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Abstract—In this paper, a self-government particle swarm 
optimizer (SGPSO) is proposed to improve the performance 
of original PSO, in which particle updating depends on local 
best information searched at anterior runs as well as 
individual history best and global best at present. To 
evaluate the novel algorithm, some benchmark functions are 
employed in comparison with PSO. Experimental results 
show that the proposed algorithm can search more optimal 
solution than PSO and indicate the effectiveness of the novel 
algorithm to solve optimization problems. Finally, the 
proposed algorithm is applied in soft-sensing the Texaco 
furnace temperature. It is convinced that SGPSO based soft 
sensor is very capable of real-time assessment of the furnace 
temperature in the Texaco gasification process. 
 
Index Terms—particle swarm optimization, self-government, 
texaco gasification 
 

I.  INTRODUCTION 

Particle swarm optimization (PSO) algorithm is an 
important and usual member of swarm intelligence 
methods for solving global optimization problems. In 
1995, PSO was originally developed by Eberhart and 
Kennedy [1,2], inspired by social behavior of bird 
flocking and fish schooling. Like genetic algorithm, ant 
colony algorithm etc., PSO is associated with artificial 
life and evolutionary computation, which can be easily 
implemented and is computationally inexpensive. In view 
of these advantages, PSO has been successfully applied in 
many fields including function optimization, fuzzy 
control, artificial neural network training and so on. 
However, for more and more complicated problems, PSO 
proved to be incapable in some cases. Therefore, in order 

to strengthen the optimization ability of PSO, researchers 
gradually proposed many advanced PSO algorithms. 
Eberhart and Shi [3] firstly concluded developments, 
applications and resources of PSO. Considering the 
significance of parameter selection in PSO, Shi and 
Eberhart [4] studied the effect of different parameter 
values on the evolutionary performance. Ref. [5] reached 
the effect of population structure on the performance of 
PSO. Some scholars [6] used cluster analysis method to 
investigate PSO’s performance. Also, researchers brought 
mathematic concept into PSO. Ref. [7,8] presented PSO 
incorporated with function “stretching” to alleviate the 
local optimization problem. Parsopoulos and Vrahatis [9] 
made used of nonlinear simplex method to initialize PSO 
to expand the search space for better solution. Ref. [10] 
introduced Gaussian mutation scheme into PSO, which 
was proved to be successful in computing the better 
solutions than those by PSO. Previously, people only 
used the simplex algorithm and the advanced versions to 
settle problems. From another angle, it can be considered 
to combine other algorithms effectively. For instance, 
Wang and Li [11] integrated PSO and SA (simulated 
annealing) to improve the performance of PSO. Shi et al. 
[12] have presented an improved GA and a novel PSO-
GA-based hybrid algorithm. Kao [13] focused on a 
hybrid method combining two heuristic optimization 
techniques, GA and PSO for the global multimodal 
function optimization problems. Liu et al. [14] presented 
an improved particle swarm optimization combined with 
chaos. Sun et al. [15,16] proposed a new PSO with 
quantum behavior (QPSO) which could improve the 
optimal effect. Besides, Sha and Hsu [17] proposed that 
the particle movement in PSO is based on the swap 
operator. Wen and Cao [18] presented a modified particle 
swami optimizer based on cloud model. Pan et al. [19,20] 
studied discrete PSO algorithm in detail and applied it 
successfully. Huang and Gu [21] proposed that binary 
particle swarm algorithm is integrated into cultural 
algorithm framework to develop a more efficient cultural 
binary particle swarm algorithm. Chen [22] developed 
refined binary particle swarm optimization, in which the 
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individual particle moves stochastically toward the 
position that is affected by the present velocity, the 
individual best performance and the best performance of 
the group. Hao [23] proposed a new stochastic particle 
swarm optimization algorithm based on cluster analysis 
for ensuring global convergence. A simplex particle 
swarm optimization derived from the Nelder-Mead 
simplex method [24] was proposed to optimize the high 
dimensionality functions. Song et al. [25] introduced the 
centroid of particle swarm in standard PSO model, then 
combining the strong chaotic motion and the simplex 
method. Shu and Yang [26] presents a new approach to 
the solution of optimal manufacturers production and 
delivery scheduling problem, using improved particle 
swarm optimization technique. 

