
 
Figure 1. General design of our SAN. 

Size-based Data Placement Strategy in SAN 
 

Yihua Lan,Yong Zhang, *Haozheng Ren 
School of Computer Engineering, Huaihai Institute of Technology, Lianyungang, China 

Email: lanhua_2000@sina.com,zhyhglyg@126.com,renhaozheng666@163.com 
 

Chao Yin 
School of Computer Science, Huazhong University of Science and Technology, Wuhan, Hubei 430074 P.R.China 

Email: 675332223@qq.com 
 
 
 

Abstract—This paper introduced an even data distribution 
strategy in SAN. Even data distribution is always the target 
of distributed storage design. Many articles dedicate the 
purpose. We use size-based data placement here to 
guarantee the data distributed evenly at furthest. Size-based 
data distribution separates the SAN into zones, and each 
zone has some storage devices (SD), different sized data will 
fill into different zones. Two kind of allocating algorithms 
are used to keep the data distribute evenly: orderly and best 
fit first. Our design will achieve 1) the data will even 
distributed on each storage devices at furthest; 2) read and 
write requests will even access the SDs, and 3) bandwidth 
can be improved at our system. Experimental results 
showed our design can optimize data distribution. 
 
Index Terms—Data placement, Size-based, SAN, Even 
distribution 
 

I.  INTRODUCTION 

Data placement is a fascinated field in data storage [1-
2]. Common consideration in data placement is 
effectivity, even distribution, and less energy 
consumption. Effectivity is a complex issue, for many 
conditions can affect the affectivity, such as CPUs’ 
ability of computation, disks’ speed, throughout of 
network or I/O circuit and so on. Then, energy saving is 
another hot point of current storage research, and it is not 
a single problem of data placement. In this article, we 
dedicate in the even distribution of data. 

Even distribution of data also has many solutions and 
different angles to the problem. Consistent hashing [3] 
proposed an even distribution in distributed storages. Ref. 
[4] is a fast data replacement focused on replicated data. 
Andre Brinkmann et.al [5] proposed a compact, adaptive 
data placement for non-uniform disks. Andre Brinkmann 
et.al [6] also found an efficient distributed data strategy 
for Storage Area Networks. Ricardo Vilaca et.al [7] 
researched the relationships between data, and proposed a 
correlation-aware data placement strategy for key-value 
stores. In peer-to-peer system, Ramazan S. Aygun et.al 
proposed a conceptual model for data management and 

distribution method [8].  
Our consideration here is for even distribution, and not 

only the data requests, but also focuses on the size of 
requests. Our distributed environment is a Storage Area 
Networks (SAN), and in the SAN, there are some storage 
managers(SM) and some storage devices (SD). Storage 
managers distribute the data to the storage devices, 
distribution strategy based on the free capacity of each 
disks or devices. 

II. GENERAL DESIGN OF SYSTEM 

The system we designed here as “Fig. 1” shows. 
 
In the SAN, there is m SMs to manage the outer I/O 

request. The main job of SM are: get outer I/O requests 
and dispatch them to the SDs, including read requests and 

write requests; manage the free space of each SD,  
allocate the write requests to SDs to even distribute the 
data based on requests’ size; manage the metadata and 
data allocation table. The n SDs are store data. A single 
SD can be a single disk, or a RAID. 

A.  Data Reallocating Strategy in SM 
SM will reallocate the data. To reallocate a request, 

two ways can be used. The first way is calculate the 
original address to new address, that is:  

( )addressoriginaladdressnew Φ=  (1) 

 

Manuscript received August 8, 2012; revised September 1, 2012;
accepted September 1, 2012. This work was part supported by the
Natural Science Foundation of Huaihai Institute of Technology under
Grant Z2011036, *corresponding author. 

426 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.2.426-434



Level 1

Level 2

Level 3

Zone 0 Zone 1 Zone 2

SM0

SM1 SM2 SM3

Figure 2. Three zones in storage system. 

All the original address can map to a new address, and 
the function can be hashing function, such as consistent 
hashing, or simple arithmetic function. This way is easy 
for SM which can only store the function Ф. 

