is

reached, the reduction leads to the empty tree (i.e. Tr’ 0⊥).

• Else, the semantics of the cu-step is as follow:

─ S� 0 	S	 ∖ succ	(s).
─ ∀	s� ∈ S� ∖ {	pred(s)}	, M�(s′) 0 	M	(s′).
─ ∀	p	 ∈ 	 P123	, M�(pred	(s))(p) 0M	(pred	(s))(p)]		W�(p, t).
─ E� 0 	E	 ∩ (S� ? S�).
─ ∀	e	 ∈ E, A�(e) 0 	A	(e).
Definition 12 (Firing of synchronization cut-step): A

synchronization cut-step τs+	relating to the set of final

markings Υ	J(t), such that t	 belongs to the set of

transitions having contributed to the creation of a node s,
is enabled from that node, for an extended marking Tr	 0 (S,M, E, A), noted Tr Á9ª 	±̄ 	Tr’ 0 	 (S′, M′, E′, A′), if

and only if the final marking described by Υ	J(t) is

reached. Two cases may be distinguished:

 Differed Cut-stept:

• If Υ	J(t) has a disjunctive combination form of

termination’s set associated to the synchronization

point then:

─ If s	is the root of the tree and one of final markings

is reached, the reduction leads, after exploring all

final markings, to an empty tree (i.e. Tr’ 0	⊥).
• Else, the semantic of synchronization cut-step relating

to the set of final markings Υ	J(t) is as follows:

─ Let λ 0 {	λ+	j		/λ+	j	Appear in Υ	J(t)}.
─ If (λ+	j	 	 ∈ 	λ)		and (λ+	j	 is reached) then:

o ∀	p	 ∈ 	P	(SP+)	, M�(pred	(s))(p) 0M	(pred	(s))(p)]		W��p, tj�.

o λ 0 	λ − Âλ+	j	Ã.
─ If (λ	 o 	∅) then:

o S� 0 	S	 ∖ succ	(s).
o ∀	s� ∈ S� ∖ {	pred(s)},			M�(s′) 0 	M	(s′)	.
o E� 0 	E	 ∩ (S� ? S�).
o ∀	e	 ∈ E, A�(e) 0 	A	(e).

Common Cu-stept:

• If Υ	J(t) has a conjunctive combination form of

termination’s sets associated to the synchronization

point then:

─ If s is the root of the tree and all final markings are

reached, then the reduction leads to an empty tree

(Tr′ 0	⊥).

• Else, the semantic of synchronization cut-step relating

to the set of final markings Υ	J(t)		is as follows:

─ Let	λ 0 {	λ+	j		where λ+	j	 appear in Υ	J(t)}.
─ ∀	λ+	j	 ∈ 	λ	, 	λ+	j	is reached then:

o S� 0 	S	 ∖ succ	(s).
o ∀	s′ ∈ S� ∖ {	pred(s)},			M�(s′) 0 	M	(s′)	.		
o ∀	SP+	 	 ∈ R+, t	 ∈ |t+|,∀	p	 ∈ 	P	(SP+)	, M�(pred	(s))(p) 0M	(pred	(s))(p)]		W�(p, t).
o E� 0 	E	 ∩ (S� ? S�).
o ∀	e	 ∈ E, A�(e) 0 	A	(e).

IV. SYNCHRONIZED PETRI NET EXPRESSIVITY

This section gives two examples showing the SyPN

modeling adequacy for MAS.

A. Generic Example of MAS Planning (synchronization

between agents’ tasks)

In fact, Multi-agent Planning (MAP for short) [12] [23]

[37], extends traditional Artificial Intelligence (AI)

planning to domains where multiple agents are involved

in a plan and need to act together. Research in MAP is

promising for real-world problems, as well to provide

powerful tools for solving problems and ensure

coordination between agents [13] [14] [38]. In fact, RPN

has been proposed especially to model MAP problem

[15].

Let us consider three agents A, B, and C which

collaborate together in order to achieve a common goal

concretized by a multi agent plan, noted Plan. Agents’

capabilities and tasks’ constraints are described as follow:

• Capability	(A) 0 {TI, TÅ, TÆ},
• Capability	(B) 0 {TJ, TP}
• Capability	(C) 0 {TK, TR, TÇ}.
• TI and TJ could be achieved independently.

• The post condition of TI enables the precondition

of both TR	and TÅ.

• The post condition of TP enables the precondition

of TK.

• The executions of both TR and TÅ are in mutual

exclusion.

• TÆ and TÈ could be performed concurrently.