In this paper we propose SGPSO algorithm for 
optimization problem in the Texaco gasification. The 
update of each particle’s position relies on not only the 
information from the individual historical best and the 
global historical optimum at current run, but also the 
local optima searched at the anterior runs. The 
effectiveness of the proposed algorithm will be verified 
by some typical benchmark functions. Then, SGPSO is 
used in estimation of Texaco furnace temperature. The 
rest of the paper is organized as follow: The next section 
introduces the principle of the original PSO algorithm. 
Thoughts of SGPSO algorithm are presented in Section 3. 
In Section 4, the verified results of test functions by using 
SGPSO are provided. Section 5 illustrates the application 
of SGPSO in the Texaco gasification process. Finally, 
Section 6 draws a conclusion for this paper. 

II.  ORIGINAL PARTICLE SWARM OPTIMIZER 

Particle Swarm Optimization (PSO) is an evolutionary 
computation technique. Each particle in the swarm 
represents a candidate solution to the solved problem. 
The state of the particle in the search space is always 
defined by its position and velocity. Then, the position 
and the velocity are adjusted dependently on its own and 
the neighborhood experience regularly. 

In a D-dimensional problem space, assume that there is 
a swarm with m particles. The position of ith particle is 
denoted by a D-dimensional vector 1 2( , , , )i i i iDX x x x= L  
and its velocity is represented by 1 2( , , , )i i i iDV v v v= L . 
The personal best position of particle i found so far is 
denoted by 1 2( , , , )i i i iDP p p p= L and the current best 
position of the whole swarm is 1 2( , , , )g g g gDP p p p= L . 
The fitness value of each particle is evaluated by the 
objective function. At each generation, the velocity and 
position are updated according to the following equations: 

1 1

2 2

( 1) ( ) ( ( ) ( ))
( ( ) ( ))

id id id id

gd id

v k wv k c r p k x k
c r p k x k

+ = + −
                   + −

                (1) 

( 1) ( ) ( 1)
( 1,2, , ;  1,2, , )

id id idx k x k v k
i m d D

+ = + +
= =L L

                      (2) 

where k is the iterative number, w is the inertia weight. c1, 
c2 are learning factors, usually set to 2. r1, r2are two 

uniform random numbers distributed in the range of [0, 1]. 
This iterative process is repeated until a user-defined 
stopping criterion is reached. 

III. SELF-GOVERNMENT PARTICLE OPTIMIZATION 

The model for updating velocity in PSO algorithm 
refers to two factors, i.e. the personal best position of 
each particle Pi and the previous best position of the 
swarm Pg. However, some useful potential information 
may be overlooked, which influences the global 
searching ability. In this paper, a self-government particle 
swarm optimization algorithm is proposed, in which the 
local optimal solution searched several runs ago will be 
shared at the next run. The detailed SGPSO is described 
as below. 

Let ( )ap t  represent one of the anterior searched local 
best particles before tth experiment and it can be selected 
from former t-1 local best particles. The updating 
equations of the velocity and position are in the following. 

1 1

2 2

( 1) ( ) ( ( ) ( ))
( ( ) ( ))

id id id id

gd id

v k wv k c r p k x k
c r p k x k

+ = + −
                  + −

               (3) 

( 1) ( ) (1 )( ( ) ( )) 
( 1)

id id ad id

id

x k x k p t x k
v k

α α+ = + − −
                  + +

   (4) 

( ) { (1), (2), , ( 1)}a a a ap t p p p t∈ −L                 (5) 

where α is a constant in [0, 1], which represents the level 
of sharing the information inheritances from anterior 
searched local optima. At 1st run, there is no inheritanced 
local optimal information, so α is set to 1. As shown in 
(5), ( )ap t  is one component of t-1 local best particles 
searched at former t-1 experiments. 

