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Abstract—Fractional calculus has recently attracted much 
attention in the literature. In particular, fractional 
derivatives are widely discussed and applied in many areas. 
However, it is still hard to develop numerical methods for 
fractional calculus. In this paper, based on Fourier series 
and Taylor series technique, we provide some numerical 
methods for computing and simulating fractional 
derivatives by using Matlab. Some numerical examples are 
also presented.  
 
Index Terms—fractional derivative, fractional integral, 
Matlab, Fourier series, Taylor series. 
 

I.  INTRODUCTION 

Fractional calculus is a branch of mathematical 
analysis that studies the possibility of taking real number 
powers or complex number powers of the differentiation 

operator. Generally speaking, n

n

dx
yd

 represents the n th 

derivative of y with regard to x . What does it mean if 
we take n to a fractional number? This is a very 
important and interesting question asked by many 
mathematicians. In the history, fractional calculus has 
long been a pure theoretical problem. However, in the 
recent years, calculus has been successfully applied to 
many areas such as automatic control and signal 
processing (see [1-12]). Despite the applications of 
fractional calculus, it is hard to develop numerical 
methods for fractional derivatives due to its complex 
definitions. In this paper, we provide several numerical 
methods for computing fractional derivatives. We arrange 
the paper as follows, section 1 is the introduction of 
fractional calculus, section 2 is devoted to the numerical 
methods and its Matlab code and numerical examples, 
section 3 is the conclusion. 

We review some basics for fractional calculus first. In 
the literature, there are various definitions of fractional 
calculus. We list some major ones below. 

 
Grunwald-Letnikov definition, 

)()1(1lim)(
]/)[(

0
jhxf

jh
xfD

hax

oj

j

hta −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

−

=
→

α
α

α  ,(1) 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
j
α

is a binomial coefficient and a the initial 

value. In a sense, Grunwald-Letnikov fractional 
derivative is a kind of generalization of integer derivative 
by taking integer difference to fractional case. 

The classical form of fractional calculus is given by the 
Riemann–Liouville integral and the corresponding 
derivative is calculated using Lagrange's rule for 
differential operators. Computing n-th order derivative 
over the integral of order α−n , the α order derivative is 
obtained. It is important to remark that n is the nearest 
integer bigger than α. 

Riemann–Liouville fractional integral, 
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where 10 << α and a is the initial value. The initial 
value a  is usually set to be 0 . 

Starting from the Riemann–Liouville fractional 
integral, we come to  

Riemann–Liouville fractional derivative, 
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where nn ≤<− γ1 . 
  By contrast, the Grünwald–Letnikov derivative starts 

with the derivative instead of the integral. 
Another option for defining fractional derivatives is 

Caputo fractional derivative. It was introduced by M. 
Caputo in 1990. Caputo's definition is often preferred in 
solving differential equations because it is not necessary 
to define the fractional order initial conditions. Caputo's 
definition is illustrated as follows. 
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where γα += m , and 10 ≤< γ , m is an integer.  
It is proved that Grunwald-Letnikov fractional 

derivative is identical to Caputo fractional derivative for 
the majority of analytic functions. The slight difference 
between the two appears when dealing with constant 
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function. As a matter of fact, for a constant, the Caputo 
fractional derivative is zero while its Riemann–Liouville 
fractional derivative is not zero. In the literature, Caputo 
fractional derivative is usually used to handle initial value 
fractional ODE.  

We list some well known properties of fractional 
derivative (See [13]). 

a. If α is an integer, the fractional derivative is just 
identical to the traditional derivative. In this sense, 
fractional calculus is a kind of interpolation of the 
traditional calculus. 

b. fractional operator satisfies the linearity .e.g. 
)()()]()([ tgDtfDtgtfD tatata

ααα μλμλ +=+  , (5) 

where λ and μ are arbitrary real numbers. 

c. )()]([)]([ tfDtfDDtfDD tattatta
βααββα +== ; 

The property c means all fractional operators form a 
semi-group. 

