
 
(a) the original image 

(b) the final result by cryptography (c) the final result by data 
hiding technologies 

Figure 1. The differences of final results between cryptography and 
             data hiding technology based on images. 
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Abstract—In this paper, a reversible data hiding scheme 
based on a Vector Quantization (VQ) index table is 
proposed. To satisfy different needs of users, our proposed 
scheme is designed with flexibility in adjusting hiding 
capacity and compression rate. First, the codebook is 
rearranged referring to the index occurrence frequency in 
the VQ index table. After that, the codewords in the newly 
generated codebook are clustered into a number of groups 
for the usage of embedding secret digits in our proposed 
scheme. Note that, the decision of group numbers 
determines the capability of hiding capacity and 
compression rate of a to-be-embed image in our proposed 
scheme. Based on the well-defined embedding strategies, the 
experimental results show that the performance of our 
proposed scheme outperforms the scheme proposed by 
Yang and Lin in 2009.  
 
Index Terms—vector quantization, reversible, bit rate, 
hiding capacity, data hiding 
 

I.  INTRODUCTION 

With the rapid improvement of computer and 
networking technologies, it becomes more and more 
popular that people exchange information (including 
digital images) with each other via the Internet. The 
convenient communication ways are accompanied by 
problems of information security and the usage of 
networking bandwidth. Several researches in 
cryptography have been proposed, such as AES [15], 
DES [16] and RSA [17], for minimizing the information 
security problem caused by the public properties of the 
Internet. Research in cryptography guarantees the privacy 
of the transmitted data by transforming the transmitted 
data from plaintext (meaningful) to ciphertext 
(meaningless) with keys. That is, the original ciphertext is 
hard to be decrypted without the appropriate keys. In this 
way, the transmitted data can be transmitted more 
securely via the Internet. However, the meaningless 
ciphertext is singular, and it is easy to attract attention of 
malicious attackers. Hence, several data hiding schemes 
have been proposed to overcome the singular problems, 
such as secret sharing (meaningful shares) [1] [6], 
steganographic technology [5] [13] [19], and reversible 

data hiding technologies [4] [8]. Researches mentioned 
above aim to embed secret message into cover images, 
and makes the secert message embedded images (stego 
images) indistinguishable from the original cover images. 
Therefore, the stego images are hard to gain attention by 
potential attackers. The differences of the secret 
embedded results between the cryptography and data 
hiding technology based on images are shown in Fig. 1. 

The usage of networking bandwidth is also a serious 
problem due to the huge transmission of high quality 
images. To solve these problems, many data compression 
schemes are proposed, and they can be classified into 
lossless schemes [11] and lossy schemes [14]. Among 
these compression schemes for digital images, the vector 
quantization (VQ) compression scheme, which was first 
proposed by Gray in 1984 [7], is an efficient compression 
scheme that has a high bit rate and satisfactory image 
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Figure 3. The example of VQ decoder. 

Figure 2. The example of VQ encoder. 

quality. Based on the advances of VQ, many researchers 
aim to apply lossless data hiding schemes on VQ images 
[2] [18] [20]. In this way, the users can get a compact 
secret embedded result with the ability to recover the 
original cover images.   

In this paper, in terms of cryptography and image 
compression concepts, we propose a reversible data 
hiding scheme that has high hiding capacity and a 
satisfactory compression rate based on VQ images. In 
addition, the original VQ images can be losslessly 
recovered while the secret information is completely 
extracted. The remainder of this paper is organized as 
follows. In Section 2, the VQ compression technology is 
reviewed, and, in Section 3, the proposed scheme is 
illustrated. In Section 4, the experimental results, which 
show the effectiveness of our proposed scheme, are 
presented. Finally, our conclusions are presented in 
Section 5. 

