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Abstract— Today, component-based software engineering
has been widely used in software construction to reduce
project cost and speed up software development cycle. Due
to software changes in new release or update of components,
regression testing is needed to assure system quality. When
changes made to a component, the component could be
affected, moreover, the changes could bring impacts on the
entire system. We firstly identify diverse changes made to
components and system based on models, then perform
change impact analysis, and finally refresh regression test
suite using a state-based testing practice. Related existing
research did not address the issue of systematic regression
testing of component-based software, especially at system
level. The paper also reports a case study based on a realistic
component-based software system using a, which shows that
the approach is feasible and effective.

Index Terms— component-based software regression testing;
re-test model; state-based testing; change and impact anal-
ysis; test suite refreshment

I. INTRODUCTION

A component-based software system is primarily con-
structed based on reusable components, such as third-
party and in-house built components. When a component
is updated or upgraded, it must be re-tested. This refers to
regression testing. According to [1], regression testing is
a major task of software maintenance and it accounts for
more than one-third of its total costs. For a component-
based software, Changes made to a component could
cause impact on the other parts of the component, other
components of the system, and the entire system behav-
iors. Thus, regression testing should be conducted from
component-level to system level. In addition, practical test
models should be taken into account. For instance, if a
state-based method has been chosen as a test model to
generate test cases for original system version, then we
should consider how to refresh test suites based on the
state-based test suite in the updated version.

Research in the past addressed some component-based
regression testing issues, such as UML-based [2], Mete-
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data and glue code-based [3]–[5], API-based [6]. How-
ever, they did not address the issue of mapping changes
and impacts into the affected test cases generated by spe-
cific testing. For example, if a component-based system
has some changes made to API and its original testing is
based on state. In this case, we need to analyze caused
impacts due to API changes and refresh test suites based
on state-based testing. The existing papers did not address
regression testing at different levels from component to
system. Nowadays, practitioners in the real world are
looking for systematic solutions to support component
and system regression testing and component evolution.
Our previous work [7] briefly discussed the regression
testing of component software using state testing practice,
which is an initial work for conference. In this paper, we
discuss the retest models, change impact analysis and test
refreshment in detail. This paper addresses those needs
above by providing a systematic approach to regression
testing of component-based software based on re-test
models, which are used to present the dependency rela-
tionships amongst components, assist engineers to define
re-test criteria and re-integration strategies, and facilitate
automatic test generation. This paper proposes several re-
test models according to diverse views of component test-
ing. In those models, the relationships between functions
or data at component level, between components at system
level are all taken into account.

Firewall is a well-known approach to change impact
analysis [8], [9] introduced by Leung and White. Changes
and affected parts are included in firewall, based on vari-
ous dependencies, such as module dependencies, control-
flow dependencies, etc. The firewall concept [8] is bor-
rowed and extended as a primary method for our change
impact analysis. This paper presents diverse firewalls
based on the re-test models at both component level
and system level. To identify the affected test cases,
the software change firewall should be mapped into the
corresponding test cases. Since the project of our case
study is a control driven system and tested using state-
based testing method, therefore, we regard a state chart
as a basic test model for our regression testing in this
paper. The related test suite refreshment is based on the
state chart. The process to perform regression testing of
component-based software from component to system is
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as follows:

¤ Change Impact analysis at component level, which
refers to component function firewall, component data
function firewall, and component API function firewall.

¤ Test suite refreshment at component level, which
refers to component state-based test cases reused,
changed, deleted and added.

¤ Change impact analysis at system level, which refers
to component interaction firewall.

¤ Test suite refreshment at system level, which refers
to system state-based test cases reused, changed, deleted
and added.

The major contributions of this paper are summarized
below:

(1) A systematic model-based solution to regression
testing of component-based software from component to
system level is presented, including change identification,
change impact analysis and test suite refreshment.

(2) Several new component firewalls are introduced for
software change impact analysis.

(3) A practical regression testing based on state-based
testing is performed in our case studies.

This paper is organized as follows. Section II introduces
a brief review of the related work in regression testing
of component-based software. In section III, the re-test
models are presented. Section IV analyzes the change
types and provides a systematic approach to component-
based software change impact analysis using firewall.
Section V discusses test suite refreshment. Section VI
reports the case study. Conclusion and future work are
summarized in the end.

II. RELATED WORK

In the past decades, a number of papers have been
published for regression testing issues for conventional
programs and object-oriented software. Those papers pri-
marily focus on three issues: regression test selection
techniques [10]–[14], regression testing cost-effectiveness
analysis [15], [16], and object-oriented re-integration [8],
[17]–[19].

A lot of published papers focused on the component-
based software testing issues [20]–[22]. Currently,
component-based software testing mainly focuses on
component testability, component test adequacy and
coverage, component-based software integration, perfor-
mance testing, and configuration testing. In addition,
some research focuses on component reuse [23] and
reconfiguration [24], [25]. In the past years, a few
papers addressed the regression testing problems existed
in component-based software [2]–[6], [26]. They can be
generally classified into the following three groups.

