
Research on the Realizing Mechanism of
PL-ISEE Broker Architecture

Jianli Dong
Huaihai Institute of Technology / School of Computer Engineering, Lianyungang, 222005, P.R.China.

Email: dongjl1019@sina.com

Abstract—The research on software product line will face
two problems: one is the design of new industrialized
PL-ISEE model (that is component based assembly line),
another is the implementation of product line core asset and
COTS component agent bus. In the paper, a new
industrialized PL-ISEE model is firstly proposed by the
authors. One of the main parts framed the new PL-ISEE is
the core asset and COTS component agent bus. To realize
the agent bus and component based software assembly line,
the broker idea and architecture based on CORBA are
introduced. The broker architecture and basic framework
model adapted to the new PL-ISEE component agent bus
requirements are designed, and its implementation
mechanisms are systemically discussed. The PL-ISEE
realized by the broker architecture will have more
advantages on the locating transparency, dynamic updates
and expansion of the core asset component servers of
software product line, system platform independence and
portability, interoperability and interactivity between
different agent systems. These advantages are very useful to
implement the new PL-ISEE and industrialization
production of the component based software products.

Index Terms—broker architecture, software component,
software product line, PL-ISEE (product line based
integrated software engineering environment), CORBA,
agent bus

I. INTRODUCTION

In the heterogeneous network environment, so as to
make full use of the extensive network resources and
collaboration to resolve the complex distributed
computing problems effectively, the researches and
applications on software component, software
middleware, Internetware, software Agent etc. new
technologies were born and have already made a great
progress. In order to achieve the interoperability and
communication between components and
component-based application software development
under such a heterogeneous network environment, the
agent/broker technique and method have become a
research focus of the current heterogeneous networks,
distributed computing and communication, software
product line and so on fields. This paper will mainly
study the framework model and implementation
mechanism of software component broker architecture in
a new industrialized PL-ISEE (product line based
integrated software engineering environment). The aim is

to create a feasible theory and technology support for
industrial assembling production of application software
products in distributed network [1-3].

II. THE PL-ISEE’S BROKER ARCHITECTURE
REQUIREMENTS

The research and development of software
components, software architecture and software product
line have brought new hope for the formation of new
software engineering methodology and industrialized
production of software products. Software component is
a software entity or program entity with specific
computing functions, it can be not only deployed and run
independently, but also assembled and cooperated with
the other components. The software architecture is the
whole structure and blueprint of the software system
development, in accordance with which, the software
system will be assembled and implemented by using the
software components. A software product line is an
assembly line of the software products satisfied the
specific application area requirements and adopted
DSSA (domain specific software architecture) as
blueprint and interrelated software components
(including connectors) as parts. Thus, the software
product line is similar to the modern manufacturing
industry production line achieving the industrialized
assembling production of software products, it is the
revolutionary advances and leap in modern software
engineering [4-5].

We have proposed a new industrialized PL-ISEE
model shown as the Figure 1. This new industrialized
PL-ISEE model is a multi-layer architecture model on
the basis of unified product line engineering conceptual
model, large-granularity reusable asset data model,
component assembly behavior model, iterated evolution
model of core assets developing and application software
producing.

The new industrialized PL-ISEE framework includes
essentially a double-development environment with core
asset and COTS agent components as the software
components bus. On the bus, it is the assembly line of the
PL-ISEE based on product line software engineering
methodology, and realizes the automated and
industrialized assembling production of application
software product (clusters). The core asset or COTS
components needed by assembly line are provided by the

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 579

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.3.579-586

software component bus in the producing process of
software products. Under the bus (or data layer), it is the
traditional ISEE (integrated software engineering
environment) based on traditional software engineering
methodology, which support the development of the
source programs and documents of the product line core
asset components.

Obviously, the new model is a real industrialized
PL-ISEE architecture with the software assembly
production mode and process resembling the automated
assembly line and management system of the modern
manufacturing industry. The new PL-ISEE framework
model and its realizing mechanism have been detailedly
discussed in paper [6, 11].