The Laplace transform for fractional integral is as 
follows:  
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The Laplace transform for fractional derivative is  
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The Fourier transform for fractional calculus can be 
expressed as 

)]([)()](D[ tfFjtfF t
αα ω=∞− , 

where α can either be negative meaning integral or 
positive meaning fractional number. 

 

II.  MATLAB NUMERICAL METHODS FOR FRACTIONAL 
CALCULUS 

A. Computing Fractional Derivative by using Fourier 
Series 

A periodic function defined on ],[ LL− can be 
transformed  to Fourier series, e.g.  
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If ),( bax∈ , we get 2/)( abL −= . By letting 
,ˆ aLxu ++=  we transform )ˆ(xf  to a function 

defined on ),( LL− , then expand it into Fourier Series in 
the form of (6).  

For )sin(x and )cos(x  function, we have  
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It can be proved that the above conclusion still holds if 
k is fractional number (see [14]). Therefore, we have 
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According to the above conclusion, if γ  is a fraction 
which is bigger than 1, we can transform it into β+n  
where n  is a positive integer and 10 << β . In this case, 
we can compute the n th derivative first, then compute its 
β  th derivative.  

So we develop the following procedure: 
 
STEP1:  Compute the Fourier Series. The matlab code 

is as below , 
function [A, B, F]=fourier(f, x, p, a, b) 
If nargin==3, a= -pi; b=pi; 
end 
L= (b-a)/2; 
if a+b, 
f=subs(f, x, x+L+a); 
end 
A=int (f, x, -L,L)/L;B=[]; F=A/2; 
for n=1:p 
An=int(f*cos(n*pi*x/L), x, -L, L)/L; 
bn=int(f*cos(n*pi*x/L), x, -L, L)/L; 
A=[A, an];B=[B, bn] 
F=F+an*cos(n*pi*x/L)+ bn*sin(n*pi*x/L); 
end 
if a+b, F=subs(F, x, x-L-a); 
end 
 
STEP 2:  
Based on the above algorithm, we have the following 

Matlab code to calculate the fractional derivative. 
function F=fdiff (A, B, t, gam, a, b) 
A0=a(1);A=A(2:end); 
n=length(B);L=(b-a)/2; 
If gam>=0, F=0; 
else, F=a0*t^gam/gam;end 
for i=1:n,an=i*pi/L;bn=gam*pi/2; 
F=F+an^gam*(A(i)*cos9an*t+bn)+ 
B(i)*sin(an*t+bn)); 
end 
If a+b, 
F=subs(F,t,t-L-a); 
end 
 
Example 1 :  
Let test function be 
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)2)(()( ππ −−= xxxxf . 
We get its Fourier series by Matlab code as follows 
STEP1: 
syms x; f=x;  
f=x*(x-pi)(x-2*pi) 
[A,B,F]= fourier (f,x,20,0,2*pi); 
 
F =  
3/2000*sin(20*x)+3/250*sin(10*x)+12*sin(x)+12/156

25*sin(25*x)+1/486*sin(18*x)+1/2250*sin(30*x)+4/112
5*sin(15*x)+12/2197*sin(13*x)+12/1331*sin(11*x)+4/9
*sin(3*x)+3/4394*sin(26*x)+3/2*sin(2*x)+3/686*sin(14
*x)+12/125*sin(5*x)+1/18*sin(6*x)+4/3087*sin(21*x)+
3/2662*sin(22*x)+4/6561*sin(27*x)+3/1024*sin(16*x)+
3/16*sin(4*x)+4/243*sin(9*x)+3/128*sin(8*x)+3/5488*
sin(28*x)+12/4913*sin(17*x)+1/1152*sin(24*x)+12/243
89*sin(29*x)+1/144*sin(12*x)+12/343*sin(7*x)+12/121
67*sin(23*x)+12/6859*sin(19*x) . 

By matlab code,  
ezplot(F, [0,1]),  
we get the figure of the Fourier series of )(xf as 

below . 
 

