

(a) the original image

(b) the final result by cryptography (c) the final result by data
hiding technologies

Figure 1. The differences of final results between cryptography and
 data hiding technology based on images.

Lossless Information Hiding in the VQ Index
Table

Chin-Chen Chang

Feng Chia University, Taichung, Taiwan
Email: alan3c@gmail.com

1Kuo-Nan Chen, 2Zhi-Hui Wang and 2,3Ming-Chu Li

1National Chung Cheng University, Chiayi, Taiwan
2 Dalian University of Technology, Dalian, China

Email: 1ckn95p@gmail.com; 2wangzhihui1017@yahoo.cn; 3li_mingchu@yahoo.com

Abstract—In this paper, a reversible data hiding scheme
based on a Vector Quantization (VQ) index table is
proposed. To satisfy different needs of users, our proposed
scheme is designed with flexibility in adjusting hiding
capacity and compression rate. First, the codebook is
rearranged referring to the index occurrence frequency in
the VQ index table. After that, the codewords in the newly
generated codebook are clustered into a number of groups
for the usage of embedding secret digits in our proposed
scheme. Note that, the decision of group numbers
determines the capability of hiding capacity and
compression rate of a to-be-embed image in our proposed
scheme. Based on the well-defined embedding strategies, the
experimental results show that the performance of our
proposed scheme outperforms the scheme proposed by
Yang and Lin in 2009.

Index Terms—vector quantization, reversible, bit rate,
hiding capacity, data hiding

I. INTRODUCTION

With the rapid improvement of computer and
networking technologies, it becomes more and more
popular that people exchange information (including
digital images) with each other via the Internet. The
convenient communication ways are accompanied by
problems of information security and the usage of
networking bandwidth. Several researches in
cryptography have been proposed, such as AES [15],
DES [16] and RSA [17], for minimizing the information
security problem caused by the public properties of the
Internet. Research in cryptography guarantees the privacy
of the transmitted data by transforming the transmitted
data from plaintext (meaningful) to ciphertext
(meaningless) with keys. That is, the original ciphertext is
hard to be decrypted without the appropriate keys. In this
way, the transmitted data can be transmitted more
securely via the Internet. However, the meaningless
ciphertext is singular, and it is easy to attract attention of
malicious attackers. Hence, several data hiding schemes
have been proposed to overcome the singular problems,
such as secret sharing (meaningful shares) [1] [6],
steganographic technology [5] [13] [19], and reversible

data hiding technologies [4] [8]. Researches mentioned
above aim to embed secret message into cover images,
and makes the secert message embedded images (stego
images) indistinguishable from the original cover images.
Therefore, the stego images are hard to gain attention by
potential attackers. The differences of the secret
embedded results between the cryptography and data
hiding technology based on images are shown in Fig. 1.

The usage of networking bandwidth is also a serious
problem due to the huge transmission of high quality
images. To solve these problems, many data compression
schemes are proposed, and they can be classified into
lossless schemes [11] and lossy schemes [14]. Among
these compression schemes for digital images, the vector
quantization (VQ) compression scheme, which was first
proposed by Gray in 1984 [7], is an efficient compression
scheme that has a high bit rate and satisfactory image

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 547

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.3.547-553

Figure 3. The example of VQ decoder.

Figure 2. The example of VQ encoder.

quality. Based on the advances of VQ, many researchers
aim to apply lossless data hiding schemes on VQ images
[2] [18] [20]. In this way, the users can get a compact
secret embedded result with the ability to recover the
original cover images.

In this paper, in terms of cryptography and image
compression concepts, we propose a reversible data
hiding scheme that has high hiding capacity and a
satisfactory compression rate based on VQ images. In
addition, the original VQ images can be losslessly
recovered while the secret information is completely
extracted. The remainder of this paper is organized as
follows. In Section 2, the VQ compression technology is
reviewed, and, in Section 3, the proposed scheme is
illustrated. In Section 4, the experimental results, which
show the effectiveness of our proposed scheme, are
presented. Finally, our conclusions are presented in
Section 5.

