
DifreEngine: Distributed Forward Reasoning
Engine with General Purpose

Chunyan Han

Software College, Northeastern University, Shenyang, China
 College of Information Science and Engineering, Northeastern University, Shenyang, China

Email: hancy@swc.neu.edu.cn

Jianzhong Qiao
 College of Information Science and Engineering, Northeastern University, Shenyang, China

Email: qiaojianzhong@ise.neu.edu.cn

Yunxiao Wang, Yixian Liu and Zhiliang Zhu
Software College, Northeastern University, Shenyang, China

Email: neuwyx@gmail.com, liuyx@swc.neu.edu.cn, zzl@mail.neu.edu.cn

Abstract—In this paper, we propose a distributed forward
reasoning engine with general purpose called DifreEngine.
We present the architecture of DifreEngine with detailed
description of its modules. And then, we describe the
working process of DifreEngine. Also we introduce the
working mechanism of three important algorithms in
DifreEngine called task division, nodes management and
task scheduling. The DifreEngine makes efficient general
forward reasoning possible.

Index Terms—distributed system, reasoning engine, the
logistic mapping, task scheduling

I. INTRODUCTION

During our previous work in the research of
anticipatory reasoning reacting system (ARRS for short)
[1], we have applied forward reasoning engine with
general purpose based on logic (FreeEnCal) [2], which is
a computer program that can automatically draw new
conclusions by repeatedly applying inference rules to
given premises and obtained conclusions until some
previously specified conditions are satisfied, as a core
mechanism to reason and forecast future events.

However, there was still a problem in the efficiency of
standalone reasoning engines like FreeEnCal. Currently,
application reasoning engines are usually deployed on a
single reasoning engine. This solution is applicable when
the reasoning assignment is light weighted and the
datasets are relatively small. In a complex application
area, such as air traffic control area, it is unreasonable to
expect there is any reasoning mechanism that process the
reasoning assignment fast enough just through one single
processor. Firstly, in a complex area, there will be large
corpuses of data found, posing new challenges to the
reasoning engines in processing techniques. Secondly, the
set of reasoning data, both premises and conclusions, is
growing very fast and is dynamic, since throughout the
reasoning process, the sensors will automatically add
sensory data into the database, meanwhile after reasoning

the results will also be filled into the database. Thirdly,
rules might be represented in different forms, which
require a reasoning task to do preprocessing and
coordination with other reasoning engines [3, 4].
Throughout the whole process of reasoning, the theorems
derived become much more than those in the original
input set and the time that a single engine spent on
reasoning lasts longer. What’s more, the reasoning
capability of single reasoning engine is limited because it
has to carry out reasoning linearly. In the face of these
new requirements, existing reasoning methods have lost
their effectiveness.

After investigating the related works of improving the
efficiency of reasoning engines, we mainly summarize
two ways to improve the efficiency of FreeEnCal.

On one hand, we can develop new forms of reasoning
algorithm to improve the reasoning capability of a single
reasoning engine like k-d trees in case-based reasoning
area [5]. In this paper, authors use an algorithm based on
k-d tree to improve the process of finding similar cases of
the case-based reasoning system and the proposed
approach was implemented on two reasoning systems for
classification. Clearly it is a case to use some algorithm to
improve the efficiency of reasoning engines, but it is case
-based reasoning systems and it mainly focus on finding
similar cases which is different from what we discuss.

On the other hand, we can use parallel reasoning
processing to improve the reasoning engine. And there
already are many distributed reasoning engines but they
are all case-based or knowledge-based reasoning engine,
not logic reasoning engine which would be used in ARRS.
They always care less about logic axioms and empirical
theorems which play an important part in logic reasoning
engines. We eventually decide to apply distributed
reasoning mechanism to FreeEnCal since the pattern of
distributed reasoning enables multi-reasoning at the same
time [6, 7]. In this paper we focus on the second way to
apply distributed reasoning and we propose a distributed

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 495

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.2.495-501

forward reasoning engine with general purpose called
DifreEngine.

In this paper, we first propose the architecture of
DifreEngine, and then we give a working process
description about how DifreEngine works. Finally, we
illustrate the working mechanism of DifreEngine with a
study case to show its usability.