Figure 1. A new industrialized PL-ISEE architecture model

NSC-Database ISC-Database ESC-Database

The core asset and COTS components agent bus

Product line core assets com
ponents and the agent B

us pathw
ay

Pr
od

uc
t l

in
e

en
gi

ne
er

in
g

pr
oc

es
s m

an
ag

em
en

t a
nd

 st
an

da
rd

s p
at

hw
ay

Traditional software development environment
and operating system

Core assets component development platform Components agent services

Internet

Domain engineering tools:

 DA- Phase DD- Phase DI- Phase

DA-
Tools

Domai
n-Mod

els

DD-

Tools

Domain-
Architect

ure

DI-
tools

Reuse-Co
mponents

Application engineering tools:

 AA-Phase AD-Phase AI- Phase

AA-
Tools

AR-
Specif.

AD-
Tools

App-Arc
hitecture

AI-
Tools

AC-
Products

Product line interface integration and interface services (interfaces layer)

Product line process control services and tools integration (tools layer)

AT-Interface DT-Interface AST-Interface

Data Integration (data layer)

Standard engineering tools:

 PLSC-Phase PLSD-Phase PLSR-phase

DA-
Standar

d

PLSC-
tools

PLSD-
tools

DD-
Standard

PLSR-
Tools

DI-
Standard

Core assets database platform and data integration services

LAC-Databas

580 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

Actually, the new model is all different from
traditional ISEE model based current software
development environments. The PL-ISEE realized by the
new model will own an assembly line of software
products based on the core asset and agent component
bus. The component bus, just as a component conveyor
belt, will provide all components needed on the assembly
line. But, the component bus should provide the reusable
COTS components, and which must consist of the broker
(agent) systems. So the research on the broker system and
architecture will be very important for realizing the new
PL-ISEE.

The goal of software product line is to realize the
industrialized production of software products. To
implement the production of software system in
accordance with the software product line, its essence is
assembling the software process with the DSSA and
software components. Therefore, the product line core
assets or software components are fully regarded as a
third-party products or COTS (Commercial
Off-The-Shelf) software components to develop and issue,
and widely used in the network environment and
implement value-added. In the distributed network
computing environment, it is necessary to make full use
of third-party software components to implement the
software products’ assembly production. Therefore the
research and application of software agent technology
will become the basis of the software product line
development [6].

Figure 1 Notes: Filled boxes represent the products of
the process or tools or phases. No filled boxes represent
the process or tools.

Product Line Interface Integration and Interface
Services (interface layer): AT-Analysis Tools Interface,
DT-Design Tools Interface, AST-ASsembly Tools
Interface.

Standard Engineering Tools: PLSC-Product Line
Standard Classification, PLSD-Product Line Standard
Design, PLSR-Product Line Standard Release;
DA-Domain Analysis Standard, DD-Domain Design
Standard, DI-Domain Implementing Standard.

Domain Engineering Tools: DA-Domain Analysis,
DD-Domain Design, DI-Domain Implementation

Application Engineering Tools: AA-Application
Analysis, AD-Application Design, AI-Application
Implementation.

Core Assets Database Platform and Data Integration
Services: NSC-National Standard Components,
ISC-Industry Standard Components, ESC-Enterprise
Standard Components, LAC-Local Agent Components

III. THE FEATURES AND MECHANISMS OF BROKER
ARCHITECTURE

The broker architecture is mainly used to build
distributed software system with intrinsic isolated
components under heterogeneous network. In such a
distributed system, the function realization and the
performance guarantee of client application system
totally depend on multiple service providers (collectively

referred to as the server), which are distributed in the
different nodes of the heterogeneous network
environment. The client application makes a request to
the broker. According to the properties and requirements
of the client requests, the broker sends client’s requests
to a service provider (server-side) in the way of remote
collaboration and resource access. The service provider
completes the client assignment processing, and returns
the results to the client application through the broker.
Thus, the broker constitutes a bridge between client
application side and the remote server-side, taking
charge of coordinating the communication, sending
requests, returning results and abnormal information
processing etc[7-8].