Each task T+ has a pre-condition and a post-condition,

respectively denoted	PreCond. T+ and PostCond. T+. A

pre-condition represents the necessary conditions that

must be fulfilled before the task execution and, a post-

condition represents necessary condition that must be

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 595

© 2013 ACADEMY PUBLISHER

fulfilled after the task execution. . Tasks plan should be

performed within the following sub order, by respecting

tasks’ constraints: Plan	 0 	 (TI||	|TJ, TP 	<< TK, TR	⨁TÅ, TÇ |	|TÆ}.	
Observe that at this level, any agents’ internal behavior

is voluntarily abstracted. Fig. 8 illustrates a possible

modeling of example 1 using the SyPN formalism.

Initially, the agent B can simultaneously interact with

both agents A and C by invoking respectively the

synchronization points SP2 and SP1. SP1 models the part (TI||	|TJ) and SP2 models the part (TP 	<< TK), such that

both parts can be executed simultaneously.

• SP 1 can be invoked if and only if TA1 and TB1 are

simultaneously fired. This implied that TA1 and TB1

must be enabled (i.e.Gard1 is satisfied and 	(L(�É1). v)*		 S 1		%*Y	L(�Ê1) S 1)).
• SP 2 can be invoked if and only if TB2 and TC1 are

simultaneously fired. This implied that TB2 and TC1

must be enabled (i.e. Gard2 is satisfied and 	(L(�Ê1). v)*		 S 1		%*Y	L(�Ë1) S 1)).
• SP 3 can be invoked if and only if TA2 and TC2 are

simultaneously fired. This implied that TA2 and TC2

must be enabled (i.e. Gard3 is satisfied and 	(L(�É2). v)*		 S 1		%*Y	L(�Ë21) S 1)).
• SP 4 can be invoked if and only if TA3 and TC3 are

fired. This implied that TA3 and TC3 must be

enabled (i.e.	Gard4 is satisfied and (L(�É3). v)*		 S 1		%*Y	L(�Ë3) S 1)).
Finally, observe that such a modeling where several

nets models each one a special agent, agent

synchronization tasks that can run concurrently, is not

really handled by standard RPN formalisms. It is

probably the reason why in [3], the proposed example

dealing with a similar use case, only showed local agent

behaviors modeling. In fact, the difficulty was to

demonstrate both local and collective behaviors together.

(See section 1, paragraph that explains the limitation of

the RPN model for specifying synchronization aspects).

B. FIPA Contract Net Interaction Protocol (Concurrency

of Interaction)

To enhance the SyPN modeling capabilities when

considering dynamic interactions, we now consider the

most widely used protocol in MAS area, which is the

contract net protocol. In the FIPA standardized version,

there are two distinct agent’s roles: initiator (one agent)

and participants (numerous instances). For sake of clarity

we refer to the Contract-Net’s explanation of [21]. A

similar case study has been specified by Colored RPN

[39]. However, this model allows only the representation

of collective behavior whereas SyPN can specify both

collective and internal behaviors. In fact SyPN preserves

intuition of firing abstract and elementary transitions of

RPN, and by the way it allows automatically agents’

internal behaviors representation.

“The initiator solicits Î proposals from other agents

by issuing a call for proposals (CFP) act , which specifies

the task, as well any conditions the Initiator is placing

upon the execution of the task. Agents (participants)

receiving the call for proposals are viewed as potential

contractors and are able to generate * responses. Of

these, g are proposals to perform the task, specified as

propose acts. The participant’s proposal includes the

preconditions that the participant is setting out for the

task, which may be the price, time when the task will

be done, etc. Alternatively, the ' 0 * − g participants

may refuse to propose. Once the deadline passes, the

initiator evaluates the received 	g proposals and selects

agents to perform the task; one, several or no agents may

be chosen. The & agents of the selected proposal(s) will

be sent an accept-proposal act and the remaining ©

agents will receive a reject-proposal act . The

proposals are binding on the participant, so that

once the initiator accepts the proposal, the

participant acquires a commitment to perform the

task. Once the participant has completed the task, it

sends a completion message to the initiator in the

form of an inform-done or a more explanatory version in

the form of an inform-result. However, if the participant

fails to complete the task, a failure message is sent.”

We ask the question: how to model such interactions?