 
Fig. 1 (Fourier series approximation to )(xf ) 

STEP2: 
F0.5= fdiff(A,B,x,0.5,0,1) 
F0.5 =  
3/2*2^(1/2)*sin(2*x+1/4*pi)+3/8*sin(4*x+1/4*pi)+3/

256*sin(16*x+1/4*pi)-
12*sin(x+1/4*pi)+3/250*10^(1/2)*sin(10*x+1/4*pi)-
12/4913*17^(1/2)*sin(17*x+1/4*pi)-
12/24389*29^(1/2)*sin(29*x+1/4*pi)-
12/1331*11^(1/2)*sin(11*x+1/4*pi)+1/162*2^(1/2)*sin(
18*x+1/4*pi)+1/18*6^(1/2)*sin(6*x+1/4*pi)-
12/6859*19^(1/2)*sin(19*x+1/4*pi)+3/1000*5^(1/2)*sin
(20*x+1/4*pi)-4/3087*21^(1/2)*sin(21*x+1/4*pi)-
4/9*3^(1/2)*sin(3*x+1/4*pi)+1/72*3^(1/2)*sin(12*x+1/
4*pi)+3/2662*22^(1/2)*sin(22*x+1/4*pi)-
12/343*7^(1/2)*sin(7*x+1/4*pi)-
12/12167*23^(1/2)*sin(23*x+1/4*pi)-
12/2197*13^(1/2)*sin(13*x+1/4*pi)+3/64*2^(1/2)*sin(8
*x+1/4*pi)-
12/3125*sin(25*x+1/4*pi)+3/4394*26^(1/2)*sin(26*x+1
/4*pi)+3/686*14^(1/2)*sin(14*x+1/4*pi)+1/576*6^(1/2)

*sin(24*x+1/4*pi)+1/2250*30^(1/2)*sin(30*x+1/4*pi)-
12/125*5^(1/2)*sin(5*x+1/4*pi)-
4/2187*3^(1/2)*sin(27*x+1/4*pi)+3/2744*7^(1/2)*sin(2
8*x+1/4*pi)-4/1125*15^(1/2)*sin(15*x+1/4*pi)-
4/81*sin(9*x+1/4*pi) 

By ezplot(F0.5,[0,1]), we get the 0.5th derivative of 
)(xf as below. 

 

 
Fig. 2 (0.5th derivative of )(xf ) 

By 
F2= fdiff(A,B,x,0.7,0,1) 
F3= fdiff(A,B,x,0.8,0,1) 
F4=fdiff(A,B,x,0.9,0,1) 
ezplot(F2,[0,2*pi]); 
hold on 
ezplot(F3,[0,2*pi]); 
ezplot(F4,[0,2*pi]);  
we can see the 0.7th, 0.8th and 0.9th derivative of )(xf  

in figure 3. 
 

 
Fig. 3  (0.7th, 0.8th and 0.9th derivatives of )( xf ) 

Example2 :   
Test function is )1()( xxxf −=  
STEP1: 
syms x; f=x;  
f=x*(1-x) 
[A,B,F]=fourier(f,x,20,0,2*pi); 
Its Fourier series is  
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F= 
1/6+1/pi^2*cos(2*pi*(x-1/2))-1/4/pi^2*cos(4*pi*(x-

1/2))+1/9/pi^2*cos(6*pi*(x-1/2))-1/16/pi^2*cos(8*pi*(x-
1/2))+1/25/pi^2*cos(10*pi*(x-1/2))-
1/36/pi^2*cos(12*pi*(x-1/2))+1/49/pi^2*cos(14*pi*(x-
1/2))-1/64/pi^2*cos(16*pi*(x-
1/2))+1/81/pi^2*cos(18*pi*(x-1/2))-
1/100/pi^2*cos(20*pi*(x-1/2))+1/121/pi^2*cos(22*pi*(x-
1/2))-1/144/pi^2*cos(24*pi*(x-
1/2))+1/169/pi^2*cos(26*pi*(x-1/2))-
1/196/pi^2*cos(28*pi*(x-1/2))+1/225/pi^2*cos(30*pi*(x-
1/2))-1/256/pi^2*cos(32*pi*(x-
1/2))+1/289/pi^2*cos(34*pi*(x-1/2))-
1/324/pi^2*cos(36*pi*(x-1/2))+1/361/pi^2*cos(38*pi*(x-
1/2))-1/400/pi^2*cos(40*pi*(x-1/2)) 

  
By ezplot(F,[0,1]), we can see the figure of Fourier 

series of )1( xx − in fig 4. 
 