II.  RELATED WORKS 

In this section, the VQ compression technology is 
briefly reviewed. VQ was first proposed by Gray in 1984 
[7]. The concept of VQ is that it uses an index number to 
represent a set of non-overlapping pixels to compress the 
original image. The details are described as follows. 
Before the compressing, a codebook is needed, and it can 
be generated by various codebook generation algorithms. 
Among these algorithms, the LBG algorithm, which was 
proposed by Linde, Buzo, and Gray in 1980 [12], is one 
of the most frequently used algorithms, and it is 
illustrated as follows. To generate a codebook sized c 
using the LBG algorithm, a set of representative images 
is selected and divided into non-overlapping blocks, 
called block set B, in which each block is sized nm× . For 
training a codebook sized c, a set of blocks 

}1..., ,1 ,0|1{1 −== cipP i is randomly selected from block 
set B, and P1 is treated as the initial centroid point set for 
grouping B into c clusters to form the cluster set 

}1 ..., ,1 ,0|1{1 −== cicC i . For cluster set C1, a new 
centroid point set }1..., ,1 ,0|2{2 −== cipP i  is generated 
by finding the centroid point v2i from c1i. Subsequently, 
P2 is used for grouping B into a new cluster set 

}1 ..., ,1 ,0|2{2 −== cicC i . The finding centroid point set 
and grouping new cluster set processes take turns until 
the centroid point set }1..., ,1 ,0|{ −== cipkPk i  is stable 
compared with the previous one. Then, a codebook sized 
c, in which each codeword is an nm× -dimensional vector, 
is generated. After that, the generated codebook Pk is 
used for helping the VQ compression processes described 
as follows. To compress an image I sized NM × , the to-
be-compressed image is first divided into )/( nmNM ××  
non-overlapping blocks, where nm×  is the size of each 
block. Every nm×  pixels in a block can be treated as a 

nm× -dimensional vector and replaced with a one-
dimensional vector (index number) by searching for the 
closest codeword in the codebook Pk. The efficiency of 
VQ can be measured by bit rate, which has the units of 

bits per pixel, as defined in Equation 1. Here, 
⎡ ⎤ .

 
log

_ 2

nm
c

ratebit
×

=  

 .
 (pixels) size image The

(bits) Coden Compressio_ =ratebit . (1) 

For instance, to compress an image size 1212×  with a 
codebook sized 256, where each codeword in the 
codebook is a sixteen-dimensional vector, first, the to-be-
compressed image is divided into )44/()1212( ××  non-
overlapping blocks, in which each block is sized 44× . 
For every sixteen pixels in a block, the sixteen values are 
replaced with an index number where the codeword it 
refers to is closest to these sixteen pixels compared with 
the other codewords in the codebook. The example of a 
VQ encoder is shown in Fig. 2. After all the blocks are 
replaced with index numbers, the process of the VQ 
encoder is completed, and the compressed result is called 
the VQ index table. To decompress a VQ index table into 
a VQ image, the index value in the VQ index table is 
replaced with the sixteen-dimensional vector (codeword) 
according to the codebook and arranges the sixteen-
dimensional vector into a 44×  block. In this way, each 
index value is expanded by sixteen values. After all index 
values are expanded, the VQ index table can be 
decompressed to obtain the VQ image. The example of 
VQ decoder is shown in Fig. 3. 

III.  THE PROPOSED SCHEME  

548 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER



Figure 4. The index mapping table. 

0 1

65 255
 

255 250

(63)10||(10)2 (0)10||(00)2

 

(a) the original index table (b) the final index table with 
secret digits embedded 

Figure 5. The embedding processes of Example 1. 

In the proposed scheme, the secret information is 
encoded with the VQ index table according to the 
frequency of occurrence of the index values. At the 
receiving end, the secret information can be extracted 
exactly, and the original VQ image can also be reversed. 
The proposed scheme includes two procedures, i.e., the 
embedding procedure and the extracting and recovering 
procedure, and they are illustrated in Subsections 3.1 and 
3.2, respectively. 