Thus, the development of a complex distributed
application system should be divided into many separate
components according to its function, and distribute each
component on different nodes in the network
environment, so that it can achieve the distribution and
expansion of the system. This distributed application
system is composed of some independent components
interoperating and interacting with each other, rather
than a whole application program. Obviously, such a
distributed application system also has good flexibility,
maintainability, and modifiability. In order to achieve
interoperability between different network node
components in a distributed system, the system must
provide a remote communication mechanism between
the component processes. Because if the components
respectively handle their own communications, the
system becomes dependent on the use of low-level
communication mechanism, the client must know the
server's location and many other complex issues. In
addition, in such a distributed system, adding, updating,
moving, exchanging, activation and positioning the
component services are essential. As a result, the
application system used server components should not
know too much about the implementation details of each
server component, to ensure portability and
interoperability of the system in heterogeneous networks.
The development of client applications only uses the
service interfaces provided by the server, but
implementation details and physical location of the
server components are completely transparent. In the
distributed applications of broker architecture, it is the
broker system that takes charge of communication
between the client and server components, as well as the
locating operation of server.

The solution of the agent system is just introducing
broker component between the client and server
components to insulate client and server. The servers
distributed on the network should register and publish to
the brokers, and make their own services used by client's
programs through certain methods and interfaces.
Customers access various kinds of services through a
broker to send requests. The broker’s task is to locate the
appropriate server, and send the request to the server and
return client with results data or service status
information.

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 581

© 2013 ACADEMY PUBLISHER

callsClient /
Developer

call-server
start-task
use-Broker-API

Client-broker

pack-data
unpack-data
send-request
return

 (local) Broker

main-event-loop
update-repository
register-service
acknowledgment
find-server
find-client
forward-request
forward-response

Bridge

pack-data
unpack-data
forward-message
transmit-message

Server-broker

pack-data
unpack-data
call-service
send-response

Server /Compon-
ent server

initialize
enter-main-loop
run-service
use-Broker-API

transfers
message

users
API

transfers
message

users
API

calls

Figure 2. Broker architecture system model

calls

(remote) Broker

....

The application software system built by the broker
architecture has the inherent distributed nature and
computing power. Through the broker architecture, the
different components in the system, especially server
components are distributed on different nodes of the
network, and they can go across different hardware and
software platforms, network environments and
programming languages. Furthermore, them can be
updated and expanded dynamically.

IV. THE DESIGN OF PL-ISEE BROKER SYSTEM

A. The Framework of the PL-ISEE Broker System
According to the functions and characteristics of

broker architecture above, the broker architecture
generally consists of the following six parts: client, server,
broker, bridge, client-side broker, and server-side broker.
Broker architecture model is shown in Figure 2, in which
the component parts of the role are discussed below
[9-11]:

Server/component server: The server is responsible
for achieving various function services of the server-side
and registering the services to brokers, and then displays
and provides its functions through its interfaces. The
server interfaces are made up of operations and attributes.
These interfaces can be acquired by the Interface
Definition Language (IDL), and they generally aggregate
the semantically related functions. In object-oriented
approach, each service is implemented through one or
more objects, and provides its functions through the
property and method members of the objects. The server
is divided into two types according to different tasks: one
is to provide public services or public information server
for many applications, the other is to achieve a specific
service for specific tasks. In the PL-ISEE core asset and
COTS component bus and broker architecture [12], the
majority is the first server setting [13-15].