Another way is using mapping table. Mapping table 
stores a couple of addresses such as: (original address, 
new address). Mapping table can help SM reallocate data 
in flexible manner, but SM should store a huge mapping 
table in memory. 

The compromise is to use hierarchic storage 
management. Our strategy with data reallocating is 
storing different size of data in different SDs. The first 
level of storage system is classifying level. This level 
composed by one or more SMs. These SMs dispatch the 
outer I/O requests to other SMs, dispatching based on the 
requests’ size. For example, the request can fall into three 
zone according the size of data: (0, 8kB], (8kB, 
16kB],(16kB,+∞). Each size zone can be managed by 
some SMs, these SMs are belong to second level. As “Fig. 
2” shows, each size zone has 1 SM, and first level only 
has 1 SM. The third level is storage level, it is composed 

by all SDs. The third level stores all the data. Every SD 
belongs to a size zone, and only store the data which size 
is the same as corresponding size zone. 

The SM in first level uses a single function to dispatch 
the requests. For the example above, the corresponding 
function should be: 

⎪
⎩

⎪
⎨

⎧

≥
<≤

<
=

KBsizedataSM

KBsizedataKBSM

KBsizedataSM

toSend

163

1682

81

 (2) 

The SMs in second level can use different way to 
dispatch requests to their corresponding SDs. The first 
way is simply sending the data into SDs. This method 
requires the SM record the mapping table of all the data. 
For large data size requests, this method is working well 
for little requests can be large data size, so less records in 
mapping table. The mapping table should be a triple: 
(original address, new address in SD, data size).  The new 

address in SD composed by two components: SD number 
and offset address in the corresponding SD. 

The second way to send data to SDs is using linear 
hashing function. This is very useful when requests are 
small data size. Mapping table should be large if data size 
is small, and linear hashing function is the better way to 
reallocate the small data requests. 

B.  Operation Commands of SM 
For completing the SM’s work, some commands 

should be defined. These commands mainly include write 
and read operations. SMs in first level have some 
different command with level 2 SMs, and the commands 
show as follow: 

Transfer requests: This command will dispatch 
requests to different level 2 SMs based on data size. The 
command requires outer data, especially its data address, 
data size and read/write flag. Data requests should 
dispatched to level 2 SMs according to the data size. 
Output of this command is level 2 SM number as (2) 
illustrated. For read requests, this command will wait 
until next command “Return reading result” returns, 
while write requests, this command will return true or 
false when lower devices success write data or fail. 

Return reading result: This command receives the 
data from level 2 SMs and returns it to the upper file 
system. 

The second level SMs have different commands with 
level 1 SMs, and they are showed below: 

Dispatch requests: This command dispatches the 
requests from level 1 SMs to the lower SDs. It requires 
requests’ information including data address, data size 
and read/write flag. According the reallocate strategy 
described in section 2.A, the SMs in level 2 will fill the 
mapping table or calculate the corresponding arranged 
address according to a linear hashing function such as (1). 

Return reading result: This command will return 
reading requests’ data from SDs which belongs to the 
same zone of level 2 SM. 

C.  Lookup the Requests’ Address 
Generally, the requests will find their address 

according the algorithm and commands we talked above, 
but sometimes, different requests will access the same 
address with different data size. For example, zone 
divided as (2) defined, and two requests come with 
following information:  

a) Write 32KB in address of 3412. 
b)  Read 4KB in address of 3412. 
The scenario will occur when write a file to the disk, 

then read a piece of file in a certain demand. According 
the algorithm, and (2), request a) will write the data in a 
storage device in zone 2, the address transformation will 
complete in SM3, but if request b) comes, SM0 found its 
data is only 4KB, so the SM0 will dispatch request b) to 
SM1. SM1 have no correct data what request b) needed, 
so it certainly fail. 

To solve the problem, some SMs will record the 
original data address. Some SMs in level 2 already record 
the mapping table, and the original addresses of requests 
are recorded. So we only to add an original address table 

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 427

© 2013 ACADEMY PUBLISHER



Figure 3. Adjacent data with same size. 

1KB 1KB 2KB 2KB 1KB

0x10000 0x10400 0x10800 0x11000 0x11800

Figure 4. Adjacent data with same size. 