Let us consider the following scenario: m 0 3, n 0 j 03, k 0 1	and	l 0 2. A potential modeling of such scenario

is given in Fig. 10. Initially, the initiator (I) is ready to

send a call for proposal (CFP) to all participants who are

ready to interact with it in order to achieve such proposal

(here m corresponding to Fig 9 is equal to 3): participant

1, participant 2 and participant 3 noted respectively P, P’

and P”. Synchronization conditions corresponding to this

remote synchronization are noted G1, G11P, G11P’ and

G11P” where G1 presents task announcement arrival,

G11P, G11P’ and G11P” present conditions behind

capabilities to achieve the task corresponding to each

participant. When G1, G11P, G11P’ and G11P” are

fulfilled and (L(�11). v)*	 S 1	%*Y	L(��1). v)*	 S1	%*Y	L(�’1). v)*	 S 1	%*Y	L(�”1). v)*	 S 1) is

satisfied then T11, TP1, T’1and T”1 are consequently

enabled. Concurrent firing of these transitions invokes a

rendez-vous; concretized by a synchronization point SP1

(Fig. 11). Once the participants receive CFP, they start

evaluating the proposal. Based on their capabilities and

resources availability, they make decision to perform the

proposed task or refuse the request. Note that decisions

are made locally (internal behavior, we have made

abstraction of such behavior). After making decisions, P

and P’ have to prepare their bids that satisfy the criteria

specified in the CFP. However, P” refuse the request (i is

equal to 1and j is equal to 2; in Fig. 9). Then, initiator is

waiting for bids or for time out. Synchronization

conditions corresponding to second remote

synchronization are: G2= time-expiration (deadline), and

G22P, G22P’, G22P” present deliberate-proposal

corresponding respectively to P, P’ and P”. when G22,

G22P, G22P’ and G22P” are fulfilled and (M	(P12). syn	 S 1	and	M	(PP2). syn	 S	1	and	M	(P’2). syn	 S 1	and	M	(P”2) S 1)	is satisfied

then T12, TP2, T’2 and T”2 are consequently enabled.

The concurrent firing of these transitions invokes a

rendez-vous concretized by SP2 (Fig. 11).

596 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

Then, the initiator starts evaluating the received bids

and decides to accept the bid corresponding to P1 and

reject the second one (bid of P’). Initiator have to

prepare an accept proposal message to P1 and a reject

proposal message to P’. The synchronization point SP3

(Fig. 11) can be invoked when T13, TP3, T’3 and T”3

are enabled (i.e. (G3= G33P = G33P’= true) and (M

(P13).syn ≥ 1 and M (PP3).syn ≥ 1and M (P’3).syn ≥ 1

and M (P”3).syn ≥ 1) is fulfilled). Participant P has to

accomplish the proposed task and prepare the result to

be sent to the initiator. When (G4=G44= true) and (M

(P14).syn ≥ 1 and M (PP4).syn ≥ 1)) is fulfilled then

the last rendez-vous for this scenario took place (SP4,

Fig. 11). Note that, all send and receive primitives are

evaluated during synchronization. For instance, the

primitive SendI1 is evaluated before sending the

message as follow: sender= I, GetReceiver () =

{P,P’,P”} and Msg= CFP respecting ACL-

presentation message. Also, the primitives RcvP1(),

RcvP’() and RcvP”() are evaluated during receiving

message. Synchronization points are chosen

dynamically by the binding function (variables

indicated in the Fig. 9 are evaluated during execution:

m=3, j=2, i = k = l =1).

Figure 8. Modeling generic example of multi agent planning by means SyPN.

Caption

Gard1 = (��qË#*Y. �I and ��qË#*Y. �J). ÑK 0 {	L(�3). v)* 0 1}Òi	{L(�4). v)* 0 1	}.
Gard2= (��qË#*Y. �P). 	ÑK 0 {	L(�7). v)* S 1	}.
Gard3= (��qË#*Y. �R xor ��qË#*Y. �Å). 	ÑK={	L(�9). v)* 0 1	 }.

Gard4= (��qË#*Y. �Ç and ��qË#*Y. �Æ). ÑK 0 {	L(�12). v)* S 2	}.
Rel1= (�I	|||	�J). Rel2= (�P 	__ �K). Rel3= (�R] �Å). Rel4= 	(�Ç	||�Æ).

 P2

B.T2 A.T1

 P3

 P1

P4

P7

C. T3

P6

B. T4

 P5

 P11

C.T7 A. T8

 P10 P8

C.T5 A. T6

 P9

Õ�

ÕÖ Õ×
ÕÖ

Rel 4

Gard4

Rel 4

Gard4

Rel 3

Gard3

Gard3

Rel 3

Rel 2

Rel 2

Gard2 Gard2

Rel 1 Rel 1

Gard1 Gard1

PC4

PC3

PC2

PC1

PB2

PB1

TA1

PA4

PA3

PA2

PA1

TC3

TC2

 TB2

TA3

TC1

Agent A Agent C Agent B

TB1

SP 1

SP 2

SP 3

SP 4

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 597

© 2013 ACADEMY PUBLISHER

• SP1 presents sending of CFP by Initiator (I.T1)

and receiving of this later by P, P’ and P” (P.T2,

P’.T3 and P”.T4).