The first group focused on regression test selection
of component-based software. For example, Harrold et
al. proposed an approach to regression testing of COTS
components using component meta-data [26]. They uti-
lized three types of meta-data to perform the regression
test selection. However, the method needs additional

information from component which may be not avail-
able in practice. Similarly, Orso et al. also discussed
two techniques for regression testing of component-based
software [3]. The first is code-based and the second
is specification-based. Both techniques are based on the
provided component meta-data. To support the approach,
the additional information is needed, including the ver-
sion information, change data and coverage measurement
facilities. Zheng et al. proposed an integrated-black-
box approach for component change identification for
COTS(Commercial-off-the-shelf) software [4]. For the
third-party component, the internal software information
could be available from component specification, user
interface and reference manual. To support the approach,
binary code and document should be visible. They assume
that when components are changed and only binary code
and documentation are available, regression test selection
can safely be based upon the glue code that interfaces
with sections of the changed component. Robinson et
al. proposed a firewall method for regression testing of
user-configurable software. They constructed a firewall
to identify the impacted area in system based on setting
changes and configurable element changes respectively,
then created or selected test cases to cover the impacts
[27].

The second group focused on UML-based. For in-
stance, Wu et al. presented a UML technique for re-
gression testing of component-based software [2]. In
software maintenance activities, the technique adopted
UML diagrams, which represent changes to a component,
to support regression testing. Class diagrams, Collabo-
ration diagrams, and statechart diagrams are considered
to be as the re-test models. However, their state chart is
based on UML and re-test analysis is directly based on
statechart. In addition, regression testing of component-
based software at system level was not taken into account.

The third group focused on the systematic method
based on API models. Gao et al. focused on component
API-based changes and impacts, and proposed a system-
atic re-test method for software components based on
a component API-based test model [6], [20]. In addi-
tion, Mao et al. proposed an improved regression testing
method based on built-in test design for component-based
system [28].

The open questions and challenges of regression testing
of component-based software are primarily as follows.

-What are the re-test models, strategies for component-
based system due to component changes?

-How to identify change impact analysis from compo-
nent to system due to specific component changes?

-How to refresh test suite based on change impact
analysis? For example, how to refresh test cases from
specific testing method, such as state-based or decision
table-based testing?

This paper addresses those problems above. Unlike our
previous work that only focused on component change
analysis and impact at the component level [6], this paper
proposes a model-based approach for regression testing
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Figure 1. Component API model

according to a state-based testing practice. Moreover, this
paper introduces a systematic methodology for regression
testing of component-based software from component
level to system level, including component-based re-test
models, change impact analysis and test suite refresh-
ment.

III. COMPONENT-BASED SOFTWARE RE-TEST
MODELS

In component-based software, component and system
can be viewed from different perspectives for testing. For
instance, a component can have white-box view, black-
box view, API view or performance view. A system can
have integration view, configuration view, function view
or performance view. At component level, component
changes could be API or internal logic changes. If each
updated component is assumed to provide the component
internal information as its meta-data, from the white-box
view, the white-box re-test models such as data function
dependency graph and function dependency graph could
be adopted for component re-test [6]. Since components
are usually called through API functions, API models can
be borrowed for component re-test. From the black-box
view, the component could be tested using state-based
testing or decision table-based testing. Hence, the related
test models could be adopted for component testing. In
addition, from the performance view, the scenario-based
testing models can also be applied. At system level, the
relationship between components could be interaction.
Thus, related system-level models can be used for system
regression testing. For example, from the integration view,
component interaction graph can be used as interac-
tion models for system. From the function view, state-
based methods could also be adopted for system function
testing. As component system is usually configurable,
the composition and configuration models are needed to
support the system testing from the architecture view.
However, architecture is out the scope of this paper.

In this paper, we conduct regression testing of
component-based software from API view, interaction
view, and state-based view. Next, we will introduce the
associated re-test models in detail.

A. Component API Model
API model is the basic model in this paper. From the

perspective of API, component-based software could be
viewed as a specific black-box. For a given component,

Figure 2. A Sample Component Interaction Graph of Partial Elevator
                                                   System

the interface of the black-box component includes API
and port. API functions or data are the interface for
users to access. Port represents the calling relationship
between the component and the other components it calls.
Figure 1 shows a sample component API model. In ad-
dition, component API functions have preconditions and
postconditions, which can be obtained from component
specification.

B. Component-level Re-test Models
Existing white-box and black-box re-test models for

conventional programs could be used to support com-
ponent regression testing. At component-level, we pri-
marily utilize two re-test models proposed in [6]: func-
tion dependency graph (FDG) and data function depen-
dency graph (DFDG). FDG depicts function dependency
through function call inside the component, and DFDG
represents function dependency through data define-use
relation. We do not discuss those two models in detail
here.

C. System-level Re-test Model-Component Interaction
Graph

Wu et al. introduced a component interaction graph
to describe the interactions and dependency among com-
ponents, which is mainly call relation [29]. In this
paper, Component Interaction Graph (CIG) addresses
the relations such as message-communication and usage
for component-based software through API call. The
extended component interaction graph is defined below.