Client/developer: The client is an application program
to complete specific problem solving by accessing one or
more servers. In the broker architecture, the client’s
requests will be transmitted to the server by the broker.
When the requested operations are completed by the
server, the result data processed by the server will be
returned the client by the broker. In the broker
architecture, it must emphasis on interoperability and
communication between the client and the server, which
is a dynamic relation model with broker-based
messenger rather than pre-defined and invariable static
relation model, it is also different from the traditional
client / server model. In particular, the client does not
have to know the location of their access to the server.
The server can be distributed in the different nodes of the
network dynamically, and updated and shifted to services
entities during operation. In short, the client can issued a
service request only by the service interface, and the
following request transmission, server location, and
operation are transparent. The transparent characteristic
has brought great convenience to the development of
distributed application system in heterogeneous network,
and ensures cross-platform portability and language
independence of application system.

(local or remote) Broker: The broker is responsible
for transmitting the client requests to the server side and
the server result data to the client side. The broker should
provide the only tag to every interoperable object or
component (such as clients or servers etc.) in the system,
and make the tag and the appropriate communication
mechanism to locate accurate position of the information
receiver. The broker should also provide the registration
server and APIs called server operation for clients and
servers.

When the client sends a request to a server registered
on the local broker, the broker will directly transmit the
requests to the server. If the server is not activated right

582 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

now, the broker will activate it. All the results returned
from the server will forward to the requesting client by
the broker. If the server requested by the client makes
register on another broker (that is not registered on the
local broker), the local broker will find a path to reach the
goal of the remote broker on the network, and use this
path to send the request and returns the result information.
Therefore, the broker systems will require the brokers in
the network (between the local brokers and remote
brokers) communicates with each other and
interoperability, this requirement can use the bridge to
achieve.

Client-broker: The client-broker is the isolated layer
adding between client and broker, taking charge of
communication between client and broker. The client
broker provides service transparency, so that broker can
hide realized details itself to clients. Clients don’t need to
know all the implemented details how to transmit, store,
parameterize and package request information, as well as
return the result data between the client-side and
server-side, like using a local server as a remote server.

Server broker: The server broker is responsible for
receiving the requests sent by the broker, analyzes the
received message, unpacks parameters, locates and calls
the appropriate service, completes operation requested by
the client. At the same time, result data to return to the
client should be packaged in accordance with the data
semantics. In contrast, when the client broker received
the result data returned by server and transmitted by the
broker (Note: the client broker is not the same as the
broker), it should unpack the result data and sent to the
client. In realizing process of the broker bus of the core
asset components of PL-ISEE product line and the COTS
components, the server broker is very important, because
it want to find and match the ideal components in the
component database according to the needs of the client
application. This is an important work about the
development quality of the software product line
application system.

Bridge: that is a communication bridge between two
different network systems. When the broker system is
running in a heterogeneous network environment, we can
use the bridge to connect two brokers distributed in two
different network systems and implement communication
and interoperability each other. At the same time, we can
hide implementation details about communication and
interoperability of the two brokers through the bridge.
The communication mode of the broker system has two
ways: one is the direct means of communication; the
other is an indirect means of communication. The broker
simply establish a communication link between the client
and the server adopting the direct means of
communication, but the communication task is
implemented by the direct participation of the client and
server components. Not only does the broker in charge of
the establishment and maintenance of the communication
link, but take charge of the accomplishment of specific
communication tasks adopting the indirect means of
communication.

B. The PL-ISEE Broker Operation Mechanism
In the Broker architecture shown as figure 2, the

processes of how the client/developer requests the
server-side to provide services become the key activities
of this architecture. The steps are as follows [16-19]:

1) Run the client application system (it is the
application development side in the product line), and the
client program is executed through remote call to the
server object's interface or method.

2) Client-broker packages all call parameters and
related information and generates a message packet. The
client-broker will send this message packet to the local
broker (that is the broker in figure 2).

3) The local broker seeks for the requested server
address in its own library. Since the server is registered
in the local broker (If it is not registered, see the
following 9), 10), 11), 12) realizing process), therefore
the local broker sends the message packet to the
corresponding server broker.

4) The server broker unpacks the message packet and
gets the parameters and other information, then resolves
the service needed calling, and calls the corresponding
server object.

5) The server object accomplishes the requested
operation tasks and returns the resulting data (it may be a
component) to the server broker.