• SP2 presents sending of bids, by P, P’; sending of

reject proposal by P” (P.T5, P’.T6 and P”.T7), and

receiving of bids by initiator (I.T8).

• SP3 presents sending of response to P and P” after

deliberation (I.T9), and receiving of these

responses by P and P’ (P.T10 and P’.T11).

• SP4 presents sending of the result after executing

the CFP by P (P.T12) and receiving of this

response by the initiator (I.T13).

Each SPi has an initial marking and a semi linear set

of final marking. In our modeling, we have chosen to

abstract the internal behavior of agents, to focus on the

modeling of concurrent synchronization tasks,

however, the modeling can be augmented to deal with

internal agent behaviors, without difficulty.

V. RELATED WORK

Several powerful formalisms have been proposed in

MAS’ specification area. This section reviews some of

them:

Z-Specification Language: The Z-Specification

Language was developed, initially for formal

specification of software systems [46]. It is applied in

MAS as well. For instance, d’Inverno et al. [11] have

adapted this formalism to construct a formal agent

framework. The Z-Specification Language has the

following advantages:

• It deals with a clear, precise and unambiguous

specification.

• The use of schemas and schemas-inclusion allows

the description of system at different level of

abstraction.

• It has a suitable expressiveness that allows a

consistent, unified and structured description of a

computer system and its associated operations.

As a result of many applications of Z-based

framework, it has been argued [11] [43] [51] that Z is

inappropriate to model interactions between agents.

Also, the use of Z makes MAS reactive aspects

difficult to specify and the specifications are not

executable.

To address these issues, one can combine two or

more formalisms in order to specify easily and

naturally the system. For instance, combining Z and

CSP, combining Z; object paradigm and State charts

[51]. The main criticism of multi formalism is the

complexity inherent from this composition. Also, the

consistency of such combination is not ensured.

Colored Petri Net: As noted in [16], interactions

between agents may be modeled by means of colored

Petri net (CPN). Indeed, CPN are suitable for

specifying concurrency and the dynamic nature of

MAS. Nevertheless this model is very limited when it

is necessary to specify the system at different level of

abstraction. In other words, CPN does not support

abstraction and refinement paradigm, which is a key

element of MAS.

Maude: In the same context of specifying

interactions between agents, authors in [46] have

proposed an approach to formal specification of

interactions protocols by means of Maude language.

Figure 9. FIPA Contract Net Interaction Protocol.

598 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

Maude is a specification and programming language,

based on rewriting logic. It allows specifying different

kinds of concurrent systems. However, Maude cannot

deal with asynchronous aspect that represents a

fundamental characteristic of MAS.

 Logic: Temporal logic has been widely used in MAS

area. It is argued that logic provides a precise and

unambiguous formal tool to specify and reason about

complex systems [40]. However, logic specifications

do not provide constructive methodologies for building

distributed systems, and so they can be of only limited

significance in practice.

These different views have led to divergence of

theoretical and practical distributed computing fields

[41][42].

 As it may be noticed, the above modeling approaches

prohibit modeling of at least one of the following

characteristics: abstraction and refinement,

asynchronous aspects, synchronization between several

processes. Anyway SyPN covers all these

functionalities. It has the following characteristics:

• Generality: SyPN is a general model in the

sense that it allows expressing all MAS’s

G4 G44

SendP2 TP4

PP5

SendI

2

G3

RcvP’2

G33P’

SendP’1

G22P’

G2

R

cvI1

SendI1

G1 G11P’

PI4

PI3

PI2

PI1

T’1

 P’4

 P’3

 P’2

P’1

TI3

TI2

T’3

T’2

TI1

Participant 2 (P’)

Initiator (I)

SendP’’

G22P”

G11P”

T’’1

 P’’3

P’’2

P’’1

 T ’’2

Participant 3 (P’’)

RcvP2

G33P

SendP1

G22

G11P

RcvP1

PP4

PP3

PP2

PP1

TP3

TP2

Participant 1(P)

RcvP’ RcvP’’

T P1

SP 1

SP2

SP3

RcvI2 TI4

PI5

SP4

Caption:

SendI12 = Send (I, GetReceiver () = {P, P’, P’’}, M) such that: M= CFP. G1= Task announcement.

RcvP1= Receive (I, P, M: Message). G11P=G11P’=G11P” have capabilities for carrying out the task.

RcvP’1= Receive (I, P’, M: Message). G2= time expiration (deadline).

RcvP’1= Receive (I, P’, M: Message). G22P=G22P’=G22P”= deliberate proposal.

SendP1= Send (P, I, M1) such that M1= Propose. G3= choice potential proposals.

SendP’1= Send (P, I, M2) such that M2= Propose. G33P=G33P’= wait response.