Definition 1 Component Interaction Graph (CIG) for software com-

ponents is a directed graph CIG = (N, E, R), where N is the set

of nodes representing the components, R = {MSG, USA} is the set

of interaction relation labels, and E = EMSG
⋃

EUSA is the set

of edges defined below. EUSA ⊆ N × N × R is the set of directed

edges representing the usage interaction relation between components.

EMSG ⊆ N × N × R is the set of directed edges representing the

message-based interaction relation between the components.

For instance, For any two components C1, C2 ∈ N ,
〈C1, C2,MSG〉 ∈ EMSG indicates that component C1

sends message to C2. A sample CIG is shown in Figure 2.
In the elevator system, userpanel uses userpanelQueue, so
there is a usage relation between them. Besides, car needs
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Figure 3. A Sample State Chart of Partial Elevator System

to communicate with userpanel to ensure the elevator
system work normally, thereby they have a message
communication relation.

D. State Chart Model at Component Level
State-based testing is a commonly used component test-

ing method. In this paper, regression testing is performed
based on a state-based model. At component level, state
chart represents the state-transition relations inside the
component, which is similar to the traditional state chart.
Here, component state chart can be defined below.

Definition 2 The Component State Chart (CSC) for component-based

software is a directed graph CSC = (NS , E, R), where NS is the set

of nodes representing component states. R = SS is the action from

state to state. E is the set of edges between nodes. E ⊆ NS ×NS ×R

is the set of directed edges representing the transition relation between

the component states.

E. State Chart Model at System Level
In component-based software, there exists interactions

between components as we defined above. Similarly, if we
model the system using a state chart, there might exist
communication relations between states or transitions.
Figure 3 presents a sample state chart of floor panel
component in a elevator system (The system is used as
our case study subject). This is a complex component,
which means there exists communication relation between
subcomponents. The solid line represents transition in-
side component and the dotted line represents transition
between subcomponents. For instance, when Up-button
(UB) is on, it will trigger the action setactivebuttoncolor
in Floor Panel UI. Hence, UB-on can be considered as a

Figure 4. A Sample Test Tree Model

communication state (CS), which could trigger a series of
actions to communicate with actions in other components,
and the trigged action can be called communication action
(CA).

Thus, we propose a state chart at system level, which
takes into account the transitions from communication
state to action. The system state chart is defined as
follows.

Definition 3 System State Chart (SSC) for component-based software
at system level is a directed graph SSC = (NS∪NCS∪NCA, E, R),
where NS is the set of nodes representing component states, NCS is
the set of nodes representing communication state, and NCA is the
set of nodes representing communication action. R represents the set
of actions. E is the set of edges representing transition relation. E =
ESS

⋃
ESA. ESS ⊆ NS × NS × R is the set of directed edges

representing the transition relation between the component states. For
NCS in component C1 and NCA in component C2, ESA ⊆ NCS ×
NCA is the set of directed edges representing a communication relation
between component C1 and C2.

F. Test Tree Model
To support the generation of state-based test cases, we

introduce a test tree model. A Test Tree (TT) is a kind
of traverse tree of the state chart. Breadth or depth first
algorithms can be adopted to generate test tree. For the
system state chart, the corresponding test tree can be
considered as a test tree forest. The test tree model can
be defined as follows:

Definition 4 TT can be defined as a 3-tuple G =
(NTT , ETT , RTT ), where
• NTT is the set of tree nodes, including all the state nodes in the

state chart. NTT = NS ∪NCS . S0, which is the start node of
state chart, becomes the root node of TT.

• ETT is the set of transition links between tree nodes. ETT =
ESS ∪ ESA

• RTT is the set of actions between states.
• For self-transition states, they are only traversed once in TT. For

instance, in Figure 5, state S1 and transition T11 in state chart
is transformed into S1 −→ T11 −→ S1 in test tree model.

Once the Test Tree is generated, we can obtain the test
sequence at different tree levels incrementally.

TT = {L1, L2, ..., Ln}
L1 =

⋃〈S0, NTT (1)〉
where NTT (1) is the tree nodes at level 1, which means

the distance between the current node and root node is
1 and L1 is the test case sequence set at level 1. For
example, in Figure 4, the test cases at level 1 can be
generated from following state-transition path:
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TABLE I.
COMPONENT CHANGE TYPE

Type Specific Changes
AID Add an internal data
AIF Add an internal function
AAF Add an API function
APF Add a Port function
DID Delete an internal data
DIF Delete an internal function
DAF Delete an API function
DPF Delete a Port function
CID Change an internal data
CIF Change an internal function
CAF Change an API function
CPF Change a Port function

S0 −→ T01 −→ S1
S0 −→ T02 −→ S2

Similarly,
L2 =

⋃〈S0, NTT (2)〉
where NTT (2) is the tree nodes at level 2 and L2 is

the test case sequence set at level 2.
...

Ln =
⋃〈S0, NTT (n)〉

where NTT (n) is the tree nodes at level n and Ln is
the test case sequence set at level n.

IV. CHANGE IMPACT ANALYSIS

Change impact analysis is an important stage of
component-based software regression testing. Some of
the existing research assumed that the test model change
information can be obtained from specification directly
[21], [29]. However, sometimes the test model change
information is not available. In this case, we need to
perform change impact analysis firstly and then match the
related change and impact information with the affected
parts in the updated test model, so as to identify the
affected test cases, and refresh the test suites.