The SGPSO can be transformed to random self-
government particle swarm optimization algorithm 
(RSGPSO), in which random weight of anterior searched 
local optimum is introduced. Equation (4) is changed as 
follows: 

3( 1) ( ) (1 ) ( ( ) ( )) 
( 1)

id id ad id

id

x k x k r p t x k
v k

α α+ = + − −
                  + +

 (6) 

And r3 could be unique random number in [0, 1] at each 
generation or the component of a D-dimensional random 
vector for particle i.  

The main work conducted in the novel algorithm is to 
improve the position updating equation from the point of 
not only sharing the information of the individual history 
best and the global optimum, but also combining the local 
optima searched at the anterior runs. 

IV.  NUMERICAL SIMULATION 

A.  Benchmark Functions 
To illustrate the effectiveness and performance of 

SGPSO algorithm for optimizing problems, a set of 8 
benchmark functions listed in Table 1 are adopted to be 
the examples in comparison with PSO algorithm. 
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B.  Experimental Results and Comparison 

The experimental results for each algorithm on the test 
functions are listed in Table 2. To evaluate the 
performance of the proposed SGPSO, original PSO is 
employed for comparison purpose and the solution 
quality is averaged. All experiments are repeated for 10 
runs. The parameters of PSO and SGPSO algorithm are 
also listed in Table 2. In addition c1, c2 are equal to 2 and 
w is 0.3 for PSO and SGPSO. In Table 2, F and D denote 
the functions and their dimension respectively; OS is the 
optimal solution; PS and EG represent the population size 
and the maximum generation. α is the restraining 
parameter in SGPSO. The best solutions and the 
parameters found in SGPSO are illustrated with bold 
letters.  

Seen from Table 2, it’s obvious that SGPSO and 
RSGPSO find the better result marked with bold letter for 
each function, which indicates that the algorithms are 
superior to PSO. For the small scale problems such as f3, 
f6, f7 with D=30, SGPSO or RSGPSO gets the better 
results than that by using PSO. Like f1, f2, f3, f4, f5, f8 with 
D=50, they are the medium scale problems and SGPSO 
still shows out its advantage of searching better solution. 
Also, for the big scale problem like f1 with D=100, 
SGPSO performs more effectively than PSO. Therefore, 
not only the low but also the medium and high 
dimensional functions are optimized well by SGPSO and 
RSGPSO. 

It is obvious that the solutions of f1, f2, f3, f4, f8 found by 
SGPSO and RSGPSO are much better than that by PSO. 
Especially for f1 with D=50 and D=100, the excellent 
characteristics of the novel method is clearly expressed 
with the more stable and better results under different 
values of α. Also, seen from f1, f5, f8, the maximum and 
average solutions almost don’t have big difference from 
the minimum solutions relatively, which indicates that the 
new algorithm is robust. Therefore, SGPSO and RSGPSO 

can be proved to have great advantage on optimizing f1, f2, 
f3, f5, f8. 

It is found that α has a great effect on the performance 
of SGPSO and RSGPSO. For f1, f2, f3, f8, with the 
increasing of α, the solution quality gets better 
simultaneously, and the best solutions are searched when 
α is 0.9. On the contrary, the best solutions of f5, f6 are 
obtained when α is equal to 0.1. Also, when α is 0.5, f4, f7 
get the optimal results. It’s concluded that α needs to be 
given different values in [0, 1] for different problems.  

The convergence curves of SGPSO and RSGPSO 
comparing with original PSO for 8 instances with 
different dimensions are shown in Fig.1. 