II. ARCHITECUTRE OF DIFREENGINE

Since DifreEngine is designed as a distributed system,
we decide to adopt the classic three layers architecture, as
shown in Fig. 1. In this model there are three layers called
infrastructure layer, middleware layer and application
layer.

The infrastructure layer is a fundamental layer that
mostly concerns about the physical topology of the
distributed system and network. The middleware layer is
logically placed between the application layer and the
infrastructure layer, and it focuses on coordinating and
communicating between layers of high and low. And the
application layer deals with reasoning.

The infrastructure layer is a fundamental layer that
mostly concerns about the physical topology of the
distributed system and network. The middleware layer is
logically placed between the application layer and the
infrastructure layer, and it focuses on coordinating and
communicating between layers of high and low. And the
application layer deals with reasoning.

A. Infrastructure Layer
Infrastructure layer is a fundamental physical layer that

assures the security and performance of the whole
reasoning process. In order to simplify the architecture of
the whole reasoning engine system, we decide to build a
multicomputer network based on switch like this: firstly,
it is a kind of architecture with simple network topology
structure, having uncomplicated executing processes;
second, it has to be planar so that it’s easy to build and
cost less; thirdly, since DifreEngine is designed as a
distributed engine, it must have good scalability which is
easy to add or remove one node. Meanwhile, there need a
part which is in charge of task dividing and control other
computers to reason. What’s more, besides the control
computer, DifreEngine needs computers which are
dedicated to reasoning process, which means that it must
be a centralized architecture.

At present there are mainly two kinds of application
architectures: Master-Slave model [8] and Peer-to-Peer
model [9]. Peer-to-Peer model is not centralized, that is to
say it is not suitable for DifreEngine. Master-Slave model
is a model for a communication protocol in which one
device or process known as the master controls one or
more other devices known as slaves. The relationship of
control is always from the master to slaves. It’s a
centralized architecture. So we adopt Master-Slave model
rather than Peer-to-Peer model. The model supports
heterogeneous computer network while offering a single
system view.

Figure 1. Logical structure of the system

B. Middleware Layer
Middleware layer provides a platform to connect and

coordinate the application reasoning layer with the
underlying layer which is logically placed between them.
The function of middleware is to transmit data and to do
data verification. We design the middleware layer from
two aspects: offering a well-defined API in the form of
document which informs the programmers all the
operations the module can perform, and leveraging
existing tools, such as RPC and CRC [10, 11].

We use RPC to implement distributed communication.
Through RPC, master node can communicate with the
remote slave nodes. RPC avoids the details of network
interfaces, heterogeneous machines and precision
differences, by which program can call remote procedure
just as the local methods do.

Data Validation is one of the main functions of
Middleware Layer. Compared with CRC, parity check
can only check error, it cannot confirm that there is no
mistake and it's unable to verify the location of the error
so that it cannot correct the wrong code. Therefore
considering the performance and the cost, CRC is far
superior to parity check, since CRC is simple to
implement in binary hardware, having faster computing
speed, easy to analyze mathematically, and particularly
good at detecting common errors caused by noise in
transmission channels.

C. Application Layer
There are two kinds of nodes in application layer, the

Management node and Reasoning nodes. Management
node which is deployed in the master node is mainly in
charge of choosing a logic system and inference rules,
task division and results collection and integration. It has
Logic Process Module, Task Division Module, Task
Scheduling Module, Interaction Module, Task Integration
Module, Duplication Checking Module and Nodes
Management Module. While reasoning nodes which are
deployed on slave nodes concentrate on reasoning
according to premises and facts which they get from
management node. It has Interaction Module and
Reasoning Module. The detailed description of every
module will be displayed in the working process.

496 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

D. The Working Process
After introducing the structure of DifreEngine, we

describe the working process of DifreEngine in Fig. 2.
The whole reasoning process can be described as

follows:
(1)First, in a Management node, there are some

candidate logic systems like CML, RL, SRL, STDRL and
so on. And there are also many empirical theorems about
some fields like Air Traffic Control, Highway Traffic
Control and so on. When a user wants to use DifreEngine
to reason a task, the user must input facts and choose a
certain logic system, and he also can input extra empirical
theorems if necessary.

(2)Then the Logic Process Module would check if the
logic system is suitable. If it's suitable, then go to the next
step. If not, it would go back to step (1).