II. RELATED WORKS

In this section, the VQ compression technology is
briefly reviewed. VQ was first proposed by Gray in 1984
[7]. The concept of VQ is that it uses an index number to
represent a set of non-overlapping pixels to compress the
original image. The details are described as follows.
Before the compressing, a codebook is needed, and it can
be generated by various codebook generation algorithms.
Among these algorithms, the LBG algorithm, which was
proposed by Linde, Buzo, and Gray in 1980 [12], is one
of the most frequently used algorithms, and it is
illustrated as follows. To generate a codebook sized c
using the LBG algorithm, a set of representative images
is selected and divided into non-overlapping blocks,
called block set B, in which each block is sized nm× . For
training a codebook sized c, a set of blocks

}1..., ,1 ,0|1{1 −== cipP i is randomly selected from block
set B, and P1 is treated as the initial centroid point set for
grouping B into c clusters to form the cluster set

}1 ..., ,1 ,0|1{1 −== cicC i . For cluster set C1, a new
centroid point set }1..., ,1 ,0|2{2 −== cipP i is generated
by finding the centroid point v2i from c1i. Subsequently,
P2 is used for grouping B into a new cluster set

}1 ..., ,1 ,0|2{2 −== cicC i . The finding centroid point set
and grouping new cluster set processes take turns until
the centroid point set }1..., ,1 ,0|{ −== cipkPk i is stable
compared with the previous one. Then, a codebook sized
c, in which each codeword is an nm× -dimensional vector,
is generated. After that, the generated codebook Pk is
used for helping the VQ compression processes described
as follows. To compress an image I sized NM × , the to-
be-compressed image is first divided into)/(nmNM ××
non-overlapping blocks, where nm× is the size of each
block. Every nm× pixels in a block can be treated as a

nm× -dimensional vector and replaced with a one-
dimensional vector (index number) by searching for the
closest codeword in the codebook Pk. The efficiency of
VQ can be measured by bit rate, which has the units of

bits per pixel, as defined in Equation 1. Here,
⎡ ⎤ .

log

_ 2

nm
c

ratebit
×

=

 .
 (pixels) size image The

(bits) Coden Compressio_ =ratebit . (1)

For instance, to compress an image size 1212× with a
codebook sized 256, where each codeword in the
codebook is a sixteen-dimensional vector, first, the to-be-
compressed image is divided into)44/()1212(×× non-
overlapping blocks, in which each block is sized 44× .
For every sixteen pixels in a block, the sixteen values are
replaced with an index number where the codeword it
refers to is closest to these sixteen pixels compared with
the other codewords in the codebook. The example of a
VQ encoder is shown in Fig. 2. After all the blocks are
replaced with index numbers, the process of the VQ
encoder is completed, and the compressed result is called
the VQ index table. To decompress a VQ index table into
a VQ image, the index value in the VQ index table is
replaced with the sixteen-dimensional vector (codeword)
according to the codebook and arranges the sixteen-
dimensional vector into a 44× block. In this way, each
index value is expanded by sixteen values. After all index
values are expanded, the VQ index table can be
decompressed to obtain the VQ image. The example of
VQ decoder is shown in Fig. 3.

III. THE PROPOSED SCHEME

548 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

Figure 4. The index mapping table.

0 1

65 255

255 250

(63)10||(10)2 (0)10||(00)2

(a) the original index table (b) the final index table with
secret digits embedded

Figure 5. The embedding processes of Example 1.

In the proposed scheme, the secret information is
encoded with the VQ index table according to the
frequency of occurrence of the index values. At the
receiving end, the secret information can be extracted
exactly, and the original VQ image can also be reversed.
The proposed scheme includes two procedures, i.e., the
embedding procedure and the extracting and recovering
procedure, and they are illustrated in Subsections 3.1 and
3.2, respectively.