6) The server broker packages the resulting data and
related information and generates a resulting message
packet, then sends it to the (local) broker.

7) The (local) broker sends this message packet to the
client-broker.

8) The client broker receives the message package,
unpacks and returns the resulting data to the client
program, and then the program continues to execute.

The synchronization execution process of broker
architecture is above. That is, the client waits for
server-side returning the resulting data and then
continues to the next step. Of course, the broker
architecture also supports asynchronous calls, namely,
the client has not to wait for the returning resulting data
after making a request and can execute the next task.

In addition, in the above 3) step, if the local broker
does not found the server registration requested by the
client in its own library, so how to control the execution?
This needs to implement requested services by a
different broker (it is called remote broker) in
heterogeneous network. The steps are as following four
steps:

9) When the local broker receives the request message
sent by the client program, and it doesn’t find the server
address in its own register library, namely this server is
not registered in the local broker, but is registered on a
remote broker of a node of another network system. In
this case, the local broker must send the client request to
the remote broker using the network bridge.

10) After the local broker sends the request message to
the network bridge, the bridge is responsible for
conversing this message protocol defined by the local
broker into network public protocol that the two bridges
can be understood in a heterogeneous network, after that

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 583

© 2013 ACADEMY PUBLISHER

the local bridge will send the message to the remote
bridge.

11) Remote bridge transfers the received request
message from the network common protocol format to
remote broker definition format. After the remote broker
receives the request message, it will analysis and call the
corresponding server services.

12) After the server completes the requested operation
and returns the resulting data back to the remote broker,
and then the remote broker through the bridge sends the
results back to the local broker, at last, the local broker
sends the results to the client program. Of course, the
result data packages returned from the remote broker to
the local broker are also concerns about the conversion of
the data package format.

By this time, the communication and collaboration
processes of heterogeneous network with multi-broker
architecture system are successfully completed.

V. THE IMPLEMENTATION MECHANISM OF THE PL-ISEE
BROKER SYSTEM

The implementation of PL-ISEE broker architecture
should be based on broker architecture system shown in
Figure 2 to design and implement the associated
components which make up the system. Therefore, the
design and implementation of broker architecture should
include the following component implementations and
the handling of their mutual relationships [20-22].

A. Determine the Client and Server Object Models:
It should abstract and model the composition objects of

the broker architecture according to the distributed
computing and resource sharing needs of the broker
application system, such as the client object, the server
object, the broker object, the client-broker object, the
server-broker object. Each object model should be
specified the entity according to their respective needs,
such as object name, object, request, status value,
exception, supported type, type extension, interfaces and
operations. The basic computing model determined
through the problem solving is the key to design the
object models.

In the PL-ISEE architecture model shown as figure 1,
the product line core asset and agent component bus can
be described as broker objects, and the objects should
consist of client side broker, server side broker and (local
or remote) broker objects. The software product
development (assembling) side in the PL-ISEE can be
described as a client object. All software component and
architecture products as well as component database
system supporting platform can be described as server
objects.

Such a design and definition of the PL-ISEE broker
system can fully meet the product line computing mode
and development of application software products based
on the component assembly process. In this process, all
the components (including the core asset and COTS
components) needed by the application software
developers (the client objects) can be got from the server
objects (such as component and database servers) by

sending requests to the component bus (the broker). The
database in accordance with the request selects the
components needed by the development side, and returns
them to the development side through the broker bus.

B. Determine the Interoperability between the Broker
System Objects:

The interoperation between the objects can be
achieved by the Interface Definition Language (IDL) in
the implementation process of broker systems. The IDL
compiler can generate a needed programming language
code by using the IDL file as input. In such a way, the
IDL can obtain the support of various programming
languages easily. A part of the generated programming
code is used by the server to communicate with the
broker, and the rest part is used by the client to
communicate with the broker. The broker can maintain
the current server type information through IDL rules.
The broker can map the semantic concept to a suitable
programming language and realize interoperation
presentation when using IDL rules to define
interoperability. The biggest advantage of using IDL is to
realize the independent between the broker system and
programming language, which provides a good
mechanism for the realizing distributed computation in
heterogeneous network.