(3)And then the task is passed to Task Division
Module. In this module, the task would be divided into
several subtasks according to a task division algorithm.
Then Task Scheduling Module would tell Interaction
Module to assign each subtask to some certain reasoning
nodes. After that Interaction Module gets subtasks and
passes them to Reasoning nodes through the middleware
layer.

(4)In a Reasoning node, Interaction Module gets the
subtask from the middleware layer, and passes the
subtask to Reasoning Module. The Reasoning Module
would start to reason and generate results. In this process,
the Reasoning node is being monitored by the Nodes
Management Module of the Management Node. After
deducing results, the Reasoning node would pass these
results back to the Management node through Interaction
Module and the middleware layer.

(5)After the Interaction Module pass these results to
the Task Integration Module, the Task Integration
Module would integrate these results to a results set. And
then the Duplication Checking Module would eliminate
the duplicate results.

(6)Finally, the Results Saving Module would save
these results and present them to the user.

III. KEY ALGORITHMS AND STRATEGIES

A. Task Division Algorithm
In Task Division Module, task division algorithm is the

most important part. We propose a task division
algorithm according to the graph theory. We let every
empirical theorem be a point. And then recurs all the
empirical theorems, if the conclusion of one empirical
theorem appears in the premise part of another empirical
theorem, draw a directed line from the former to the latter.
And the line is directed to the latter. After the recursion,
we get a graph with points and directed lines. And then
start from the point which in-degree is 0 and go through
the directed line and points of an edge. We regard all the
empirical theorems in an edge as a class. As is shown in
Fig. 3, E1 and E2 are in a class. E1, E4 and E6 are in a
class. There are 6 classes in total. We can send a class of
empirical theorems to a certain reasoning node.

B. Nodes Management Strategy
Nodes management strategy describes how

management node which is deployed as the master node
manages and monitors the states of all the reasoning
nodes in real time, including the joining, failures and
register of the reasoning nodes, also the load of each
reasoning node.

In DifreEngine, reasoning nodes may join or leave.
When a new node joins the system, it has to register to
obtain authorization, and then get the node ID. In order to
deal with the node fault well, we demand that each
reasoning node should send periodic message to the
master node automatically. Once exceeding the period, if
the master node doesn't receive the periodic message of
some node, we tacitly approve that this node is out of
work and mark the node as invalid.

Figure 2. The reasoning process

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 497

© 2013 ACADEMY PUBLISHER

Figure 3. Example of the task dividing results

All the tasks of this node are set to be idle condition,
then, these tasks can be allocated to other nodes, waiting
for rescheduling by Task Scheduling Module.

The master node is the center of this architecture. Once
it crashes, the whole system cannot work. Thus, we adopt
a solution called dual-computer hot standby [12]. In this
architecture, we have two hosts, one called primary host,
i.e. the master node, another called standby host. Under
normal situation, primary host is active, and standby host
is in hot standby. These two hosts are synchronized in
real time. They can talk to each other, and the latest
information is transferred from the active host to the hot
standby host in real time. Upon failure of the primary
host, the standby host becomes active immediately and
takes over the jobs of primary host automatically.

C. Task Scheduling Algorithm
At the first stage of research, we assume that every

sub-task needs the same amount of reasoning time. And
we decide to adopt a random scheduling method.

We chose 3 random methods as candidates. They are
random method of Java, method for parallel inference
tasks and an improved random method with logistic map
[13, 14]. Firstly we did some experiments to compare
their randomness. We use these three methods to assign
10000 subtasks to 100 nodes to reason. We calculated the
variance of each node to decide which one is better. After
1000 times experiments, we concluded that from aspect
of randomness, method for parallel inference tasks is way
far good from the other 2 methods. And the random
method of Java is a little better than logistic method. We
firstly eliminated method for parallel inference tasks. As
for the other 2 methods, based on the random method in
Java, we combined logistic mapping with random
method.

In general, we replaced the time seed of random
method with sequence of numbers generated by logistic
map. In this logistic map, we let X0 be 0.7 and the
coefficient r be 3.935. We make this logistic map to
recurs 10000 times and store the sequence of numbers
into memory. Considering that the initial part of the
sequence is not so chaotic, we start from the 2000th
number. The following process is the same as the random
method of Java.