A. Embedding Procedure
To embed secret information into a VQ index table,

first, the corresponding codebook is rearranged from high
to low according to the index occurrence frequency in the
to-be-embedded VQ index table. After the rearranged
codebook }1 to0 | { −== cirR i sized c has been generated,
it is clustered sequentially into G groups. Note that c must
be multiples of G. Afterwards, the secret information is
transformed into base-(G-1) equivalence (uses the digits 0
to G-2) for further processing. To embed the base-(G-1)
equivalence secret information into the VQ index table, it
has to reference an index mapping table that is created as
follows. For each index rj in the first group, where

1 to0 −=
G
cj , it is mapped with an un-embeddable index

SGjcr −×−−)()1(with the base-(G-1) secret digit S, where S = 0 to
G-1, as shown in Figure 4. That is, to embed secret
information into embeddable indices (in the first group),
the embeddable indices are replaced with the un-
embeddable index values according to the index mapping
table. On the other hand, if an un-embeddable index
occurs in the VQ index table, it would be replaced with
an embeddable index by checking the index mapping
table with some indicator bits appended at the end of it
for recovery purposes. The indicator bits for each un-
embeddable index are generated by transforming the
corresponding base-G secret digits into ⎡ ⎤G2log bits
binary representation.

Example 1: In the rearranged codebook
}255 to0 | { == irR i , c = 256, G = 4, assume that the base-

4 secret digits are (0, 2) and that the original index values
are (0, 1, 65, 255). First, the codebook is clustered into
four groups, and the indices in the first group are r0, r1, …,
r63. For the first original index 0 to embed the
corresponding secret digit 0, according to the embedding
rules discussed above, the un-embeddable index 255 is
used to replace index 0 for embedding. For the second
original index 1, since the corresponding to-be-embedded
secret digit is 2, it is replaced with the un-embeddable
index 250. For the third original index 65, since it is an
un-embeddable index (out of the first group), it is
replaced with the embeddable index 63 with two (⎡ ⎤4log 2)
binary bits 1 and 0 appended to the end of it. For the final
original index 255, since it also belongs to un-
embeddable index, it is replaced with the embeddable
index 0 with two binary bits 0 and 0 appended to the end
of it. The embedding process of Example 1 is shown in
Fig. 5.

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 549

© 2013 ACADEMY PUBLISHER

(a) Jet (b) Pepper

(c) Lena (d) Zelda

(e) GoldHill (f) Toys

Figure 6. Test images.

B. Extracting and Recovering Procedure
At the receiving end, the user only has to know the

parameter of G; then, he/she can extract the embedded
secret digits, and the original VQ index table can also be
reversed as described below. The final codestream that
the receiver gets is decoded by every ⎡ ⎤c2log bits first,
where c is the size of the codebook. Similar to the
embedding procedure, the codebook is divided into G
groups, and the decoding processes fall into two cases:

Case 1: the index value V transformed from the
⎡ ⎤c2log bits falls into the first group

Case 2: the index value V transformed from the
⎡ ⎤c2log bits is out of the first group

In Case 1, the original index can be reversed by
replacing the decoded index with the corresponding un-
embeddable index according to the index mapping
described as follows. The following ⎡ ⎤G2log bits of V are
decoded as the indicators. After transforming ⎡ ⎤G2log
bits into base-G digits, the recovered index can be
mapped by treating these transformed results as to-be-
embedded secret digits in the index table, which is shown
in Fig. 4. Note that the index mapping table can be
created by the receiver since he/she knows parameters G
and c. In Case 2, the decoded index value can be reversed
into the original index value by substituting the
corresponding embeddable index value, and the base-G
secret digits can be extracted concurrently according to
the index mapping table.