Different change types might result in diverse impact.
We have summarized the common changes existed in
component-based software which is shown in Table I.
Then, we analyze various change impacts based on the
specific change types. To identify component change
impacts at both levels, some detailed algorithms and
methods are needed to support the solution. Change
impact analysis is based on the re-test models proposed
in Section III. We introduce several component change
firewalls, which include change firewall, add firewall and
delete firewall. In our approach, the basic procedure to
perform change impact analysis consists of the following
steps:

- Identify the impacts of a changed component function
or data on other component functions, then we choose the
affected APIs, and identify the component change impacts
on its API, and its precondition, action, and postcondition
at component level.

- Identify the component change impact on other com-
ponents and their APIs or ports based on component
interaction relation at system level.

Figure 5. A Sample Change Firewall at Component Level

A. Component Function Dependency Firewall

A small change of any component in a system could
cause ripple effects on other components and system
behaviors. In previous work, we proposed some firewalls,
such as component function firewall(CFFW) and com-
ponent data dependency firewall (CDFW)at component
level. Through the computation of CFFW and CDFW,
we can get the affected component functions based on
invocation dependencies and data define-use dependen-
cies [6]. Various change types correspond to different
impact. Now we try to present the change impact analysis
corresponding to the summarized change types in Table
1 using firewall. Based on the proposed retest models,
we compute the firewall using graph reach-ability theory,
i.e., the nodes which could reach the changed node are
identified through various relations in the models. Here,
the changed data is assumed as Di, and the changed
function is assumed as Fi. We have the following change
impact computation formulas.
• For adding a data (change type: AID)

CDFWadd[Di] = {Fj |(∃Fj)(∃Fk)((〈Fk, Fi, du〉 ∈ R′d −
Rd) ∧ (Fk ∈ F ) ∧ (〈Fj , Fk, du〉 ∈ R′d∗))}
Where R′d is the data define-use relation derived from DFDG’,
and R′d∗ represents the transition closure relation for R′d.

• For adding a function (change type: AIF, AAF, or APF)
CFFWadd[Fi] = {Fj |(∃Fj)(∃Fk)((〈Fk, Fi〉 ∈ E′ − E) ∧
(Fk ∈ F ) ∧ (〈Fj , Fk〉 ∈ R′f∗))}
Where R′f is the dependence relation for FDG’.

• For deleting a data (change type: DID)
CDFWdelete[Di] = {Fj |(∃Fj)(∃Fk)((〈Fk, Fi, du〉 ∈ Rd −
R′d) ∧ (Fk ∈ F ) ∧ (〈Fj , Fk, du〉 ∈ R′d∗))}

• For deleting a function (change type: DIF, DAF, or DPF)
CFFWdelete[Fi] = {Fj |(∃Fj)(∃Fk)((〈Fk, Fi〉 ∈ E −E′) ∧
(Fk ∈ F ) ∧ (〈Fj , Fk〉 ∈ R′f∗))}
Where R′f is the dependence relation for FDG’.

• For changing a data (change type: CID)
CDFWchange(Di) = {Fi|(〈Fi, Dj〉 ∈ Rdef ) ∧ (〈Fj , Dj〉 ∈
Ruse) ∧ (〈Fj , Fi, du〉 ∈ R∗dr)}
Where R∗dr is the transition closure of Rdr , which is the
binary relation that define the data define-use relation between
the residual component functions. Rdr can be defined as:
Rdr = Rd ∩ (F × F × {du}) ∩ (F ′ × F ′ × {du})

• For changing a function (change type: CIF, CAF, or CPF)
CFFWchange(Fi) = {Fj |(Fj , Fi ∈ F ) ∧ (〈Fj , Fi〉 ∈
R∗fr)}
Where R∗fr is the transition closure of Rfr , which is the
binary relation that define the dependencies between the residual
component functions. Rfr can be defined as:
Rfr = Rf ∩ (F ×F ×{du})∩ (F ′ ×F ′ ×{du}), where x is
the Cartesian product operation.
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Figure 6. A Sample Component Interaction Graph Firewall in the
                                              Elevator System

Regarding API function firewall, our previous work
already discussed it [6]. The definition is as follows.

CAWAPI(C) = {Fi|∀Fi((Fi ∈ F ′API − FAPI) ∧ ((Fi ∈
CFFW (C)) ∨ (Fi ∈ CDFW (C))))}

Where CAWAPI(C) includes all API functions which
may be affected by component function changes, deletions
and additions, as well as alters in the data-define-use
relations between them.

Figure 5 shows a sample change firewall in component
function data dependence graph (FDG) at component
level. Assuming F1 is changed, according to the change
firewall computation, the affected function and data in
the firewall is marked red in the graph. In API change
firewall, only the affected API functions are kept. Thus,
API function firewall CAWAPI(C) incorporate F4 and
F6 (assuming they are API functions).