A.  Embedding Procedure 
To embed secret information into a VQ index table, 

first, the corresponding codebook is rearranged from high 
to low according to the index occurrence frequency in the 
to-be-embedded VQ index table. After the rearranged 
codebook }1  to0 | { −== cirR i  sized c has been generated, 
it is clustered sequentially into G groups. Note that c must 
be multiples of G. Afterwards, the secret information is 
transformed into base-(G-1) equivalence (uses the digits 0 
to G-2) for further processing. To embed the base-(G-1) 
equivalence secret information into the VQ index table, it 
has to reference an index mapping table that is created as 
follows. For each index rj in the first group, where 

1  to0 −=
G
cj , it is mapped with an un-embeddable index 

SGjcr −×−− )()1(  with the base-(G-1) secret digit S, where S = 0 to 
G-1, as shown in Figure 4. That is, to embed secret 
information into embeddable indices (in the first group), 
the embeddable indices are replaced with the un-
embeddable index values according to the index mapping 
table. On the other hand, if an un-embeddable index 
occurs in the VQ index table, it would be replaced with 
an embeddable index by checking the index mapping 
table with some indicator bits appended at the end of it 
for recovery purposes. The indicator bits for each un-
embeddable index are generated by transforming the 
corresponding base-G secret digits into ⎡ ⎤G2log  bits 
binary representation. 

Example 1: In the rearranged codebook  
}255  to0 | { == irR i , c = 256, G = 4, assume that the base-

4 secret digits are (0, 2) and that the original index values 
are (0, 1, 65, 255). First, the codebook is clustered into 
four groups, and the indices in the first group are r0, r1, …, 
r63. For the first original index 0 to embed the 
corresponding secret digit 0, according to the embedding 
rules discussed above, the un-embeddable index 255 is 
used to replace index 0 for embedding. For the second 
original index 1, since the corresponding to-be-embedded 
secret digit is 2, it is replaced with the un-embeddable 
index 250. For the third original index 65, since it is an 
un-embeddable index (out of the first group), it is 
replaced with the embeddable index 63 with two ( ⎡ ⎤4log 2 ) 
binary bits 1 and 0 appended to the end of it. For the final 
original index 255, since it also belongs to un-
embeddable index, it is replaced with the embeddable 
index 0 with two binary bits 0 and 0 appended to the end 
of it. The embedding process of Example 1 is shown in 
Fig. 5. 
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(a) Jet (b) Pepper 

(c) Lena (d) Zelda 

(e) GoldHill (f) Toys 

Figure 6. Test images. 

B. Extracting and Recovering Procedure 
At the receiving end, the user only has to know the 

parameter of G; then, he/she can extract the embedded 
secret digits, and the original VQ index table can also be 
reversed as described below. The final codestream that 
the receiver gets is decoded by every ⎡ ⎤c2log  bits first, 
where c is the size of the codebook. Similar to the 
embedding procedure, the codebook is divided into G 
groups, and the decoding processes fall into two cases: 

Case 1: the index value V transformed from the 
⎡ ⎤c2log  bits falls into the first group  

Case 2: the index value V transformed from the 
⎡ ⎤c2log  bits is out of the first group 

In Case 1, the original index can be reversed by 
replacing the decoded index with the corresponding un-
embeddable index according to the index mapping 
described as follows. The following ⎡ ⎤G2log  bits of V are 
decoded as the indicators. After transforming ⎡ ⎤G2log  
bits into base-G digits, the recovered index can be 
mapped by treating these transformed results as to-be-
embedded secret digits in the index table, which is shown 
in Fig. 4. Note that the index mapping table can be 
created by the receiver since he/she knows parameters G 
and c. In Case 2, the decoded index value can be reversed 
into the original index value by substituting the 
corresponding embeddable index value, and the base-G 
secret digits can be extracted concurrently according to 
the index mapping table. 

Example 2: As in Example 1, assume that the final 
embedded result is shown as Fig. 5(b), G = 4, c = 256, 
and the index mapping table is shown as Fig. 4. Since the 
first eight bits extracted from the final codestream whose 
decimal value equals 255, which is an un-embeddable 
index value, this means that it is transformed from an 
embeddable index value with secret digits embedded. 
Therefore, the decoding procedure falls into Case 2, so 
the original index value 0 is reversed, and the base-4 
secret digit 0 is extracted by mapping Fig. 4. For the next 
eight extracted bits whose decimal value equals to 250, 
the decoding process also falls into Case 2. Similarly, the 
original index value 1 is reversed, and the base-4 secret 
digit 2 is extracted according to the index mapping table. 
For the next eight extracted bits whose decimal value 
equals to 63, it belongs to an embeddable index, and the 
decoding process falls into Case 1, such that the original 
index value 65 is recovered by transforming the 
following next two bits, 1 and 0 into base-4 digits, and 
then mapping it to the index mapping table. Next, the 
following eight bits are extracted whose decimal value 
equals to 0. Here, the decoding process falls into Case 2. 
Similarly, the original index value 255 is reversed 
according to the index mapping table. Finally, the base-4 
secret digits (0, 2) are extracted exactly, and the original 
VQ index table is totally recovered as shown in Fig. 5(a). 