We can discover from Fig. 1 that the convergence 
speed of SGPSO algorithm is clearly faster than PSO on 
every test function. Especially, SGPSO algorithm is more 
efficacious than PSO for medium and big size function 
problems. 
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TABLE Ⅰ. 
BENCHMARK FUNCTIONS 

Function 
Number Function Description Feasible 

Solution Space

f1 2

1
( )

n

i
i

f x x
=

= ∑  [ 100,100]ix ∈ −

f2 
2

1 1
( ) ( )

n i

j
i j

f x x
= =

= ∑ ∑  [ 100,100]ix ∈ −

f3 ( ) max{| |,1 }ii
f x x i n= ≤ ≤  [ 100,100]ix ∈ −

f4 
1

2 2 2
1

1
( ) (100( ) ( 1) )

n

i i i
i

f x x x x
−

+
=

= − + −∑  [ 100,100]ix ∈ −

f5 2

1 1

1 1( ) 20exp( 0.2 ) exp( cos2 ) 20
n n

i i
i i

f x x x e
n n

π
= =

= − − − + +∑ ∑
 [ 32,32]ix ∈ −  

f6 2

1
( ) ( 10 cos(2 ) 10)

n

i i
i

f x x xπ
=

= − ⋅ +∑  [ 5.12,5.12]ix ∈ −  

f7 2 2 0.25 2 2 2 0.1
1 2 1 2( ) ( ) (sin (50 ( ) ) 1.0)f x x x x x= + ⋅ ⋅ + +  [ 10,10]ix ∈ −  

f8 6 2 2
1

2
( ) 10

n

i
i

f x x x
=

= + ∑  [ 100,100]ix ∈ −
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Figure 1.  The convergence curves of PSO, SGPSO and RSGPSO for 

benchmark functions 
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Take f1 with D=100, f3 with D=30,f5 with D=50 for 
example. The curve line of PSO falls more slowly than 
that of SGPSO and RSGPSO, which shows the strong 
global searching ability of the novel methods. And for f3 
with D=50 and f6, PSO is easy to stick into local 
minimum solutions, but SGPSO is not. In a word, the 

proposed algorithm improves the ability of searching 
global optimum and is easy to escape from local solutions. 
Additionally, from the perspective of optimizing 
functions, SGPSO algorithm is a more effective and 
superior algorithm comparing with original PSO. 

TABLE Ⅱ. 
THE COMPARISON RESULTS OF THE PSO, SGPSO AND RSGPSO ALGORITHM 

F, 
D, 
OS 

PS, 
EG α 

PSO SGPSO RSGPSO 

Min Max Average Min Max Average Min Max Average

f1, 
50, 
0 

100, 
2000 

0.1 6.06E-33 1.20E-4 1.20E-5 2.03E-35 2.54E-29 3.86E-30 2.93E-24 4.89E-20 5.05E-21
0.3 2.70E-34 7.86E-10 8.14E-11 8.48E-39 7.72E-34 8.74E-35 1.07E-7 3.15E-5 4.88E-6
0.5 9.11E-33 0.5291 0.0593 1.81E-39 4.13E-32 4.42E-33 5.58E-24 5.48E-21 6.18E-22
0.7 2.16E-32 1.69E-5 1.69E-6 3.90E-47 3.83E-31 3.86E-32 2.55E-41 4.53E-32 4.81E-33
0.9 1.31E-32 1.48E-7 1.48E-8 2.04E-52 1.38E-30 1.38E-31 6.08E-50 7.20E-33 7.24E-34

f1, 
100, 

0 

100, 
2000 

0.1 5.96E-7 2.81E+5 2.81E+4 1.96E-8 0.0125 0.0015 1.67E-5 0.0024 4.98E-4
0.3 5.45E-6 5.4729 0.7263 3.75E-13 6.71E-7 7.54E-8 3.51E-6 8.42E-4 1.70E-4
0.5 1.40E-6 2.49E+3 251.0544 2.96E-11 5.00E-4 5.17E-5 2.39E-8 3.38E-5 6.66E-6
0.7 1.68E-9 16.8386 1.7233 1.83E-14 3.50E-4 3.72E-5 3.50E-9 6.26E-6 7.77E-7
0.9 3.11E-5 18.2356 1.8976 1.86E-27 7.48E-7 7.49E-8 2.48E-21 4.61E-8 4.66E-9