We use two kinds of methods to assign 10000 subtasks
to 100 nodes to reason. And then the average subtasks of
each node should be 100. According to the results, we

calculated the variance of each node. We did 1000 times
experiments in a round. As is shown in Fig. 4, after 1000
rounds experiments, we found that the situations, in
which the sum of the variance of Java random method is
bigger than the logistic appeared 501.4 times in average.
And the opposite situations appeared 498.6 times in
average. In other words, the situations in which the
random method of Java performed better appeared 498.6
times in average, the improved random method
performed better appeared 501.4 times in average. We
can conclude that the improved method and the random
method of Java had the same randomness.

As for efficiency, we did another round of experiments.
But the time of generating 100000 random integer
numbers by Java Random method is around 7006707.13
nanoseconds in average, while the new logistic method is
around 4074179.72 nanoseconds in average. We can tell
from the Fig. 5 that the efficiency of improved random
method is better.

According to amount of results, we conclude that the
performance of the new hybrid method is as good as
random method in Java, while the time-cost is nearly the
half amount. Eventually, we adopt our new hybrid
method as our task scheduling principle.

From another point of view, we consider that the
execution time of each sub-task differs from each other.
Thus, we can measure the time complexity through
degree. Degree of a logic connector is nest of the
connector in a logical formula. For example, if A and B
does not include logic connector, degree(A)=0;
degree(A→B)=1; degree(A→(A→B))=2;
degree((A→B)→(A→B))=2; degree(A→(A→(A→B)))
=3. Let’s just say that the higher the degree is, the more
complex the sub-task is. Thus, the completion time of the
sub-task is longer.

IV. ILLUSTRATION

Here is a scenario about air traffic control field. We
use this scenario to illustrate the working process. We
assume a scene which contains three planes. In this
scenario, we want to predict danger and make the planes
to react according to the prediction in order to avoid
danger. We will use spatio-temporal deontic epistemic
relevant logic system. Here we assume that a plane is
flying at a constant speed.

Scenario: As is shown in Fig. 6, we assume that in a
flying area, at some certain time, there are three planes A,
B and C flying in the same area. Plane A and plane B are
in the same airline and flying in the opposite direction.
Meanwhile, Plane C is moving in the same direction
behind plane B. And plane C is no faster than plane B.

Defined predicates:
ccording to the scenario, we define predicates as

follows:
SameAirline(i, j) means “plane i and plane j are flying

in the same airline”,
OppositeDirection(i, j) means “plane i and plane j are

moving in the opposite direction”,
SameDirection(i, j) means “plane i and plane j are

moving in the same direction”,

498 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

Faster(i, j) means “plane i is moving faster than plane

j”,
Danger(i) means “plane i is in danger”,
FlyToRight(i) means “plane i flies to its own right”.
Maintain_state(i) means “plane i maintains the original

state”.
SafeDistance(i, j) means “the distance between plane i

and plane j is a safe distance”
FlyBehind(i, j) means “plane i is flying behind plane j”

Empirical theorems:
According to the scenario and common sense, we work

out empirical theorems as follows:
①∀i∀jKi((SameAirline(i, j))∧OppositeDirection(i, j))
⇒ Ki(F(Danger(i)∧Danger(j)))
②∀i Ki(F(Danger(i))⇒ O(FlyToRight (i))
③∀i∀jKi((SameDirection(i, j)) ∧(SameAirline(i, j))
∧FlyBehind(i, j)∧¬Faster(i, j)∧SafeDistance(i, j)) ⇒
Ki(¬F(Danger(i)))

Figure 6. Current situation of three planes

④∀ i Ki (¬F(Danger(i))) ⇒Maintain_state(i)
On above, K is an epistemic operator, F is a temporal

operator. Kap stands for “a knows that p”, and FA means
“it will be the case at least once in the future from now
that A”.