Example 2: As in Example 1, assume that the final
embedded result is shown as Fig. 5(b), G = 4, c = 256,
and the index mapping table is shown as Fig. 4. Since the
first eight bits extracted from the final codestream whose
decimal value equals 255, which is an un-embeddable
index value, this means that it is transformed from an
embeddable index value with secret digits embedded.
Therefore, the decoding procedure falls into Case 2, so
the original index value 0 is reversed, and the base-4
secret digit 0 is extracted by mapping Fig. 4. For the next
eight extracted bits whose decimal value equals to 250,
the decoding process also falls into Case 2. Similarly, the
original index value 1 is reversed, and the base-4 secret
digit 2 is extracted according to the index mapping table.
For the next eight extracted bits whose decimal value
equals to 63, it belongs to an embeddable index, and the
decoding process falls into Case 1, such that the original
index value 65 is recovered by transforming the
following next two bits, 1 and 0 into base-4 digits, and
then mapping it to the index mapping table. Next, the
following eight bits are extracted whose decimal value
equals to 0. Here, the decoding process falls into Case 2.
Similarly, the original index value 255 is reversed
according to the index mapping table. Finally, the base-4
secret digits (0, 2) are extracted exactly, and the original
VQ index table is totally recovered as shown in Fig. 5(a).

IV. EXPERIMENTAL RESULTS

Six VQ images sized 512512× , Jet, Pepper, Lena,
Zelda, GoldHill, and Toys, which are shown in Figure 6,

are used as text images in the experimental results to
show the performance of our proposed scheme. Each
codeword of the codebook in the following experiments
is a sixteen-dimensional vector.

Table I shows the hiding capacity in bits and the bit
rate of our proposed scheme, with the parameter G equal
to 4, 8, and 16, and the size of the codebook is 256. Table
II shows the same things except that the codebook size is

TABLE I
THE HIDING CAPACITY AND THE BIT RATE OF OUR PROPOSED SCHEME

(CODEBOOK SIZE = 256)

 G
Images 4 8 16

hiding capacity 21790 34219 42562 Jet bit_rate (bpp) 0.520 0.548 0.584
hiding capacity 20431 27810 27145 Pepper bit_rate (bpp) 0.527 0.574 0.644
hiding capacity 18755 23727 21482 Lena bit_rate (bpp) 0.535 0.591 0.665
hiding capacity 20910 26920 24078 Zelda bit_rate (bpp) 0.524 0.578 0.656
hiding capacity 18082 23935 22484 Goldhill bit_rate (bpp) 0.538 0.590 0.662
hiding capacity 23182 37301 46180 Toys bit_rate (bpp) 0.513 0.535 0.570

550 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

512. It is obvious that the bit rate here is just slightly
degraded compared with the VQ compression whose bit
rate equals to 0.5 when the codebook size is 256 (Table I)
and 0.5625 when the codebook size is 512 (Table II). By
observing Tables I and II, it can be seen that the hiding
capacity increases as parameter G increases, but the bit
rate is degraded comparatively. To further show the
performance of our proposed scheme, we compared it to
Yang and Lin’s scheme [21], and the comparison results
are shown in Table III. By observing Table III, it is
obvious that our proposed scheme outperforms Yang and
Lin’s scheme in both hiding capacity and bit rate.

V. ANALYSIS

In this paper, we proposed a reversible image hiding
scheme based on VQ images. Basically, VQ is an image
compression scheme, and the concept of this paper is that
we try to analyze the characteristic of the compression
code (VQ index table) and embed the secret bits to it. For
satisfying some stricter requirements and special
applications, the size of the compression result (VQ index
table) can be further reduced by using some suitable
compression scheme such as Huffman coding [9] and
search order coding [10]. They are briefly introduced as
follows.