f2, 
50, 
0 

150, 
1500 

0.1 1.86E+3 5.06E+3 3.29E+3 0.1244 3.03E+3 526.3157 1.12E+3 2.18E+5 4.34E+4
0.3 1.42E+3 4.31E+3 2.70E+3 0.0134 5.10E+3 571.6783 60.2672 3.78E+3 1.31E+3
0.5 2.17E+3 6.03E+3 3.55E+3 1.20E-3 2.68E+3 302.4756 457.8606 8.17E+3 2.12E+3
0.7 1.01E+3 7.22E+3 3.07E+3 4.51E-4 3.27E+3 352.5909 3.7155 2.56E+3 493.0762
0.9 824.7694 3.14E+3 1.87E+3 1.39E-11 2.07E+3 214.2739 1.00E-3 1.14E+3 138.1958

f3, 
30, 
0 

100, 
2000 

0.1 1.5991 4.5100 3.4126 0.0426 2.7089 0.5502 4.06E-5 6.1791 0.9335 
0.3 1.4831 7.4511 3.0705 0.0204 1.6182 0.4488 7.46E-5 3.5437 0.5579 
0.5 1.2358 9.5737 4.2166 6.70E-3 3.3361 0.4315 7.51E-5 3.533 0.4553 
0.7 1.3266 8.382 3.7894 3.11E-6 2.3025 0.301 1.44E-4 8.9403 1.3115 
0.9 1.4951 8.0448 3.8716 2.91E-10 4.0048 0.4201 1.90E-4 5.7301 0.7794 

f3, 
50, 
0 

100, 
2000 

0.1 45.9419 85.9772 57.6989 0.2031 60.0064 19.277 6.861 89.403 36.0781
0.3 53.0239 88.3306 70.7442 0.4533 58.7084 14.9346 7.6309 45.1122 21.8718
0.5 50.3266 91.1924 75.3893 0.3959 65.9432 21.7538 12.5211 60.9642 30.6562
0.7 52.8727 90.9625 69.8687 6.90E-3 73.975 15.3151 24.3419 91.9584 56.7467

 47.1727 89.7743 68.4389 4.89E-7 84.5946 9.8086 4.61E-4 61.1601 8.6771 

f4, 
50, 
0 

100, 
1000 

0.1 25.1521 30.9198 28.5107 20.1456 511.8787 88.4644 5.35E-6 22.8529 2.2946 
0.3 28.8938 85.8848 39.6046 13.0093 343.1682 66.9934 3.39E-5 141.9221 14.3166
0.5 28.8727 986.6365 156.3852 4.5866 3.18E+3 411.0205 4.44E-7 27.1979 2.7223 
0.7 27.1312 3.34E+4 3.50E+3 17.6173 1.78E+3 309.2532 1.16E-5 73.1538 7.3638 
0.9 5.1168 33.6682 24.3234 0.7243 5.56E+3 763.0506 1.58E-5 16.7609 1.6958 

f5, 
30, 
0 

100, 
1000 

0.1 1.51E-14 1.5017 0.3999 0.1006 1.778 0.6694 6.21E-20 1.51E-14 1.75E-15
0.3 7.99E-15 1.6462 0.1646 4.44E-15 1.51E-14 6.93E-15 7.67E-20 4.00E-14 4.55E-15
0.5 7.99E-15 2.0119 0.4669 1.17E-10 1.66E-4 1.85E-5 8.81E-20 1.51E-14 1.70E-15
0.7 7.99E-15 1.778 0.5776 4.44E-15 1.15E-14 5.15E-15 1.24E-19 1.15E-14 1.33E-15
0.9 7.99E-15 1.6462 0.1646 4.44E-15 1.51E-14 8.35E-15 1.04E-19 3.64E-14 4.11E-15