C. Determine the API Functions of the Cooperation
between the Broker and the Client and Server:

On the client side, the broker must provide the
functions of building a client request, sending a request
to the broker and receiving the response data and so on.
The servers use the API functions to mainly register its
implementation information to the broker. The brokers
use the registration repository to maintain the server
registration information. The repository can be an
external file or a database system, which provides a
convenient for the server to dynamically register. Since
the broker should make sure the needed server while the
client’s request arrives, it requires a confirmation
mechanism. The broker is responsible for realizing the
association from the server identifier to the server object
through this confirmation mechanism. This mechanism
requires that the server side API of the broker be able to
generate a unique identifier for a variety of servers. If the
client, the server and the broker are running as different
processes, the API function needs an effective process
communication mechanism between the client, the server
and the local broker.

D. Hide the Lower Level Communication
Implementation Details with the Broker Object:

In the broker architecture, the client broker (client side
broker) and server broker (server side broker) are
necessary. The client broker's responsibility is to package
the client process request information into messages
(packets) and send the messages to the local broker.
Then it will receive result data from the local broker and
return it to the client process. According to the internal
message protocol, the communication and information
transmission between client and local broker can be

584 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

completed. The server broker responsibility is to receive
the local broker’s requests and call corresponding server
interface methods as well as process the requested task.
And then it packages the result information made by the
server into message packets and transmits these packets
to the local broker according to internal message protocol.
In particular, the side broker (the client or server broker)
is often a part of the corresponding client or the server
process, and hides the communication details by using
their own inter-process communication mechanism which
communicates with the local broker. They can also pack
and unpack the parameters and results and convert the
information into a system-independent format. This
capability is very useful to implement and hide the lower
level complex and multi-broker communication
mechanism in the heterogeneous network environment.

E. Broker Component Design:
The broker is the communication and message passing

bridge between the client and the server. When the client
sends a request to the server, the broker is responsible for
receiving the request, and in accordance with the request
and the communication protocol, establishes a
communication link between the client and the server
brokers, which guarantees the implementation of
communication and data transmission between two side
brokers or they and the broker. Broker components
design should include main works:

(1) Designate the detail online interaction protocol
among the broker and client broker and server broker,
then make the mapping plan from the request, response
and exception to an internal message protocol; (2) The
broker must be available to each machine in the network;
3) The broker must provide the client identification
mechanism; 4) When the side brokers do not provide the
function of data packing and unpacking to messages and
results, the broker should provide this function; 5) If the
system supports the asynchronous communication
between the client and the server, message buffers should
be stetted in the broker or side brokers as a temporary
message storage area; 6) The broker should provide a
directory service to associate the local server identifier
with the corresponding physical address of the server.

F. Develop IDL Compiler:
If the broker system uses the interface definition

language IDL to achieve interoperability, it needs to
provide an IDL compiler for each supported
programming language. This compiler can convert the
client application and server interface definition into the
programming language code, in order to hide specific
implementation details of the server object and its
methods.

Thus, to sum up the points which we have just
indicated, the framework and realizing mechanism of the
broker system of the PL-ISEE component agent bus are
designed based on the CORBA architecture. According to
the design idea and method, the new industrialized
PL-ISEE and its component agent bus shown as figure 1
can be completely implemented by current popular
BORBA technology and method. Some complex parts of

the PL-ISEE component agent bus, such as the client and
sever objects, broker objects, Interface Definition
Language (IDL), IDL compiler, the communication rules
and implementation details, etc., are all supported by
CORBA system. The research idea and realizing method
of the PL-ISEE can enhance the development quality and
application ability of the future PL-ISEE.