  
Fig. 4 (Fourier series approximation to )1( xx − ) 

 
By Matlab code,  
F1=fdiff(A,B,x,0.5,0,1), 
 We get the 0.5th derivative of )1( xx − , 
F1 = 
  
5644425081792261/2251799813685248/pi^2*cos(2*pi

*x+1/4*pi)-
3991211251234741/4503599627370496/pi^2*cos(4*pi*x
+1/4*pi)+1222053877647539/2533274790395904/pi^2*
cos(6*pi*x+1/4*pi)-
5644425081792261/18014398509481984/pi^2*cos(8*pi*
x+1/4*pi)+3155329544198077/14073748835532800/pi^
2*cos(10*pi*x+1/4*pi)-
2304326890293041/13510798882111488/pi^2*cos(12*pi
*x+1/4*pi)+7466872530178867/55169095435288576/pi
^2*cos(14*pi*x+1/4*pi)-
3991211251234741/36028797018963968/pi^2*cos(16*pi
*x+1/4*pi)+1058329702836049/11399736556781568/pi
^2*cos(18*pi*x+1/4*pi)-
8924619670322873/112589990684262400/pi^2*cos(20*
pi*x+1/4*pi)+4680110038394005/68116944363978752/
pi^2*cos(22*pi*x+1/4*pi)-

1222053877647539/20266198323167232/pi^2*cos(24*pi
*x+1/4*pi)+5087816013229255/95138542128201728/pi
^2*cos(26*pi*x+1/4*pi)-
5279876200345031/110338190870577152/pi^2*cos(28*
pi*x+1/4*pi)+683148885646777/15832967439974400/p
i^2*cos(30*pi*x+1/4*pi)-
5644425081792261/144115188075855872/pi^2*cos(32*
pi*x+1/4*pi)+2909070101014387/81346268269379584/
pi^2*cos(34*pi*x+1/4*pi)-
374176054803257/11399736556781568/pi^2*cos(36*pi*
x+1/4*pi)+1537717407869923/50806233296273408/pi^
2*cos(38*pi*x+1/4*pi)-
3155329544198077/112589990684262400/pi^2*cos(40*
pi*x+1/4*pi).  

By ezplot(F1,[0,1]), we get the 0.5th derivative which 
is shown in figure 5.  

 

 
Fig. 5 (0.5th derivatives of )1( xx − ) 

In the same way, the 0.5th ,0.7th and 0.9th derivative are 
shown in figure 6.. 

 
Fig. 6 (0.5th ,0.7th and 0.9th  derivatives of )1( xx − ) 

 

B. . Taylor Series Method 
We now look at fractional derivative from another 

perspective. For integer derivative, we have  
1)( −=′ nn nxx , 2)1()( −−=′′ nn xnnx , 

and  
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The figure of 
)( 2

1

)(x is as below figure 7. 

 
Fig. 7 (0.5th derivatives of x ) 

From the above conclusion, we see that we can get the 
fractional derivative of a function through computing its 
fractional derivatives of its Taylor series.  

Example1 :  
By Taylor series method, we can get the derivative of 

xxf =)( , the figure of ]1,0[,)( ∈ααx is as below. 
 