SendP’’1= Send (P, I, M3) such that M3= Refuse. G4=final choice.

RcvI2 = Receive (I, Participant, n, M: Message) G44= Task execution.

SendI2=Send (I, GetReceiver () = {P, P’}, M: Message)

RcvP2= Receive (P, I, M: Message) such that M= Accept Proposal.

RcvP’2= Receive (P’, I, M: Message), such that M=Reject Proposal

SendP2= Send (P, I, M: Message), such that M= Inform Done.

RcvI3= Receive (I, P, M: Message).

Figure10. Modeling ContractNet Protocol by means of SyPN.

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 599

© 2013 ACADEMY PUBLISHER

3

functionalities independently of their

applicability or their architecture.

• Abstraction and refinement: The concept of

abstract transition makes it possible to consider a

complex behavior or a refinement task at

different levels of abstraction, so one can be free

from non-relevant details at a given level of

abstraction, hence controlling system’s

complexity become possible.

• Synchronization and concurrency: The

concepts of abstract synchronization transition,

elementary synchronization transition,

synchronization point and synchronization places

allows the modeling of synchronization between

several nets and thus expressing precisely

various mechanisms of rendez-vous (i.e. various

interaction’s schemas between several agents).

The concept of synchronization relation allows

one to express clearly and precisely various

kinds of synchronization. Concurrency can be

easily achieved without extra effort in designing

communication and synchronization mechanism

because SyPN expresses them implicitly.

• Preservation of agent’s properties: The token

typing preserves agents’ proprieties such as

autonomy, awareness (i.e. local token) and

sociability (i.e. synchronization token).

• Dynamicity: The dynamic nature of MAS can be

easily reflected by SyPN’s features such as non-

determinism, abstraction, etc.

• Creation and destruction of agents can be easily

modeled by a transition.

Although, the above arguments show the interests of

the SyPN model for specifying MAS, a formal

comparison against existing models remain to be done.

VI. CONCLUSION

In this paper, we presented a recursive Petri net

based formal specification model covering various

functionalities of MAS. We enriched RPN by several

features enabling among others modeling both internal

and collective behaviors of MAS. Firstly, we presented

different behaviors of MAS. Secondly we defined

syntax and formal semantic of the model; either we

showed intuition behind all novel concepts. Thirdly, we

clarified the effectiveness and expressiveness of SyPN

through two examples. The former one showed SyPN’s

efficiency for rigorous specification of multi agent

planning. It confirmed the significance of interaction

operators. The second one gave suitability of SyPN to

remote interactions modeling. Consequently, we saw

how SyPN can specify both local synchronization and

remote interaction. Fourthly, we discussed roughly

several existing formalisms in MAS specification area

and explained their inadequacy to rigorously specifying

main features of MAS. Moreover, we provided

numerous gained advantages for SyPN.

This work may be continued in several ways. Firstly,

we investigate this model for proposing a design

methodology for MAS based on SyPN specification

model. Also, the automatic generation of the

reachability graph allows using existing formal

checking tools. Other alternatives are: investigating

mobility feature of SyPN, through a concrete example

and defining a formal semantic of true concurrency

[53] for SyPN.

Figure 11. Synchronization Points associated to Fig.10.

γI 0 {{L(�2). v)* S 3	}	#�	{L(�3). v)* S1}	#�	{L(�4). v)* S 1}#�	{L(�5). v)* S 1}

 P’.T3 P.T

2

I.T1

 P5

3
P’’.T4

P4

P3

P2

P1

SP1

P8 P7 P6

										γJ 0 {{L(�9). v)* S 3	}		#�	{L(�3). v)*S 										1}		#�	{L(�10). v)* S 1}	}								
P9

I.T8

P’’.T7

PT6

 P.T5

P10

SP2

γK 0 {{L(�12). v)* S 2	}		#�	{L(�13). v)*S 					1}		#�	{L(�14). v)* S 1}	}	

 P.T11 P.T10

I.T1

2

P1

4

P13

P12

P11

SP3

Ù× 0 Â{L(�16). v)* S 1	}	#�	{L(�17). v)* S 					1}Ã
 	

P16

I.T13

P’.T12

P17 P15

SP4

600 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

ACKNOWLEDGMENT

The authors wish to acknowledge gratefully the

valuable suggestion and beneficial comments provided

by the anonymous reviewers.

REFERENCES

[1] F. Brazier, B. Dunin Keplicz, N. Jenning and J. Treur.

“Desire: Modeling Multi-Agent Systems in a

Compositional Formal Framework”. International

Journal of Cooperative Information Systems, special

issue on Formal Methods in Cooperative Information

Systems. Pp.67-94. 1997.