A. Huffman coding
In 1952, Huffman proposed Huffman codes which are

widely used for compression data. The basic concept of it

is to use longer bits to represent infrequent symbols and
shorter bits to represent frequent symbols. We use an
example to illustrate how to generate Huffman codes.
Assume an index table IT contains four different index
values: 10, 20, 30, and 40, and the frequencies of
occurrence of them are 30, 100, 2, and 34, respectively.
First, these four different index values are sorted
according to frequencies of occurrence, and the result is
30(2), 10(30), 40(34), and 20(100), where the number in
the parentheses is frequency of occurrence. After sorting,
a Huffman tree (binary tree) is going to be created for
later encoding. Note that, each different index values are
treated as a leaf node. Step 1: the two least-frequent
nodes (30 and 10) are merged into a new node where its
frequency of occurrence is the sum of child nodes, and
the left branch is labeled as 0 and 1 for the right branch as
shown in Figure 6(a). Step 2: continue merging the two
least-frequent and the result is shown in Figure 6(b). Step
3: merge the last two nodes, and the Huffman tree is built
completed which is shown in Figure 6(c).
The codeword table which is generated according to the
Huffman tree (Figure 6(c)) is listed in Figure 7. Assume
the codebook size used here is 256, then the size of VQ
index table 1328)10034302(8 =+++× bits can be
reduced to 264)100134230323(=×+×+×+× bits.
However, since Huffman codes is variable-length code,
how to embed secret bits in it according to our proposed

TABLE II.
THE HIDING CAPACITY AND THE BIT RATE OF OUR PROPOSED SCHEME

(CODEBOOK SIZE = 512)

 G
Images 4 8 16

hiding capacity 21209 32292 38542 Jet bit_rate (bpp) 0.585 0.618 0.662
hiding capacity 19024 25620 25387 Pepper bit_rate (bpp) 0.596 0.646 0.713
hiding capacity 18125 21989 19492 Lena bit_rate (bpp) 0.600 0.660 0.736
hiding capacity 20579 26089 24164 Zelda bit_rate (bpp)) 0.588 0.644 0.718
hiding capacity 17737 22216 21304 Goldhill bit_rate (bpp) 0.602 0.659 0.729
capacity 23008 37601 47724 Toys bit_rate (bpp) 0.577 0.597 0.626

TABLE III.
COMPARISON BETWEEN OUR PROPOSED SCHEME AND THE SCHEME

PROPOSED BY YANG AND LIN

Yang and Lin’s scheme Proposed scheme

Hiding
capacity

bit_rate
(bpp)

Hiding
capacity

bit_rate
(bpp)

Image
s

No
swap

With
swap

No
swap

With
swap G=8 G=16 G=8 G=16

Jet 28840 31010 0.595 0.588 34219 42562 0.548 0.584

Pepper 28818 30172 0.609 0.608 27810 27145 0.574 0.644

Lena 26980 29874 0.647 0.644 23727 21482 0.591 0.665

Zelda 27304 32190 0.654 0.618 26920 24078 0.578 0.656

Goldhill 23594 28850 0.697 0.686 23935 22484 0.590 0.662

Toys 30692 31790 0.573 0.572 37301 46180 0.535 0.570

Averages 27705 30650 0.629 0.619 28985 30655 0.569 0.630

(a) Step 1 (b) Step 2

(c) Step 3 (final Huffman tree)

Figure 6. The processes of building Huffman tree.

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 551

© 2013 ACADEMY PUBLISHER

scheme is our future work.

B. Search order coding
In 1996, Hsieh and Tsai proposed Search order coding

(SOC) to compress the VQ index table. The authors
found that, for an index value, an identical index value
can be found frequently around of it. On the basis of this
concept, we can try to search an identical index value in
the left, top left, top, and top right directions for a to-be-
compressed index value. Since these four positions can be
represented with two bits, the original index value is
replaced by the position code if an identical index value
is found. Otherwise, the index value is incompressible
and keeps its value unchanging. Note that, an addition bit
is required to inform that the processing compressed code
is position code or original index value. If we are hard to
find an identical index value by using four positions, we
can expand the position numbers to eleven, which is
shown as Figure 8, where the gray parts are processed,
and the white parts are unprocessed. Note that the first
column of VQ index table is incompressible, and the
processing order is from left to right, and top to bottom.
The index values compressed by using SOC can be
classified into two cases: compressible and
uncompressible. Each of them is fixed-length code, so it
is workable for applying our proposed scheme to it and
therefore it can satisfy with the users who want to have
smaller size of results and also want to embed some
secret bits in it.