f5, 
50, 
0 

100, 
2000 

0.1 1.51E-14 0.0028 2.83E-4 8.88E-16 1.51E-14 3.73E-15 4.44E-15 2.22E-14 1.01E-14
0.3 1.15E-14 1.1551 0.1155 4.44E-15 1.51E-14 5.51E-15 7.18E-7 1.98E-5 5.73E-6
0.5 1.15E-14 1.471 0.2626 1.74E-5 2.3164 0.3426 4.44E-15 1.51E-14 6.57E-15
0.7 1.51E-14 1.8748 0.1875 2.86E-9 1.2697 0.1337 4.44E-15 1.51E-14 6.57E-15
0.9 1.51E-14 1.6462 0.4492 7.99E-15 1.87E-14 9.06E-15 1.51E-14 3.55E-6 3.70E-7

f6, 
30, 
0 

100, 
1000 

0.1 28.8538 85.5662 54.0331 0.0498 305.4811 41.9094 1.21E-5 39.7983 4.0356 
0.3 31.8387 65.6671 50.8423 2.57E-4 258.6166 72.7993 1.88E-5 32.8336 3.3447 
0.5 39.7983 82.5813 54.0262 0.2702 290.7098 159.8001 1.99E-5 43.7781 4.4381 
0.7 32.8336 77.6066 50.6433 54.7226 228.8895 145.3184 7.55E-5 63.6773 6.452 
0.9 46.763 70.6419 55.8171 50.8843 103.6366 81.9967 2.12E-5 64.6722 6.5157 

f7, 
30, 
0 

100, 
1000 

0.1 0.0505 1.6041 0.6014 0.0456 48.1482 35.7637 1.50E-4 2.7782 0.4688 
0.3 4.80E-3 0.7156 0.2846 1.8071 51.0527 36.6061 2.43E-4 5.0573 0.8355 
0.5 0.0394 1.6206 0.3062 0.0848 52.2338 38.3453 5.91E-5 1.9103 0.2566 
0.7 4.40E-3 1.317 0.5207 0.194 45.2783 34.1372 1.74E-4 5.313 0.6872 
0.9 0.0696 1.7102 0.7458 0.79 38.0195 25.9668 1.05E-4 4.1093 0.6032 

f8, 
50, 
0 

100, 
2000 

0.1 1.06E-33 1.62E-05 1.65E-06 2.21E-20 4.37E-16 4.90E-17 6.50E-34 1.37E-31 2.73E-32
0.3 2.58E-32 2.07E-05 2.07E-06 9.88E-35 3.58E-31 5.58E-32 1.63E-24 6.46E-22 1.08E-22
0.5 2.89E-34 0.7226 7.26E-02 1.17E-41 9.94E-32 1.02E-32 3.40E-17 1.19E-10 1.24E-11
0.7 4.62E-31 0.0011 1.12E-04 2.75E-41 3.07E-22 3.07E-23 2.13E-31 2.60E-21 2.61E-22
0.9 4.62E-33 30.4086 3.2582 3.96E-51 4.17E-29 4.18E-30 5.08E-47 7.91E-30 7.99E-31

E-n denotes ×10n. 
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V.  SOFT SENSOR OF  TEXACO FURNACE TEMPERATURE 
BASED ON  SGPSO 

A.   Texaco Gasification Process 
Texaco gasification is one of the most developing coal 

gasification technologies currently. It adopts the way of 
wetting ball mill with high security and reliability. The 
gasification provides the syngas as the raw material for 
the following systems. Thus, its stability would guarantee 
the reliable operation of these systems. The great progress 
of Texaco gasifier mainly relies on the operator’s 
experience. That is because it is very difficult to measure 
the gasifier furnace temperature. In the Texaco 
gasification process, the furnace temperature is a critical 
control parameter, which is closely related to the 
components of the syngas and the gasification efficiency 
thus affecting the product quality and yield. 

Currently, two methods are used for the furnace 
temperature measurement: (1) thermocouple 
measurement; (2) indirect estimation through methane 
content. The former one uses the thermocouple to directly 
measure the furnace temperature. But its life only lasts 
for about a week, which leads to the invalidation of 
indicating the temperature in a long time. On the other 
hand, the estimated temperature through methane content 
is time-delay and the accuracy is unsatisfactory. 
Therefore, a more precise measurement of Texaco 
furnace temperature is urgently needed. In this paper, two 
soft-sensing models that combine the proposed SGPSO 
and RSGPSO with BP neural network (SGPSO-NN and 
RSGPSO-NN) are established to realize the real-time 
measurement of the temperature so as to avoid the 
problems caused by the two former methods. 