[2] M. Bettaz , M Maouche , K. Barkaoui. “Formal

Specification of Communication Protocols with Object-

Based ECATNets”. 22nd EUROMICRO Conference,

pp.492 - 499, January 1996.

[3] S. Boussetta. "Stratégies d’exécution de Plans d’un

Système Multiagent". PhD thesis, Université de Paris

09, Paris, FRANCE, 1998.

[4] S. Boussetta, A. El Fallah Seghrouchni , S. Haddad, P.

Moraitis and M. Taghelit. “Coordination d'agents

Rationnels par Planification Distribuée". In RIA (Revue

d'Intelligence Artificielle). Edition Hermès. 1998.

[5] G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J.

Gomez-Sanz, J. Pavon, P. Kerney, J. Stark, and P.

Massonnet. “Agent Oriented Analysis using

Message/Uml”. Second International Workshop, AOSE

2001, Montreal, Canada, May 29, 2001. Revised Papers

and Invited Contributions. LNCS vol. 2222 (May 2001).

pp. 119-135. Springer-Verlag. 2002.

[6] J. R. Celaya, A. A. Desrochers and R. J. Graves.

“Modeling and Analysis of Multi-agent Systems using

Petri Nets”. Journal of Computers, VOL. 4, NO. 10,

OCTOBER 2009.

[7] P. R. Cohen and H. J. Levesque. “Intention is Choice

with Commitment”. Artificial Intelligence, vol. 42.pp.

213-261. 1990.

[8] D. Dahmani, J-M. Ilié and M. Boukala. “Reachability

Analysis for Recursive Petri Nets with Shared Places".

In the International Workshop on Abstractions for Petri

Nets and Other Models of Concurrency (APNOC) Paris,

France, June 2009.

[9] S. A. DeLoach, M.F. Wood and C. H. Sparkman.

“Multi-agent Systems Engineering”. International

Journal of Software Engineering and Knowledge

Engineering. Vol. 11. Issue 3. pp. 231-258. 2001.

[10] Y. Demazeau. “From Interactions to Collective

Behaviour in Agent-based Systems”. In Proceedings of

the First European Conference on Cognitive Science,

Saint Malo, France. Pp.117-132. 1995.

[11] M. d’Inverno, M. Fisher, A. Lomuscio, M. Luck, M.

Rijke, M. Ryan and M. Wooldridge. “Formalisms for

Multi-Agent Systems”. Lecture Notes in the First UK

Workshop on Foundations of Multi-Agent Systems (Fo-

MAS’96).http://citeseer.nj.nec.com.

[12] J. Dix,E. H. Durfee, and C. Witteveen. “Planning in

Multiagent Systems”. Dagstuhl Seminar Proceedings

08461. 2009.

http://drops.dagstuhl.de/opus/volltexte/2009/1874.

[13] A. El Fallah Seghrouchni “Rational Agent Cooperation

through Concurrent Plan Coordination”. In the

proceedings of DAIMAS'96 (First Iberoamerican

Workshop on DAI and MAS). Xalapa, Mexico, 1996.

[14] A. El Fallah Seghrouchni and S. Haddad. “A

Coordination Algorithm for Multi-Agent Planning”. In

MAAMAW'96, LNAI 1038, pp. 86-99. Springer, 1996.

[15] A. El Fallah Seghrouchni and S. Haddad. “A Recursive

Model for Distributed Planning”. In M. Tokoro (Ed.),

Proceeding Second International Conference on Multi-

Agent Systems.ICMAS'96, AAAI Press (1996). pp. 307-

314.1996.

[16] A. El Fallah Seghrouchni, S. Haddad and H. Mazouzi:

“Protocol Engineering for Multi-Agents Interaction”. In

Multi-Agent System Engineering, 9th European

Workshop on Modeling Autonomous Agents in a Multi-

Agent World, MAAMAW '99, LNAI 1647, pp.89-101.

Springer, 1999.

[17] J. Ferber, and O. Gutknecht. “A Meta-Model For the

Analysis and Design of Organizations in Multi-Agent

Systems” In: Proceedings of the Third International

Conference on Multi-Agent Systems (ICMAS’98), IEEE

Computer Society Press, pp. 128–135. 1998.

[18] T. Finin, R. Fritzson, D. McKay and R. McEntire.

“KQML as an Agent Communication Language”. CIKM

'94 Proceedings of the third international conference on

Information and knowledge management, pp.456 – 463.

1994..

[19] M. Fisher. “A Survey of Concurrent Metatem The

Language And Its Applications, Temporal Logic”. In

Proceedings of the First International Conference,

LNCS, vol.82.pp 480-505., Springer Verlag 1994.