From the component specification, we can obtain com-
ponent APIs and their preconditions and postconditions.
Now we extend CAWAPI(C) by adding the precondi-
tion, postcondition, and action. Here, action corresponds
to API function. precondition and postcondition change
information can be obtained from the component re-
quirement. The new firewall is called ECAW(extended
component API function firewall). Thus, the new firewall
set can be represented as below.

ECAW (C) = {〈preci, postcj , actionk〉|(preci is changed,
added or deleted) ∨(postcj is changed, added or deleted) ∨(actionk ∈
CAWAPI(C))}

Where preci, postcj , actionk denote
precondition, postcondition and action respectively.
〈preci, postcj , actionk〉 stands for a vector set, which
include the affected preconditions, postconditions and
actions.

As we mentioned before, the precondition, postcondi-
tion, and action of API can be transformed into transitions
and states in state chart directly. Thus, we can easily
match the change firewall with the affected state-based
test cases, which will be discussed later.

B. Component Interaction Graph Firewall
A component function or data change not only affects

itself, but also brings impacts on functions or data in
other components. Thereby we need to analyze the change
impacts based on interaction relation at system level.

Algorithm 1 Component Interaction Graph Firewall
Declare:
CIG: component interaction graph;
CIG′: modified component interaction graph;
Ci.Fi: changed function Fi in component Ci;
CIGFAP I(Ci.Fi, CIG, CIG′): component interaction graph firewall

CIGFAP I(Ci.Fi, CIG, CIG′)
{
switch (change type)

case ’Add functions’:
CFFWadd[Ci.Fi];
CDFWadd[Ci.Fi];
CFFWadd[Ci.Fi] ∪ CDFWadd[Ci.Fi]; //compute affected

functions inside component Ci

C.F = ECAW [Ci.Fi]; //compute affected API functions
break;

case ’delete functions’:
CFFWdelete[Ci.Fi];
CDFWdelete[Ci.Fi];
CFFWdelete[Ci.Fi] ∪ CDFWdelete[Ci.Fi];
C.F = ECAW [Ci.Fi];
break;

case ’change functions’:
CFFWchange[Ci.Fi];
CDFWchange[Ci.Fi];
CFFWchange[Ci.Fi] ∪ CDFWchange[Ci.Fi];
C.F = ECAW [Ci.Fi];
break;

Mark each function in C.F visited;
put C.F in CIGFAP I ;
Cj = CIG[Ci].rlink; // 〈Cj , Ci〉 ∈ RCIG

While ( Ci.fi in C.F ) do // compute affected functions in other
components
{ // based on interaction relation
if (Cj .Fj , Ci.fi) ∈ P (Cj) ∧ Cj .Fjnot visited
then
CIGFAP I(Cj .Fj , CIG, CIG′)
}
}

Here, Component Interaction Graph Firewall (CIGF)
refers to a set of component APIs which may be affected
by changing, adding and deleting components or func-
tions based on interaction dependencies. The Component
Interaction Graph Firewall can be computed based on the
given Component Interaction Graph. From the API view,
CIGF can be utilized to include the affected API functions
inside the firewall through interaction and invocation
dependency. The Component Interaction Graph Firewall
algorithm is shown in Algorithm 1. In the algorithm,
for each change type, the API firewall inside compo-
nent is computed firstly, then API function interaction
between different components are considered. Finally, the
affected API functions due to changes are incorporated
in Component Interaction Graph Firewall. In the case
of the change types in Table II, the firewall could be
computed by Algorithm 1. A sample CIGF is shown in
Figure 6, where floorpanel component is changed, and
the affected components via interaction dependencies are
marked highlighted with red color.

V. TEST SUITE REFRESHMENT

The final step of regression testing is to refresh the
existing test cases, which includes selecting reusable test
cases, changing test cases, deleting out-of-date test cases,
and adding new test cases.

As we mentioned above, state-based testing is the major
method to generate test cases in our approach. Now we
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need to analyze how to map the change impact firewall
into affected test cases in the given test suite. In general,
a state chart consists of a series of states and transitions,
where transitions can be deemed component functions
and state can be represented by preconditions and post-
conditions. That indicates component API function and
its conditions associate with the state and its transitions.
Therefore, we can identify the affected transitions from
API function related firewall, and identify the affected
states from preconditions and postconditions of API func-
tion. Finally, we can refresh test suite according to the
updated state chart and its test tree.

The procedure to perform test suite refreshment can
be divided into two steps: 1) identify the change impacts
on component state-based test cases and refresh test suite
at component level; 2) identify the change impacts on
system state-based test cases and refresh test suite at
system level.

A. Test Suite Refreshment at Component Level

Let’s assume a state-based test cases CTSi is generated
based on the test tree which is defined in section III, and
executes a state-transition path Pi of test tree. Through
the computation of firewall ECAW , the affected actions,
precondition, and postcondition can be identified (Section
IV). Then, we can get the affected states and transitions in
corresponding state chart. According to the affected test
tree, we can obtain affected test cases. Assuming TT is the
original test tree and TT’ is the modified test tree, and Pi

is the original state-transition path and P ′i is the modified
state-transition path for updated component version, we
have the following analysis of test refreshment.