B.  Soft Sensor Modeling of Gasifier Furnace 
Temperature 

Through the study on the Texaco gasification process, 
14 operational parameters that correlate with the furnace 
temperature are selected as the auxiliary variables for the 
soft sensors. The tag number in DCS and the descriptions 
of these variables are shown in Table 3. 

Among them, the flow of slurry to gasifer is the middle 
value of three measurements of FT-205/206/207; the 
slurry temperature is set to any value in the measurements 
of TE-203/253; the oxygen pressure is the arbitrary value 
in the PT-203/253 measurements, and the oxygen 
temperature is the any value in the TE-205/255 
measurements. 

In the 14 auxiliary variables, X1-X13 are sampled 
through DCS system. The methane content (X14) is 
calculated and recorded by the analyzer 3 times per day. 
As the aforementioned, the lifetime of the thermocouple 
is very short, so the historical data of the furnace 
temperature are obtained before the thermocouples are 
broken. Finally, 373 groups of modeling data are divided 
into two parts. The 273 groups are used as the training 
data to learn the parameters of the soft-sensing models 
and the remaining 100 groups as testing data to evaluate 
the generalization capability. The normalized historical 

data are listed in Table 4.  

 

TABLE Ⅳ. 
NORMALIZED DATA OF SOFT SENSOR VARIABLES 

No. X1 X 2 X 3 X 4 … X 12 X 13 X 14 Y 

1 0.593 0.954 0.948 0.836 … 0.948 0.765 -0.419 -0.424

2 0.576 0.947 0.953 0.875 … 0.956 0.822 -0.457 -0.400

3 0.561 0.955 0.956 0.875 … 0.959 0.757 -0.492 -0.368

4 0.518 0.943 0.959 0.904 … 0.968 0.763 -0.478 -0.397

5 0.512 0.946 0.948 0.914 … 0.965 0.800 -0.488 -0.421

6 0.502 0.938 0.957 0.925 … 0.974 0.830 -0.506 -0.412

7 0.483 0.665 0.718 0.936 … 0.814 0.677 -0.302 -0.706

8 0.493 0.695 0.720 0.964 … 0.831 0.711 -0.305 -0.775

9 0.494 0.688 0.707 0.927 … 0.807 0.661 -0.314 -0.957

10 0.440 0.617 0.646 0.938 … 0.844 0.604 -0.319 -0.885

… … … … … … … … … … 

364 0.659 0.660 0.655 0.850 … 0.919 0.756 -0.571 0.321

365 0.511 0.598 0.596 0.837 … 0.909 0.683 -0.593 0.157

366 0.427 0.574 0.575 0.816 … 0.917 0.670 -0.683 0.230

367 0.257 0.477 0.483 0.781 … 0.963 0.604 -0.922 0.427

368 0.336 0.482 0.484 0.772 … 0.953 0.648 -0.919 0.593

369 0.558 0.577 0.578 0.745 … 0.894 0.730 -0.595 0.096

370 -0.263 -0.222 -0.208 0.218 … 0.682 0.024 -0.773 0.452

371 -0.847 -0.810 -0.805 -0.071 … 0.641 -0.604 -0.697 0.633

372 -0.704 -0.698 -0.685 -0.103 … 0.570 -0.557 -0.710 -0.175

373 -0.738 -0.708 -0.697 -0.098 … 0.553 -0.575 -0.736 -0.564

TABLE Ⅲ. 
INPUT AND OUTPUT VARIABLES FOR GASIFIER TEMPERATURE SOFT 

SENSOR 

Variable
Name Tag No. Variable Description Unit

X1 FT-205/206/207 Flow of slurry to gasifer m3/h

X 2 PT-202 Pressure of slurry to gasifer MPa

X 3 TE-203/253 Temperature of slurry to gasifer ℃

X 4 FIC-208 Flow of oxygen to gasifer m3/h

X 5 PT-203/253 Pressure of oxygen to gasifer MPa

X 6 TE-205/255 Temperature of  oxygen to gasifer ℃

X 7 FT-217 Flow of quenching water to gasifer m3/h

X 8 TT-236 Temperature of quenching 
water to gasifer ℃

X 9 FT-212 Flow of water from 
gasifer quench chamber m3/h

X 10 TE-265 Temperature of water from 
gasifer quench chamber ℃

X 11 FIQ-213 Flow of syngas from gasifer m3/h

X 12 PT-206 Pressure of syngas from gasifer MPa

X 13 TE-213 Temperature of syngas from gasifer ℃

X 14 AT-202 Methane content ppm

Y —— Furnace temperature ℃