[20] Foundation for Intelligent Physical Agents.

http://www.fipa.org/

[21] Foundation for intelligent physical agents: FIPA

Contract Net Interaction Protocol. Standard. 2002.

[22] N. Glaser. “Contribution to Knowledge Modeling in A

Multi-Agent Framework (The Comomas Approach)”,

Ph.D thesis. University of Henri Poincare, Nancy I.

1996.

[23] B. J.Grosz and S. Kraus. “Collaborative Plans for

Complex Group Actions”. Artificial Intelligence, vol.

86. pp. 269-357. 1996.

[24] S. Haddad and D. Poitrenaud. “Checking Linear

Temporal Formulas on Sequential Recursive Petri Nets".

In TIME'01, pp. 198-205. IEEE Computer Society

Press, 2001.

[25] S. Haddad and D. Poitrenaud “Modeling and Analyzing

Systems with Recursive Petri Nets”. In WODES'00, pp.

449-458. Kluwer Academic Publishers. 2000.

[26] S. Haddad and D. Poitrenaud “Recursive Petri Nets, an

Expressive Model For Discrete Event Systems”. Acta

Informatica 44(7-8), pages 463-508. 2007.

[27] S. Haddad and D. Poitrenaud. “Theoretical Aspects of

Recursive Petri Nets” In ICATPN'99, LNCS, vol. 1639,

pp. 228-247. Springer. 1999.

[28] Z .Haibin and Z. Meng Chu. “Role-based Multi-Agent

Systems”. Personalized Information Retrieval and

Access: Concepts, Methods and Practices. Chapter

12.pp. 254-285. 2008.

[29] Hang-Jiang Gao , Zheng Qin, Lei Lu, Li-Ping Shao and

Xing-Chen Heng. “Formal Specification and Proof of

Multi-Agent Applications Using Event B”. Information

Technology Journal. Vol. 6 issue 8, Pp. 1181-1189.

2007.

[30] Z. Hou, Z. Yu, W. Zheng and X. Zuo. "Research on

Distributed Intrusion Detection System Based on Mobile

Agent" Journal of Computers, Vol. 7, No. 8, pp. 1919-

1926. August 2012. “doi:10.4304/jcp.7.8.1919-1926".

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 601

© 2013 ACADEMY PUBLISHER

[31] L. Jemni Ben Ayed. Ayed and F. Siala. “Event-B based

Verification of Interaction Properties. In Multi-Agent

Systems”. Journal of Software, Vol. 4, NO. 4, 2009.

[32] L. Jemni Ben Ayed, and F. Siala, “Specification and

Verification of Multi-Agent Systems Interaction

Protocols using a Combination of AUML and Event B”

XVth International Workshop on the Design,

Verification and Specification of Interactive Systems

DSV-IS 2008, LNCS 5136, Kingston, Ontario, Canada,

pp. 102-107. 2008.

[33] N. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C.

Sierra and M. Wooldridge. “Automated Negotiation:

Prospects, Methods and Challenges”. In International

Journal of Group Decision and Negotiation. 10(2), pages

199-215, 2001.N.

[34] Jennings and M. Wooldridge. “Applications of

Intelligent Agents”. In Agent Technology: Foundations,

Applications, and Markets. Springer, pp. 3-28.1998.

[35] N. R. Jennings and M. Wooldridge. “Software Agents".

IEE Review Vol. 42, issue 1, pp. 17-21. January 1996.

[36] S. J. Juneidi, G. A. Vouros. “Agent Role Locking

(ARL): Theory for Multi Agent System with E-Learning

Case Study”. IADIS AC 2005: pp.442-450.2005.

[37] F. Kabanza, "Synchronizing Multi Agent Plans using

Temporal Logic Specifications”. V. Lesser (Ed.), Proc.

First International Conference on Multi-Agent Systems

(ICMAS-95), San Francisco, CA (1995), pp. 217–224.

1995.

[38] D. Kinny, M. Ljungberg, A. S. Rao, E. A. Sonenberg, G.

Tidhar and E. Werner. “Planned Team Activity”.

Proceedings of the fourth European Workshop on

Modeling Autonomous Agents in a Multi-Agent World.

(MAAMAW'92). 1992.

[39] Y. Kissoum, Z. Sahnoun: “A Recursive Colored Petri

Nets Semantics for AUML as base of Test Case

Generation”. The 6th ACS/IEEE International

Conference on Computer Systems and Applications,

Doha, Qatar. Pp.785-792. 2008.

[40] J. Lind “Iterative Software Engineering for Multi-Agent

Systems: The Massive Method” Springer 2001.

[41] A. Lomuscio, M. Sergot "Deontic Interpreted Systems”.

Studia Logica. Vol. 75, issue 1. Pp. 63-92. 2003.