VI. CONCLUSIONS

We propose a reversible image hiding scheme based
on VQ images which has the flexibility in adjusting the
data hiding capacity and the compression rate. The
flexibility makes the proposed scheme suitable for more
applications, including users who want high hiding
capacity and those who want a compact embedded result.
In the future, we will try to design a more powerful
reversible image hiding scheme that can further reduce
the size expansion of the embedded results.

REFERENCES

[1] C. C. Chang, C. C. Lin, C. H. Lin, and Y. H. Chen, “A
novel secret image sharing scheme in color images using
small shadow images,” Information Sciences, vol. 178, no.
11, pp. 2433–2447, June 2008.

[2] C. C. Chang, W. C. Wu, and Y. C. Hu, “Lossless recovery
of a VQ index table with embedded secret data,” Journal
of Visual Communication and Image Representation, vol.
18, no. 3, pp. 207–216, 2007.

[3] Y. F. Chen, Y. K. Chan, C. C. Huang, M. H. Tsai, and Y. P.
Chu, “A multiple-level visual secret-sharing scheme
without image size expansion,” Information Sciences, vol.
177, pp. 4696–4710, 2007.

[4] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber,
“Lossless Generalized-LSB Data Embedding,” IEEE
Transactions on Image Processing, vol. 14, no. 2, pp. 253–
265, February 2005.

[5] W. Y. Chen, “Color image steganography scheme using
DFT, SPIHT codec, and modified differential phase-shift
keying techniques,” Applied Mathematics and
Computation, vol. 196, no. 1, pp. 40–54, February 2008.

[6] Z. Eslami, S.H. Razzaghi, and J. Zarepour Ahmadabadi,
“Secret image sharing based on cellular automata and
steganography,” Pattern Recognition, vol. 43, pp. 397–404,
2010.

[7] R. M. Gray, “Vector quantization,” IEEE Transactions on
Acoustics, Speech and Signal Processing, pp. 4–29, 1984.

[8] Y. A. Ho, Y. K. Chan, H. C. Wu, Y. P. Chu, “High-
capacity reversible data hiding in binary images using
pattern substitution,” Computer Standards & Interfaces,
vol. 31, no. 4, pp. 787–794, June 2009.

[9] C. H. Hsieh and J. C. Tsai, “Lossless Compression of VQ
Index with Search-Order Coding,” IEEE Transactions on
Image Processing, vol. 5, no. 1, pp. 1579–1582, November
1996.

[10] D. A. Huffman, “A Method for the Construction of
Minimum Redundancy Codes,” Proceedings of the
Institute of Radio Engineers, vol. 40, pp. 1098–1101,
September 1952.

[11] A. B. Hussein, “A Novel Lossless Data Compression
Scheme Based on the Error Correcting Hamming Codes,”
Computers & Mathematics with Applications, vol. 56, no.
1, pp. 143–150, July 2008.

[12] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for
vector quantizer design,” IEEE Transactions on
Communications, vol. 28, pp. 84–95, January 1980.

[13] C. L. Liu and S. R. Liao, “High-performance JPEG
steganography using complementary embedding strategy,”
Pattern Recognition, vol. 41, no. 9, pp. 2945–2955,
September 2008.

[14] Y. Ma, H. Derksen, W. Hong, and J. Wright,
“Segmentation of Multivariate Mixed Data via Lossy
Coding and Compression,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29, no. 9, pp.
1546–1562, September 2007.

[15] National Institute of Standards & Technology,
“Announcing the advanced encryption standard (AES) ,”
Federal Information Processing Standards Publication,
vol. 197, no. l, 2001.

[16] National Institute of Standards & Technology, “Data
encryption standard (DES),” Federal Information
Processing Standards Publication, vol. 46, January 1977.

Index value Codeword
10 001

20 1
30 000

40 01
Figure 7. The codeword table which is generated according to the
Figure 6(c).