Facts:
From the scenario, we extract 9 facts as follows:

①SameAirline(PlaneA, PlaneB),
②OppositeDirection(PlaneA, PlaneB),
③SameDirection(PlaneB, PlaneC),
④¬Faster(PlaneB, PlaneC),
⑤SafeDistance(PlaneB, PlaneC),
⑥FlyBehind(PlaneC, PlaneB)

Detailed illustration:
(1) The user input empirical theorems ①, ②, ③, ④all
the facts and chose the Spatio-Temporal RL logic system.
(2) Logic Process Module checked the input of the user
is suitable to spatio-temporal deontic epistemic RL logic
system. The conclusion of empirical theorem ① appears
in empirical theorem ② and the premise of empirical
theorem ④ contains the conclusion of empirical theorems
③ According to the task division algorithm, Task
Division Module divided 4 theorems and facts into 2
classes, class1 and class 2. Class 1 contained theorem ①,
② and fact ①, ②. Class 2 contained theorem ③, ④ and
fact ③, ④, ⑤, ⑥.

Figure 4. Randomness comparison

Figure 5. Efficiency comparison

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 499

© 2013 ACADEMY PUBLISHER

(3) After task division, according to the task scheduling
algorithm, Task Scheduling Module assigned class 1 to
Reasoning Node No.1, class 2 to Reasoning Node No.2.
(4) After receiving subtask, two nodes started to reason.
In Reasoning Node No.1, it deduced two results:
KplaneA(F(Danger(planeA)∧Danger(planeB))) and
O(FlyToRight(planeA)) with 2 unit time. While
Reasoning Node No.2 deduced KplaneC(¬F(Danger
(planeC))) and Maintain_state(planeC) with 2 unit time.
(5) Task Integration Module integrated all 4 results and
Duplication Checking Module found no duplication
within them.

Finally, Results Saving Module saved 4 results and
presented them to the user.

V. CONCLUDING REMARKS

We presented a distributed forward reasoning engine
with general purpose called DifreEngine. And then we
described its architecture. After that we gave a working
process of DifreEngine to show how it worked. We
solved the task division problem by using a dividing
method according to logic predicate. And we used many
strategies to let node management manage reasoning
nodes. In task scheduling module, we proposed a random
number method according to logistic mapping. At last,
through an illustration we described the usability of
DifreEngine and concluded DifreEngine had 3
advantages: high efficiency, robustness and low cost.

In the next step, we are about to implement the whole
system, especially focuses on the middleware layer and
the application layer. Our main job will be: first, finish
the details of the middleware layer including the applying
of middleware and its modification; second, implement
the modules in the application reasoning layer.

ACKNOWLEDGMENT

The authors would like to thank the editors and
anonymous reviewers for their valuable comments and
suggestions. This research work is supported by
Technology Project of Liaoning Province (2011216027).

REFERENCES

[1] J. Cheng. “Anticipatory Reasoning-Reacting Systems”, in
Proc. International Conference on Systems, Development
and Self-organization, 2002, pp.161-165.

[2] Yuichi Goto, Takahiro Koh, Jingde Cheng. “A General
Forward Reasoning Algorithm for Various Logic Systems
with Different Formalizations”, Knowledge-Based
Intelligent Information and Engineering Systems, 12th
International Conference, KES 2008, pp. 526-535, Sep
2008.

[3] Fensel, D. van Harmelen, F. “Unifying Reasoning and
Search to Web Scale”, IEEE Internet Computing 11(2), 96,
94–95, 2007.

[4] Fensel, D. van Harmelen, F. Andersson, B., Brennan, P.,
Cunningham et al. “A Platform for Web-scale Reasoning”,
in Proceedings of the International Conference on
Semantic Computing, pp.524–529, 2008.

[5] Herranz Javier, Nin Jordi, Solé Marc. “Kd-trees and the
Real Disclosure Risks of Large Statistical Databases”,
Information Fusion, v 13, n 4, pp.260-273, Oct 2012.

[6] Li Peiqiang, Zeng Yi, Kotoulas Spyros. “The Quest for
Parallel Reasoning on the Semantic Web”, 5th
International Conference on Active Media Technology.
Proceedings: Active media technology. Lecture Notes in
Computer Science, volume 5820, pp.430-441, Oct 2009.

[7] Yuh-jen Chen, Yuh-min Chen, Yung-sheng Su,
Chiun-cheng Wen. “Ontology-based Distributed
Case-based Reasoning in Virtual Enterprises”,
International Journal of Software Engineering and
Knowledge Engineering, v 19, n 8, pp.1039-82, Dec 2009.