[42] A. Lomuscio and M. Sergot. “On Multi-agent Systems

Specification via Deontic Logic”. Proceedings of

ATAL01, Agent Theories Languages, and Architectures.

Seattle, August. Springer Verlag Lecture Notes in AI

vol. 2333 (Intelligent Agents VIII).2001.

[43] M. Luck, N. Griffiths and M. d’Inverno. “From Agent

Theory to Agent Construction: A Case Study”. In

Intelligent Agents III — Proceedings of the Third

International Workshop on Agent Theories,

Architectures, and Languages, J. P. Muller, M. J.

Wooldridge and N. R. Jennings (eds.), Lecture Notes in

Artificial Intelligence, 1193, 49–63, Springer-Verlag,

1997.

[44] V. Marik, J. Müller and M. Pechoucek. “Multi-agent

Systems And Applications II”, LNAI 2691, pp. 394-

403.Springer-Verlag 2003.

[45] H. Mazouzi, A. El Fallah Seghrouchni and S. Haddad.

"Open Protocol Design for Complex Interaction in

Multi-Agent Systems". In AAMAS'02, pages 15-19.

ACM Press, 2002.

[46] F. Mokhati, N. Boudiaf, M. Badri and L. Badri

“Translating AUML Diagrams into Maude

Specifications: A Formal Verification of Agents

Interaction Protocols”. Appear in Journal of Object

Technology, Vol. 6, No 4. pp. 77- 102. 2007.

[47] P. Singh Munindar , S. Rao Anand, and P. Michael

Georgeff. “Formal Methods in DAI: Logic-Based

Representation and Reasoning”. Gerhard Weiss (ed.),

Multiagent Systems: A Modern Approach to Distributed

Artificial Intelligence, MIT Press, chapter 8, pp. 331–

376. 1999.

[48] J. Pavón , J.J. Gómez-Sanz and R. Fuentes. “Model

Driven Development of Multi-Agent Systems”. In

European Conference on Model Driven Architecture.

LNCS. Vol. 4066, Pp. 284-298. Springer, Heidelberg

2006.

[49] I. Pereverzeva, E. Troubitsyna and L. Laibinis. “Formal

Goal-Oriented Development of Resilient MAS in Event-

B”. TUCS Technical Report. No 1033, January 2012.

[50] A. Regayeg, A.H. Kacem, and M. Jmaiel, “Specification

and Verification of Multi Agent Applications Using

Temporal Z” In Intelligent Agent Technology

Conference (IAT.04), IEEE Computer Society, pp.260-

266. 2004.

[51] S. Rodriguez, V. Hilaire and A. Koukam. “Formal

Specification of Holonic Multi-Agent Systems

Framework”. In Vaidy S. Sunderam, Geert Dick van

Albada, Peter M. A. Sllot, and Jack J. Dongarra, editors,

Computational Science - ICCS 2005, number 3516 in

Lecture Notes in Computer Science, pages 719 – 726.

Springer, 2005.

[52] Y. Al. Saawy, A. Al-Ajlan; K. Aldrawiesh and A.

Bajahzer, A. “The Development of Multi-agent System

Using Finite State Machine”. Appear in New Trends in

Information and Service Science. NISS '09. Pp. 203 –

206. 2009.

[53] D.E. Saïdouni, N. Belala, and M. Bouneb. “Aggregation

of Transitions in Marking Graph Generation Based on

Maximality Semantics for Petri Nets” In Proceedings of

the Second International Workshop on Verification and

Evaluation of Computer and Communication Systems

(VECoS’2008), University of Leeds, UK. eWiC Series,

The British Computer Society (BCS),July, 2-3rd 2008.

ISSN: 1477-9358.

[54] Supriya D'Souza, Abhishek Rao, Amit Sharma and

Sanjay Singh. “Modeling and Verification of a Multi-

Agent Argumentation System using NuSMV”.

arXiv:1209.4330,v1 [cs.AI] 2012.

[55] M. Wang, Z. Shi and W. Jiao. “Dynamic Interaction

Protocol Load in Multi-agent System Collaboration”.

Multi-Agent Systems for Society. Lecture Notes in

Computer Science. Vol. 4078, pp. 103-113. 2009.

[56] M. Wooldridge and N. R. Jennings. “Intelligent Agents:

Theory and Practice”. In Knowledge Engineering

Review Vol.10, issue 2, pp. 115-152.1995.

[57] Y. Xu and X. Xie. “Modeling and Analysis of Security

Protocols Using Colored Petri Nets” Journal of

Computers. Vol. 6, No. 1, pp 19-27. JANUARY 2011.

“Doi:10.4304/Jcp.6.1.19-27”.

602 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