(1) A reusable state-based test cases CTSreuse can be
identified as follows: For any CTSi in CTS, it is reusable
when all of the following conditions hold:
• There exits Pi and P ′i in TT and TT’ respectively.
• All nodes and links of Pi and P ′i are the same, and any node and

link of P ′i doesn’t belong to any add, delete, and change firwall.

According to the analysis above, we can get the state-
based test cases refreshment formally. For any test case
CTSi in state test tree (NTT , ETT , RTT ), it belongs to
reused component test suite set CTSreuse, if it satisfies
the formula as follows:

CTSreuse = {CTSi|(∀(NTT ∈ (Pi∩P ′i ))(NTT /∈ ECAW ))∧
(∀(ETT ∈ (Pi ∩ P ′i ))(ETT /∈ ECAW ))}

Where ECAW includes add, delete and change firewall.
The explanation to the formula is that for a given state-
transition path existed in both original and updated test
tree model, if each node or edge in the path is not affected,
i.e., not included in firewall, then the corresponding test
cases could be reused.

(2) An out-of-date state-based test case CTSdelete

could be identified as follows:
For any CTSi in CTS, it should be deleted when any

of the following conditions hold:
• Any single node in Pi is deleted from TT and does not exist in

TT’.
• Any single link in Pi is deleted from TT and does not exist in

TT’.

Figure 7. A Sample Updated State Chart and the Corresponding Test
                                                         Tree

Thus the set for deleted component test cases can be
formally computed below.

CTSdelete = {CTSi|(∃(NTT ∈ Pi)(NTT ∈ (TT − TT ′))) ∨
(∃(ETT ∈ Pi)(ETT ∈ (TT − TT ′)))}

(3) A updated state-based test case CTSchange can be
identified as follows:

For any CTSi in CTS, it should be revisited and
updated when all of the following conditions hold:
• Pi exists in both TT and TT’.
• There is at least one node or one link in Pi has been changed or

affected (in the change firewall).

Thereby the set for changed component test cases can
be formally identified below.

CTSchange = {CTSi|(∃(NTT ∈ (Pi ∩ P ′i ))(NTT ∈
ECAW )) ∧ (∃(ETT ∈ (Pi ∩ P ′i ))(ETT ∈ ECAW ))}

(4) A new state-based test case CTSnew for the up-
dated component could be generated to cover any new
path in TT’. The set for new component test cases can be
formally computed below.

CTSnew = {CTSi|(∃(NTT ∈ Pi)(NTT ∈ (TT ′ − TT ))) ∨
(∃(ETT ∈ Pi)(ETT ∈ (TT ′ − TT )))}

For instance, in Figure 7(a), there exists some changes
made to the state chart which are caused by component or
system changes and impacts. Here we have three changes
in the state chart as follows: (a) state S1’ is updated; (b)
transition T11’ is updated; (c) T34 is a added transition.
According to the test tree model, the corresponding test
tree for the updated state chart is shown in Figure 7(b).
Therefore, the test suite refreshment could be summarized
below:

Level 1:
S0− > T01− > S1(updated)
S0− > T02 > S2(reusable)

Level 2:
S0− > T01− > S1− > T11− > S1(updated)
S0− > T01− > S1− > T12− > S2(updated)
S0− > T01− > S1− > T13− > S3(updated)
......
S0− > T02− > S2− > T24− > S4(reusable)

B. Test Suite Refreshment at System Level
System state chart depicts the states and the transitions

of complex component or the whole system. Similar to
state-based test case firewall at component level, the state
can be represented by preconditions and postconditions
and transitions can be deemed system functions. Through
the computation of CIGFAPI , we can get the API
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function firewall at system level. Then, the affected pre-
conditions, postconditions and actions could be mapped
into the corresponding states and transitions. Hence,
we can obtain the test suite refreshment with added,
changed, deleted, and reused test cases. Here, STSreuse,
STSdelete, STSchange, STSnew represents the set for
identified reused, deleted, changed, and new system test
cases respectively. Assuming TT is the original test tree
and TT’ is the modified test tree, and Pi is the original
state-transition path and P ′i is the modified state-transition
path for updated component version, for any test case
STSi in state test tree (NTT , ETT , RTT ), the formulas
are given below.

STSreuse = {STSi|(∀(NTT ∈ (Pi ∩ P ′i ))(NTT /∈
CIGFAPI)) ∧ (∀(ETT ∈ (Pi ∩ P ′i ))(ETT /∈ CIGFAPI))}

Where STSreuse represents the reused state-based test
cases at system level. CIGFAPI is the API firewall
calculated via Algorithm 1.

Similarly, we have the computation formulas for
deleted, changed, and new test suite below.