VI. CONCLUSIONS

The broker architecture is an inevitable model to
realizing distributed computing in heterogeneous
network environments. In today’s Internet application
information system, many systems use the broker
architecture model. For example, the Common Object
Request Broker Architecture (CORBA: Common Object
Request Broker Architecture) developed and
promulgated by OMG, which gets widely industry
support and application, is becoming a standard broker
architecture and object oriented technology realizing
distributed computing in heterogeneous network
environment.

In this paper, a new industrialized PL-ISEE model is
shown as figure 1. A core constituent part of the
PL-ISEE is product line agent component bus in the data
layer. How to realize the agent bus is also becoming a
key problem to implement whole PL-ISEE. In the paper,
the CORBA architecture and technology are employed as
the broker of the product line core asset and COTS agent
component bus in the new PL-ISEE model, so as to
realize the complex component broker system of the
integrated component-assembling environment of the
software product line in heterogeneous network. The
implementation of the PL-ISEE system based on the
CORBA architecture has the advantages of location
transparency between the client (development side) and
the server (component provided side), the dynamic
updating and extensibility of the component server,
independence and portability of the system platform,
interoperability between different broker systems.
Besides, this broker system provides a solid theory
foundation for the research and development of current
Internetware, Mobile-Agent, Cloud Computing and
Cloud Service, etc. technology system [23-25]. Of course,
there is still a long way to go as for the research and
improving of the broker theory and technology. They are
major problems of the broker architecture system
research and application, such as intelligent broker, the
broker system efficiency and error detection.

ACKNOWLEDGMENT

This project is supported by Fund of Jiangsu
University Natural Science Basic Research Project,
Grant No. 08KJD520013 and Jiangsu Key Built
Discipline Project—Computer Application Technology.

REFERENCES

[1] YANG FuQing, “Thinking on the Development of
Software Engineering Technology”. JOURNAL OF
SOFTWARE, vol.16, no.1, pp.1-7, 2005.

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 585

© 2013 ACADEMY PUBLISHER

[2] Zhang Xinyu, Zheng Li, Sun Cheng, “The research of the
component-based software engineering”, 6th International
Conference on Information Technology: New Generations,
pp.1590-1591, 2009.

[3] YANG Fuqing, LV Jian, MEI Hong, “Internetware
technology System: A Approach centered Architecture”,
Science in China (Series E: Information Sciences), Vol.38,
No.6, pp.818-828, 2006.

[4] Thurimella Anil-Kumar, Padmaja Maruthi T., “Software
product line engineering: A review of recent patents,”
Recent Patents on Computer Science, vol.3, no.2,
pp.148-161, 2010.

[5] LV Jian, MA Xiaoxing, TAO Xianping, CAO Chun,
HUANG Yu, YU Ping, “Research on Internetware
Oriented Environment Driven Model and Supporting
Technology”, Science in China (Series E: Information
Sciences), Vol.38, No.6, pp.864-900, 2008.

[6] Jianli DONG, Ningguo SHI. “A study on framework and
realizing mechanism of ISEE based on product line,”
Journal of Software, Vol.5, No.10, p.1077-1083, 2010.

[7] XIE Wu-ping, XUE Jin-yun, WAN Song-song.
“Aspect-Based Component Model and Its Assembly and
Implementation”, Computer Technology and Development,
Vol.19, No.4, pp.160-160, 2009.

[8] Zhijian WANG, Yukui FEI, Yuanqing LOU, Software
Component technology and Application. BeiJing: Science
Press, April 2004.

[9] HE Tian-zhang,WANG Pan-qing,LI Xiao-hui, “Research
and Application on CORBA Component Assembly”,
Science Technology and Engineering, Vol.8, No.1,
pp.84-86, 2008.

[10] CHANG Bing-guo,WANG Xiang-zong, “Research and
development of component integration support platform”,
Computer Engineering and Design, Vol.32, No.8,
pp.2712-2715, 2011.

[11] Jainli DONG, Ningguo SHI, “Research on the CORBA
Implementation Mechanism of a New Industrialized
PL-ISEE”, Journal of Software, Vol.7, No.5, pp.1171-1176,
2012.