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The SGPSO-NN and RSGPSO-NN models adopt 7-14-
1 BP network structure. Both of the models have the 
same parameter settings as follows: the maximum 
generation is 300; the population size is 80; the inertia 
weight is 0.3; c1, c2 are 2. Because the restraining 
parameter α is important for optimization performance, 5 
different values of α are selected in [0, 1] and 10 
independent simulation experiments are executed for 
each value, respectively. The experimental results are 
shown in Table 5. Max, Min, Average, MSE respectively 
represent the maximum, minimum, average error and 
mean square error. It can be seen from Table 5 that the 
optimization performance of SGPSO is much better than 
RSGPSO and SGPSO can obtain best optimization 
results when α=0.3. 

 
Fig. 2 shows the convergence curves of the SGPSO 

and RSGPSO algorithms for optimizing the soft sensor 
parameters. It can be indicated that SGPSO performs 
better than RSGPSO algorithm both in convergence rate 
and accuracy. 

Fig. 3 and Fig. 4 illustrate the comparisons of training 
and testing results of SGPSO-NN models with the actual 
values. It indicates that the SGPSO-NN model outputs 
have good agreement with training data and provide 
satisfactory generalization capability for the distinct 
testing data. 
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Figure 2.  The convergence curve of SGPSO and RSGPSO for soft-
sensing 
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Figure 3.  Comparison between real output and SGPSO-NN output for 
training data 
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Figure 4.  Comparison between real output and SGPSO-NN output for 
testing data 

VI.  CONCLUSION 

In this paper, we proposed a novel self-government 
particle swarm optimization algorithm. The feature of the 
proposed method is that the updating of each particle is 
dependent on not only the individual historical best 
position and the global best position of the swarm, but 
also the local best optima searched at the anterior 
experiments. The performance of SGPSO was evaluated 
by using eight benchmark functions. The experimental 
results indicated the great effectiveness of the proposed 
algorithm and that SGPSO is obviously better than the 
original PSO. Because of global optimization capability, 
SGPSO-based neural network is applied to soft-sensing 
the gasifier temperature in the Texaco gasification 
process. The results imply that the performance of 
SGPSO meets the real-world requirements. 

In the future works, two directions can be considered 
to make some advancement in this novel algorithm. On 
the one hand, the more appropriate setting of α would be 
found to improve the performance of SGPSO. On the 
other hand, the proposed method can be used to solve 
some discrete combinatorial optimization problems such 
as FSSP, JSSP besides the continuous optimization 
problem mentioned in this paper.  

TABLE Ⅴ. 
THE RESULTS OF SGPSO-NN AND RSGPSO-NN WITH DIFFERENT α 

α  0.1 0.3 0.5 0.7 0.9 

SGPSO 

Max 12.319 6.153 6.868 6.602 9.863

Min 7.204 6.009 6.436 6.080 6.385

Average 7.742 6.064 6.648 6.289 8.823

MSE 1.608 0.045 0.146 0.169 1.032

RSGPSO 

Max 13.085 14.153 13.058 12.806 11.686

Min 7.327 6.652 7.850 6.299 7.641

Average 10.720 11.335 10.920 9.980 10.323

MSE 1.853 2.259 1.744 2.317 1.132
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