STSdelete = {STSi|(∃(NTT ∈ Pi)(NTT ∈ (TT − TT ′))) ∨
(∃(ETT ∈ Pi)(ETT ∈ (TT − TT ′)))}

STSchange = {STSi|(∃(NTT ∈ (Pi ∩ P ′i ))(NTT ∈
CIGFAPI)) ∧ (∃(ETT ∈ (Pi ∩ P ′i ))(ETT ∈ CIGFAPI))}

STSnew = {STSi|(∃(NTT ∈ Pi)(NTT ∈ (TT ′ − TT ))) ∨
(∃(ETT ∈ Pi)(ETT ∈ (TT ′ − TT )))}

VI. EMPIRICAL STUDY

To better understand our approach, we have performed
a case study by applying the systematic regression test-
ing from component level to system level onto a real
component-based elevator simulation system. The subject
of the case study is a component-based configurable
elevator simulation system developed by our students.
The system (version 1) is well developed according to
the component design principles. The elevator system
consists of several components, which are car, user panel,
door, door panel, userpanel queue, car controller, floor
panel and metacontroller. The system is well designed
with adequate component test cases and system test cases
based on state testing. The students are trained to utilize
the proposed approach in this paper. They performed
change identification, impact analysis, and retesting using
the proposed regression testing approach. The corre-
sponding re-test models are created manually, based on
dependency information. Then, the fiewalls such as CIGF
are computed using the proposed firewall formulas and
algorithms. Finally, according to the proposed test case
update rules, the firewalls are mapped into affected test
cases to determine the added test cases, reused test cases,
deleted test cases, and changed test cases.

A. Study Objectives
The case study focuses on the following items: (a)

perform a systematic regression testing of the new com-
ponent system version using the proposed approach, to
verify the feasibility of the approach; (b) check the
effectiveness of the proposed approach; (c) discover bugs
after regression testing.

TABLE II.
THE SUMMARIZED ELEVATOR SYSTEM

Component No. of No. of Size (Loc) No. of
Name Classes Functions Source Code Files

AdminConsole 7 32 912 4
Algorithm 6 7 190 6

Car 12 86 579 11
CarController 4 8 111 4

Door 9 35 309 7
DoorPanel 7 36 224 8
FloorPanel 7 28 376 7

FloorPanelQueue 5 16 197 4
MetaController 5 13 970 5

UserPanel 11 61 647 11
UserPanelQueue 8 26 238 8

B. Study Subject
The study subject is a component-based elevator simu-

lation system. The system consists of several components,
which are car, user panel, door, door panel, userpanel
queue, car controller, floor panel and metacontroller.
The summary of the component-based elevator system is
presented in Table II.We have used two software testing
classes and two master project teams in San Jose State
University (SJSU) to perform the related experiments.
The test cases are state-based. In the new version, we
have made some changes such as adding a component
’Indicator’ in the component ’Car’ to show the current
floor where the car locates, adding a component ’In-
dicator’ in the component ’Floor Panel’ to show the
current floor where the car locates, adding another kind
of elevator algorithm to current system, such as FCFS
and SCAN. In the new version, we conducted regression
testing from component level to system level using the
proposed approach. The user interface for the original
elevator system is shown in Figure 8. The user interface
for one version of modified elevator system with adding
indicator is shown in Figure 9.

Figure 8. The User Interface for the Original Elevator System

C. Study description
The students are trained to utilize the proposed ap-

proach in this paper. They performed change identi-
fication, impact analysis, and retesting using the pro-
posed regression testing approach. The corresponding re-
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Figure 9. The User Interface for one version of Changed Elevator
                                                        System

test models are created manually, based on dependency
information. Then, the firewalls such as CIGF, ECTF
are computed using the proposed firewall formulas and
algorithms. Finally, according to the proposed test case
update rules, the firewalls are mapped into affected test
cases to determine the added test cases, reused test cases,
deleted test cases, and changed test cases.

D. Study result report and discussion
We chose two project groups to report the study results.
Table III presents the recorded change information

at both component level and system level from those
two groups. According to summarized change types, the
number of associated changes including internal data
and function, interactions such as message and port, and
architectures such as composition and configuration are
listed in the table. At component level, Group 1 added 21
internal functions 10 internal data, and Group 2 added 12
internal functions and 5 data respectively. Here, adding
is the major changes, since our change requirement is
adding features. Regarding interaction changes, Group 1
added 8 APIs and 14 messages, and Group 2 added 7
APIs, changed 4 APIs and added 1 port. At architecture
system level, Group 1 added 4 compositions and 3 config-
urations, which Group 2 only added 1 composition and
1 configuration. In summary, the changes involve both
component level and system level, and Group 1 made
more changes than Group 2.

Table IV shows the impact information at component
level and systemlevel. The impact type represents the
affected component elements and relationships which are
computed via firewall analysis. Here we list the number
of affected impact types for component, interaction, and
architecture respectively. In general, those two groups
have the similar impacts. They both have 11 affected
internal data and functions and 1 affected configuration.
In addition, they have 4 and 5 affected APIs, 3 and 4
affected messages, 1 and 2 affected compositions respec-
tively. However, Group 1 has 4 affected ports, which are
not reported by Group 2. Table V records the affected

preconditions, actions, and postconditions of API, i.e., the
update information of the new state chart and test tree for
the elevator system Version 2. Note that add represents
the new conditions or actions are added, delete represents
the obsolete conditions or actions are deleted, and change
represents affected conditions or actions which are col-
lected through firewall computation.