[12] Jianli DONG, Ningguo SHI, Yong ZHANG, “Research
and Implementation on an Ideal Industrialized PL-ISEE
and Its Database Supporting Platform”, JCIT, Vol.7, No.13,
pp.206-214, 2012.

[13] Jianli DONG, “Framework and Schema Design of A New
Industrialized PL-ISEE Database Supporting Platform”.
Advances in Information Sciences and Service Sciences,
accepted, 2012.

[14] MAO Yingchi, LIANG Yi1, WANG Zhijian. “Design and
Implementation of Model for Heterogeneous Software
Component Composition”, Computer Engineering, Vol.31,
No.4, pp.56-57, 2005.

[15] YE Junmin, CHEN Zhuo, LEI Zhixiang, YE Yanfeng,
ZHAN Zemei, “Research on application development
process based on component composition”, Application
Research of Computers, Vol.25, No.6, pp.1736-1738,
2008.

[16] Patrizio Pelliccione, Massimo Tivoli, Antonio Bucchiarone,
Andrea Polini, “An architectural approach to the correct
and automatic assembly of evolving component-based
systems”, Journal of Systems and Software, Vol.81, No.12,
pp.2237-2251, 2008.

[17] Basem Y Alkazemi, “A Precise Characterization of
Software Component Interfaces, Journal of Software”, Vol
6, No 3, pp.349-365, 2011.

[18] Longye Tang, Yukui Fei, Zhijian Wang, “Service-Oriented
Component Model”, IJACT- International Journal of

Advancements in Computing Technology, Vol.3, No.1,
pp.68-79, 2011.

[19] Li Na, Wang Weizhe, “ON CORBA BASED ACCESS
MIDDLEWARE OF HETEROGENEOUS DATABASE
AND ITS IMPLEMENTATION”, Computer Applications
and Software, Vol.27, no.5, pp.162-164, 2012.

[20] YU Bin, HUA Qingyi, “Analysis and practice of
distributed heterogeneous computing environment based
on CORBA”, Journal of Northwest University (Natural
Science Edition), vol.30, no.2, pp.113-117, 2000.

[21] YAN Juan, ZHANG Lifang, CAI Xuqing, “Research and
Development of CORBA”, Software Guide, Vol.8, No.6,
pp.41-43, 2009.

[22] HE Tianzhang, WANG Panqing, LI Xiaohui, “Research
and Application on CORBA Component Assembly,”
Science Technology and Engineering, Vol.8, No.1,
pp.84-86, 2008.

[23] Wenbin Hu, Zhengbing Hu, Yuheng Cheng, Hai Zhang,
Wei Song, “Modeling and Simulation on Dynamic
Allocation and Scheduling of Multi-resource problem,”
Journal of Computers, Vol.6, No.7, pp.1369-1377, 2011.

[24] Weidong Zhao, Haifeng Wu, Weihui Dai, Xuan Li, Fei Yu,
Chen Xu, “Multi-agent Middleware for the Integration of
Mobile Supply Chain,” Journal of Computers, Vol.6, No.7,
pp.1469-1476, 2011.

[25] Feng Liang, Shilong Ma, André Luckow, Bettina Schnor,
“Advance Reservation-based Computational Resource
Brokering using Earliest Start Time Estimation,” Journal
of Computers, Vol.7, No.6, pp.1329-1336, 2012.

Jianli Dong was born in Shanxi province,
China, in 1957. He got his Bachelor of
Mathematics Science in Northwest Normal
University, Lanzhou, Gansu province,
China, in 1988 and got his Master of
Software Engineering in Beijing
University of Aeronautics and
Astronautics, Beijing, China, in 1995. He

is now a professor at the School of Computer Engineering in
HuaiHai Institute Technology, Lianyungang, China. He has
published 70 papers, and completed over 8 scientific research
projects, and won 6 times scientific and technological progress
awards from the province and military.

Mr. DONG current research interests include software
engineering, integrated software engineering environment,
software architecture, engineering database system,
object-oriented technology.

586 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