IV. EXPERIMENTAL RESULTS 

Six VQ images sized 512512× , Jet, Pepper, Lena, 
Zelda, GoldHill, and Toys, which are shown in Figure 6, 

are used as text images in the experimental results to 
show the performance of our proposed scheme. Each 
codeword of the codebook in the following experiments 
is a sixteen-dimensional vector. 

Table I shows the hiding capacity in bits and the bit 
rate of our proposed scheme, with the parameter G equal 
to 4, 8, and 16, and the size of the codebook is 256. Table 
II shows the same things except that the codebook size is 

TABLE I 
THE HIDING CAPACITY AND THE BIT RATE OF OUR PROPOSED SCHEME 

(CODEBOOK SIZE = 256) 

                     G 
Images 4 8 16 

hiding capacity 21790 34219 42562 Jet bit_rate (bpp) 0.520 0.548 0.584 
hiding capacity 20431 27810 27145 Pepper bit_rate (bpp) 0.527 0.574 0.644 
hiding capacity 18755 23727 21482 Lena bit_rate (bpp) 0.535 0.591 0.665 
hiding capacity 20910 26920 24078 Zelda bit_rate (bpp) 0.524 0.578 0.656 
hiding capacity 18082 23935 22484 Goldhill bit_rate (bpp) 0.538 0.590 0.662 
hiding capacity 23182 37301 46180 Toys bit_rate (bpp) 0.513 0.535 0.570 
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512. It is obvious that the bit rate here is just slightly 
degraded compared with the VQ compression whose bit 
rate equals to 0.5 when the codebook size is 256 (Table I) 
and 0.5625 when the codebook size is 512 (Table II). By 
observing Tables I and II, it can be seen that the hiding 
capacity increases as parameter G increases, but the bit 
rate is degraded comparatively. To further show the 
performance of our proposed scheme, we compared it to 
Yang and Lin’s scheme [21], and the comparison results 
are shown in Table III. By observing Table III, it is 
obvious that our proposed scheme outperforms Yang and 
Lin’s scheme in both hiding capacity and bit rate. 

V. ANALYSIS 

In this paper, we proposed a reversible image hiding 
scheme based on VQ images. Basically, VQ is an image 
compression scheme, and the concept of this paper is that 
we try to analyze the characteristic of the compression 
code (VQ index table) and embed the secret bits to it. For 
satisfying some stricter requirements and special 
applications, the size of the compression result (VQ index 
table) can be further reduced by using some suitable 
compression scheme such as Huffman coding [9] and 
search order coding [10]. They are briefly introduced as 
follows. 

A.  Huffman coding 
In 1952, Huffman proposed Huffman codes which are 

widely used for compression data. The basic concept of it 

is to use longer bits to represent infrequent symbols and 
shorter bits to represent frequent symbols. We use an 
example to illustrate how to generate Huffman codes. 
Assume an index table IT contains four different index 
values: 10, 20, 30, and 40, and the frequencies of 
occurrence of them are 30, 100, 2, and 34, respectively. 
First, these four different index values are sorted 
according to frequencies of occurrence, and the result is 
30(2), 10(30), 40(34), and 20(100), where the number in 
the parentheses is frequency of occurrence. After sorting, 
a Huffman tree (binary tree) is going to be created for 
later encoding. Note that, each different index values are 
treated as a leaf node. Step 1: the two least-frequent 
nodes (30 and 10) are merged into a new node where its 
frequency of occurrence is the sum of child nodes, and 
the left branch is labeled as 0 and 1 for the right branch as 
shown in Figure 6(a). Step 2: continue merging the two 
least-frequent and the result is shown in Figure 6(b). Step 
3: merge the last two nodes, and the Huffman tree is built 
completed which is shown in Figure 6(c). 
The codeword table which is generated according to the 
Huffman tree (Figure 6(c)) is listed in Figure 7. Assume 
the codebook size used here is 256, then the size of VQ 
index table 1328)10034302(8 =+++× bits can be 
reduced to 264)100134230323( =×+×+×+× bits. 
However, since Huffman codes is variable-length code, 
how to embed secret bits in it according to our proposed 