Figure 10 and Figure 11 show the results of test case
update from Group 1 and Group 2 respectively. The
two subgraphs represent the component and system test
case update information respectively. The horizontal axis
represents added, reused, deleted and changed test cases
respectively, and the height of the bar depicts the number
of those test cases.

From the figure, we find some of the original test cases
could be reusable and some could be deleted. In addition,
new test cases need to be created for the new version
system to achieve adequate testing. For instance, in Figure
10, from the result of Group 1, 45 component test cases
and 37 system test cases are newly created. In Figure 11
from Group 2, 21 component test cases and 29 system
test cases are newly created. We also find most of the
test cases are reusable. In Group 1, 92 component test
cases and 105 system test cases are reusable. In Group 2,
117 component test cases and 130 system test cases are
reusable. The explanation is that most of the components
in the system are reused in the new version. In addition,
Several test cases are changed and deleted after regression
testing due to the program changes.

To investigate the effectiveness of our approach, we
need a comparison criterion. In traditional regression test
selection, there exists some criteria such as precision,
inclusiveness, execution time, and number of test cases
[30], [31]. Since our approach firstly proposes the strategy
for regression testing of component-based software from
component to system in existing work, we adopt number
of test cases to compare with re-test all strategy, which
selects all the original test cases. Here, we utilize the
percentage of selected test cases out of the total original
test cases to indicate the effectiveness of the approach.
Table VI shows the percentage of selected test cases
by our approach and related bug report. Group 1 and
Group 2 selected 64.3% and 81.8% of the component
test cases, and 61.8% and 76.5% of the system test cases
respectively. That indicates they both obtain significant
test cases reduction compared to re-test all strategy, which
selected 100% of the original test cases. Additionally,
we have the bug reports from Group 1 and Group 2
respectively. For instance, 9 bugs at component level are
reported by both Group 1 and Group 2, and 11 and 13
bugs at system level are reported by them respectively.
Moreover, all of these reported bugs are actual bugs,
therefore, our approach is effective to reduce redundant
test cases and detect bugs in practice.

From the result of case study, we can see the proposed
approach can obtain added, reused, deleted, and changed
test cases at both levels. In addition, we also have bug
reports. Hence, our approach is feasible and effective
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TABLE III.
COMPONENT AND SYSTEM CHANGE RECORD

Change Change Group 1 Group 2
Level Type Add Delete Change Add Delete Change

Internal 21 1 4 12 - 3
Component Data

Level Internal 10 - 4 5 - 1
Function

System Level
API 8 - - 7 - 4

Interaction
Message 14 - - - - -

Port - - - 1 - -

TABLE IV.
COMPONENT AND SYSTEM IMPACT RECORD

Impact Level Impact Type Group 1 Group 2

Component Level Affected Internal Data 8 3
Affected Internal Function 3 8

System Level Interaction
Affected API 4 5

Affected Message 3 4
Affected Port 4 -

TABLE V.
COMPONENT AND SYSTEM CONDITIONS AND ACTIONS UPDATE RECORD

Update Update Group 1 Group 2
Level Factor Add Delete Change Add Delete Change

Component Level
Precondition 16 4 6 7 3 5

Action 21 13 5 9 8 7
Postcondition 8 18 9 4 6 4

System Level
Precondition 12 8 5 10 5 3

Action 15 19 16 14 12 8
Postcondition 13 11 9 6 5 8

Figure 10. The Result of Test Suite Refreshment from Group 1

TABLE VI.
REGRESSION TESTING RESULT METRICS AND BUG REPORT

Metrics Group 1 Group 2
Selected Component Test cases 64.3% 81.8%

Selected System Test cases 61.8% 76.5%
Reported Bugs at Component Level 9 9

Actual Bugs at Component Level 9 9
Reported Bugs at System Level 11 13

Actual Bugs at System Level 11 13

when applied to real component-based software system.

E. Threats to validation
There are several potential threats to the empirical

study. Firewall-based approach can not guarantee all the
impacts for regression testing are included in the firewall,
which means there might exist change impacts or program
faults introduced by changes outside the firewall. In
addition, we did not consider the GUI change and impact,
external environment software and hardware changes. The

test cases are function-based, especially at system level,
thereby some program faults or bugs probably cannot
be revealed. The component-based system in the case
study is built for academic use, hence, the size of the
system is relatively not large enough in complex industrial
environment. Although the students are trained to conduct
the related experiments, there might still exist mistakes in
the empirical studies.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a systematic regression testing
technique for component-based software from component
level to system level. We proposed several re-test mod-
els to support regression testing. The diverse types of
changes are considered, and for change impact analysis,
the firewall concept is borrowed and extended to analyze
affected program parts according to the proposed re-test
models. State-based testing is used as a practical testing
method. The change types are mapped to impact analysis,
and then the affected parts are mapped to the affected test
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Figure 11. The Result of Test Suite Refreshment from Group 2

cases which are state-based. We performed case studies on
a realistic component-based software system. The study
results show that our approach is feasible and effective.

The future extension of this research is to study how
to use the approach to address automation regression test
issues and develop automatic component-based regression
testing tools. In addition, we will apply the approach into
different component testing methods and models, such as
decision table-based testing and scenario-based testing.
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