 6 7 8 9 10

 5 1 2 3 11

 4 0

Figure 7. The search order for SOC.

552 JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013

© 2013 ACADEMY PUBLISHER

[17] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126,
February 1978.

[18] P. Tsai, “Histogram-based reversible data hiding for vector
quantization-compressed images,” IET Image Processing,
vol. 3, no. 2, pp. 100–114, 2009.

[19] C. M. Wang, N. I. Wu, C. S. Tsai, and M. S. Hwang, “A
high quality steganographic method with pixel-value
differencing and modulus function,” Journal of Systems
and Software, vol. 81, no. 1, pp. 150–158, January 2008.

[20] J. X. Wang and Z. M. Lu, “A path optional lossless data
hiding scheme based on VQ joint neighboring coding,”
Information Sciences, vol. 179, no. 19, pp. 3332–3348,
September 2009.

[21] C. H. Yang and Y. C. Lin, “Reversible data hiding of a VQ
index table based on referred counts,” Journal of Visual
Communication and Image Representation, vol. 20, no. 6,
pp. 399–407, August 2009.

Chin-Chen Chang received his Ph.D in
computer engineering in 1982 from the
National Chiao Tung University,
Hsinchu, Taiwan. During the academic
years of 1980-1983, he was on the
faculty of the Department of Computer
Engineering at the National Chiao Tung
University. From 1983-1989, he was on
the faculty of the Institute of Applied
Mathematics, National Chung Hsing

University, Taichung, Taiwan. From August 1989 to July 1992,
he was the head of, and a professor in, the Institute of Computer
Science and Information Engineering at the National Chung
Cheng University, Chiayi, Taiwan. From August 1992 to July
1995, he was the dean of the college of Engineering at the same
university. From August 1995 to October 1997, he was the
provost at the National Chung Cheng University. From
September 1996 to October 1997, Dr. Chang was the Acting
President at the National Chung Cheng University. From July
1998 to June 2000, he was the director of Advisory Office of
the Ministry of Education of the R.O.C. From 2002 to 2005, he
was a Chair Professor of National Chung Cheng University.
Since February 2005, he has been a Chair Professor of Feng
Chia University. In addition, he has served as a consultant to
several research institutes and government departments. His
current research interests include database design, computer
cryptography, image compression and data structures.

Kuo-Nan Chen received his BS degree
in Information Engineering and
Computer Science from Feng Chia
University in 2002, and the MS degree
in Graduate Institute of Educational
Measurement and Statistics from
National Taichung University in 2006.
Currently, he is a Ph.D. student in the
department of Computer Science and

Information Engineering of National Chung Cheng University,
Taiwan. His research interests in image data hiding technologies.

Zhi-Hui Wang received the BS degree
in software engineering in 2004 from the
North Eastern University, Shenyang,
China and the MS degree in software
engineering in 2007 from the Dalian
University of Technology, Dalian, China.
She is currently pursuing her PhD
degree in computer software and theory
from the Dalian University of
Technology, Dalian, China. Her research

interests include data hiding, and image processing.

Ming-Chu Li received a Ph.D. degree in
computer science from the University of
Toronto,Toronto, Canada in 1998. His
research interests include Hamiltonian
Graph Theory, NP-Theory and
Algorithms, Network and Information
Security, Reputation Systems,and Grid
computing and its applications. During
1997-2002, he worked as a system
software Engineer in north america,

where he helped in the design and implementation of algorithms
and the structures of projects. In 2002, he was a Full Professor
of Computer Science at Tianjin University (Tianjin, China). In
1993, he was a Full Associate Professor at the University of
Science and Technology Beijing (Beijing, China). Prof. Li is
currently a Full Professor of Computer Science at DaLian
University of Technology (DLUT) (Dalian, China), where he
has been since September 2004. He is also Vice Dean of School
of Software of DLUT.

JOURNAL OF SOFTWARE, VOL. 8, NO. 3, MARCH 2013 553

© 2013 ACADEMY PUBLISHER