TABLE II. 
THE HIDING CAPACITY AND THE BIT RATE OF OUR PROPOSED SCHEME 

(CODEBOOK SIZE = 512) 

                      G 
Images 4 8 16 

hiding capacity 21209 32292 38542 Jet bit_rate (bpp) 0.585 0.618 0.662 
hiding capacity 19024 25620 25387 Pepper bit_rate (bpp) 0.596 0.646 0.713 
hiding capacity 18125 21989 19492 Lena bit_rate (bpp) 0.600 0.660 0.736 
hiding capacity 20579 26089 24164 Zelda bit_rate (bpp)) 0.588 0.644 0.718 
hiding capacity 17737 22216 21304 Goldhill bit_rate (bpp) 0.602 0.659 0.729 
capacity 23008 37601 47724 Toys bit_rate (bpp) 0.577 0.597 0.626 

 

TABLE III. 
COMPARISON BETWEEN OUR PROPOSED SCHEME AND THE SCHEME 

PROPOSED BY YANG AND LIN  

Yang and Lin’s scheme Proposed scheme 

Hiding  
capacity 

bit_rate  
(bpp) 

Hiding 
capacity 

bit_rate 
(bpp) 

Image
s 

No 
swap 

With 
swap 

No 
swap 

With 
swap G=8 G=16 G=8 G=16

Jet 28840 31010 0.595 0.588 34219 42562 0.548 0.584 

Pepper 28818 30172 0.609 0.608 27810 27145 0.574 0.644 

Lena 26980 29874 0.647 0.644 23727 21482 0.591 0.665 

Zelda 27304 32190 0.654 0.618 26920 24078 0.578 0.656 

Goldhill 23594 28850 0.697 0.686 23935 22484 0.590 0.662 

Toys 30692 31790 0.573 0.572 37301 46180 0.535 0.570 

Averages 27705 30650 0.629 0.619 28985 30655 0.569 0.630 

 

 
(a) Step 1 (b) Step 2 

 
(c) Step 3 (final Huffman tree) 

Figure 6. The processes of building Huffman tree. 
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scheme is our future work. 

B.  Search order coding 
In 1996, Hsieh and Tsai proposed Search order coding 

(SOC) to compress the VQ index table. The authors 
found that, for an index value, an identical index value 
can be found frequently around of it. On the basis of this 
concept, we can try to search an identical index value in 
the left, top left, top, and top right directions for a to-be-
compressed index value. Since these four positions can be 
represented with two bits, the original index value is 
replaced by the position code if an identical index value 
is found. Otherwise, the index value is incompressible 
and keeps its value unchanging. Note that, an addition bit 
is required to inform that the processing compressed code 
is position code or original index value. If we are hard to 
find an identical index value by using four positions, we 
can expand the position numbers to eleven, which is 
shown as Figure 8, where the gray parts are processed, 
and the white parts are unprocessed. Note that the first 
column of VQ index table is incompressible, and the 
processing order is from left to right, and top to bottom. 
The index values compressed by using SOC can be 
classified into two cases: compressible and 
uncompressible. Each of them is fixed-length code, so it 
is workable for applying our proposed scheme to it and 
therefore it can satisfy with the users who want to have 
smaller size of results and also want to embed some 
secret bits in it. 

VI. CONCLUSIONS 

We propose a reversible image hiding scheme based 
on VQ images which has the flexibility in adjusting the 
data hiding capacity and the compression rate. The 
flexibility makes the proposed scheme suitable for more 
applications, including users who want high hiding 
capacity and those who want a compact embedded result. 
In the future, we will try to design a more powerful 
reversible image hiding scheme that can further reduce 
the size expansion of the embedded results. 
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