 
Fig. 8 (α derivatives of x ) 

Example2 :  
 
For xxf sin)( =  
 
STEP1: Compute its Taylor series:  
syms x 
 f=sin(x)  

 taylor(f,x,10) 
ans =  
x-1/6*x^3+1/120*x^5-1/5040*x^7+1/362880*x^9 
 
STEP2: Compute its Taylor series fractional derivative: 
From the above conclusion, we have  
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By matlab code,  

f0.5=(1/gamma(3/2))*x^(1/2)-
(1/gamma(7/2))*x^(5/2)+(1/gamma(11/2))*x^(9/2)-
(1/gamma(15/2))*x^(13/2)+(1/gamma(19/2))*x^(17/2)-
(1/gamma(23/2))*x^(21/2), 
 

We have the 0.5th derivative of )sin(x  
f0.5 =  
 
5081767996463981/4503599627370496*x^(1/2)-

1355138132390395/4503599627370496*x^(5/2)+27532
96522951913/144115188075855872*x^(9/2)-
2464489195369545/4611686018427387904*x^(13/2)+1
237076929440399/147573952589676412928*x^(17/2)-
1587427037276903/18889465931478580854784*x^(21/
2). 

In the same way, we can also compute the 0.25th and  
0.9th derivative of )sin(x . 

By ezplot(f0.5, [0,pi]), we get the figure of the 0.5th 
derivative of )sin(x . 
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Fig. 9 (0.25th, 0.5th and 0.9th derivatives of )sin(x ) 

From the above figure, we can see the 0.9th derivative 
of sin(x) is quite close to )cos()(nsi xx =′ . 

C. . Grunwald-Letnikov Method: 
An efficient method to calculate fractional derivative is 

Grunwald-Letnikov method, e.g.  

)()1(1lim)(
]/)[(

0
jhtf

jh
tfD

hat

oj

j

hta −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

−

=
→

α
α

α  

We can get good approximation to fractional derivative 
if h  is sufficiently small. And it can be proved that the 
accuracy of this method is )(ho . The Matlab code is as 
below. 

function dy=gdiff(y,x,gam) 
h=x(2)-x(1);dy(1)=0;y=y(:);x=x(:); 
w=1; 
for j=2:length(x),w(j)=w(j-1)*(1-(gam+1)/(j-1)); 
end 
for i=2 :length(x),dy(i)=w(1:i)*[y(i:-1:1)]/h^gam; 
end 
By the Matlab code 
t=0:0.001:pi;y=sin(t);dy=gdiff(y,t,0.9);plot(t,dy) 
t=0:0.001:pi;y=sin(t);dy=gdiff(y,t,0.9);plot(t,dy); 
hold on; 
t=0:0.001:pi;y=sin(t);dy=gdiff(y,t,0.1);plot(t,dy); 
t=0:0.001:pi;y=sin(t);dy=gdiff(y,t,0.5);plot(t,dy); 
We get 0.1th, 0.5th and 0.9th derivative of )sin(x as 

below figure 10. 

 
Fig.10   (0.1th, 0.5th and 0.9th derivatives of )sin(x ) 

By the Matlab code 
t=0:0.001:5;y=exp(t);plot(t,y) 

 t=0:0.001:3;y=exp(t);plot(t,y) 
hold on; 
t=0:0.001:3;y=exp(t);dy=gdiff(y,t,0.3);plot(t,dy) 

 t=0:0.001:3;y=exp(t);dy=gdiff(y,t,0.5);plot(t,dy) 
 t=0:0.001:3;y=exp(t);dy=gdiff(y,t,0.7);plot(t,dy) 

We get the 0.3th, 0.5th and 0.7th derivative of 
xe which are shown in figure 11. And we can see 0.3th, 

0.5th and 0.7th derivative of xe is almost identical to 
xe which is a well known property in classic calculus. 

 
Fig. 11 (0.3th, 0.5th and 0.7th derivatives of xe ) 

In calculus, the exponent function ze satisfies the 
property zz ee =′)( . From the figure 11, we find that 

zz ee =)()( α still holds where α can be fractional 
numbers.. 

III.  CONCLUSION 

Fractional calculus is becoming an important tool in 
many academic fields. But it is not easy to numerically 
compute fractional integrals and fractional derivatives 
due to the lack of numerical methods. However, based on 
Fourier series and Taylor series theory and by using 
mathematical soft ware such as Matlab, we can efficiently 
compute fractional derivatives. From the numerical 
examples presented in this paper, we can see the more 
accuracy the Fourier series and Taylor series 
approximation is, the more fractional derivative we can 
get. 
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