[8] Atila Madureira Bueno, Andre Alves Ferreira, Jose
Roberto Castilho Piqueira. “Modeling and Filtering
Double-frequency Jitter in One-way Master-slave Chain
Networks”, IEEE Transactions on Circuits and Systems
Part I: Regular Papers. Dec 2010.

[9] Adjiman, P., Chatalic, P., Goasdoue, F., Rousset, M.-C.,
Simon, L. “Distributed Reasoning in a Peer-to-peer Setting:
Application to the Semantic Web”, Journal of Artificial
Intelligence Research, v 25, p 47, 2006.

[10] Sang-Hoon Kim, Youngjae Lee, Jin-Soo Kim. “FlexRPC:
A Flexible Remote Procedure Call Facility for Modern
Cluster File Systems”, IEEE 2007.

[11] Yan Sun, Min Sik Kim. “A Pipelined CRC Calculation
Using Lookup Tables”, Proceedings of the 7th IEEE
conference on Consumer communications and networking
conference, Jan 2010

[12] Chongquan Zhong, Li Zhang, Hongyu Li and Li Tian.
“Research and Implementation of Dual-Server
Hot-Standby of Configuration Software”, Proceedings of
the 6th World Congress on Intelligent Control and
Automation, June 2006.

[13] Wei Song. “Research on Logistic Mapping and
Synchronization”, Intelligent Control and Automation,
2006. WCICA 2006. Volume1, pp.987 – 991, 2006.

[14] Shih-Liang Chen, Tingting Hwang, Wen-Wei Lin.
“Randomness Enhancement for a Digitalized
Modified-Logistic Map Based Pseudo Random Number
Generator”, 2010 International Symposium on VLSI
Design, Automation and Test (VLSI-DAT 2010),
pp.164-167, 2010.

Chunyan Han was born in Liaoning
province of China in 1973. She earned
the bachelor degree in Computational
Mathematics and Application Software
in 1996 from Fudan University and the
master degree in Computer Architecture
in 2002 from Jilin University, China.
Her main research interests include
information system engineering and
distributed systems.

She is currently a PHD candidate of the college of
Information Science and Engineering of Northeastern
University. She has published more than 10 research papers
from 2009.

Jianzhong Qiao was born in
Xingcheng of Liaoning province of
China in 1964. He got his bachelor
degree in Computer Software from Xian
Jiaotong University, Xian, China in
1986, master degree in Computer
Software from Shenyang Institute of
Computing Technology of Chinese

500 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

Academy of Sciences, Shenyang, China in 1991 and PHD in
Artificial Intelligence from Dalian University of Technology,
Dalian, China. His current research interests include distributed
computing, operating system, software architecture.

He is a professor in college of Information Science and
Engineering, Northeastern University.

Yunxiao Wang was born in Dalian of
Liaoning province of China in 1988. He
began the study of Software Engineering
in Software College of Northeastern
University, Shenyang, China from 2007
to 2011. Then he got his bachelor degree
in Software Engineering in 2011. In July
2011, he continued to study in Software
Engineering in Northeastern University

as a master degree candidate.
Now he is a student in Information System Engineering lab

of Software College of Northeastern University.

Yixian Liu was born on July 9th, 1982
in Anshan, China. He got his bachelor
degree of Engineering in Computer
Science and Technology from Wuhan
Universiry, China in June 2004 and
received his master degree of Science in
Computer Science from New University
of Lisbon, Portugal and Free University
of Bozen-Bolzano, Italy in 2007.

From December, 2008, he got a
professional position at Software College of Northeastern
Univerisy, China. His research interests include computational
logics, software engineering, service science and cloud
computing.

Zhiliang Zhu was born in 1962. He
earned his PHD degree in Computer
Science from Northeastern University,
China in 2002. His main research
interests include chaos-based digital
communications, complex-network
theories, network communication security,
information integrate, complexity
software system, etc.

He is the professor and PHD
supervisor of Software College, Northeastern University,
Shenyang, China. As a person in charge or a principal
participant, he has finished more than 10 national, provincial
and ministerial level research subjects of China.

Prof. Zhu is a senior member of quite a few professional
academic committees, for instance, China Computer Federation
(CCF), the Chinese Institute of Electronics, etc.

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 501

© 2013 ACADEMY PUBLISHER