(OAT) to the SMs which uses hashing function to 
dispatch requests.  

OAT only record which requests’ addresses are in the 
zone. The size of OAT will be large if small data requests 
continuing come. The novel way to store these address is 
to merge adjacent data. To merge adjacent data, data size 
of each request will record. Luckily, the data request is a 
multiple of some certain base size, i.e. 1KB, so we can 
split the OAT into several groups. For example above, we 
can split OAT in SM1 as 8 groups, that is: group 0(1KB), 
group 1(2KB), group 2(3KB) and so on. All the data with 
the same size will in the same group. If some data are 
adjacent, they can be record as a single item. With 
grouping, the OAT item will be: 

(Group number, original address, data block account) 
Most adjacent data will be not the same size, and this 

is more complex for OAT item. We should record all the 
data size in the item. The final item form should be: 

(Original address, data size, data block account, data 
size, data block account,  …) 

All the items in OAT are sorted by original address. 
“Fig. 3” illustrated the scenario of adjacent data with 

same size, and the item in OAT would be (0x10000, 1, 4). 
This is the final form, and the second number means the 
single data block is 1 times of 1KB. 

“Fig. 4” illustrated the scenario of adjacent hybrid data 
blocks with different size. The corresponding item in 
OAT is: (0x10000,1,2,2,2,1,1). 

OAT will fill with coming requests, and each request 
will fill one item of OAT. 

But the requests will come at any time, and two 
operations will affect the OAT. The first is writing a data 
block that exactly adjacent with some data blocks, the 
other operation is erasing a data block that this data 
blocks is a part of an adjacent data blocks. The first 
operation will not create new item in OAT, just modify 
the corresponding item, if the next item’s start address is 
at the end of current item’s end address, the two items 
will merge into one item. The second operation need 
break an item into two items if the erased data block is at 
the center of chain, or only modify the start address, if the 
erased data block is at head of the chain, or subtract 1 of 
last number in the item, if the erased data block is at tail 
of the chain. The algorithm as “Algorithm 1” and 
“Algorithm 2” described. 

Searching for a data is simple according to the OAT 
items. Next paragraph, we will use some examples to 
explain various operation about OAT. 

Example 1. Request reads 1KB with the address 
0x10400 in “Fig. 3”. 

Address should be lookup at first. For OAT is sorted 
by original address, the first address larger than 0x10400 
can be found, we go back to find the previous address, 
that is 0x10000, and the required data probable in the 
item with the start address is 0x10000. Then, the end 
address can be calculated according to the item, which is 
0x11000. 0x10400 less than 0x11000, so the SM can send 
read request to the SDs to read 1KB data. 
Algorithm 1. Writing data operation in OAT 
Require: data address(DA), data size(DS) 
1. Find the item in OAT whose original address is the 

largest address which less than DA, mark this item as 
item0, its next item as item1; 

2. According item0, calculate the last address LA of the 
item; 

3. if(LA<DA and original address of item1 > DA) 
4. { 
5.          Create a new item(DA,DS,1) in OAT; 
6.          Return true; 
7. } 
8. if(LA==DA) 
9. { 
10.          Add (DS,1) to item0’s last; 
11.          if(DA+DS==original address of item1) 
12.          { 
13.                     Add item1 to item0; 
14.           } 
15.           Return true; 
16.  } 
17. if(LA>DA) 
18. { 
19.          Modify item0 according DA and DS; 
20.          if(DA+DS==original address of item1) 
21.          { 
22.                    Add item1 to item0; 
23.           } 
24.           Return true; 
25. } 
26. if(LA<DA) 
27. { 
28.         Modify item1 according DA and DS; 
29.         Return true; 
30. } 
31. Return false; 

 
Algorithm 2. Remove data operation in OAT 
Require: data address(DA), data size(DS) 
1. Find the item in OAT whose original address is the 

largest address which less than DA, mark this item as 
item0, its next item as item1; 

2. Calculate the original address and last address of 
item0 and item1,marked with SA0,LA0,SA1,LA1; 

3. if(SA0≤ DA≤LA0) 
4. { 
5.          Split item0 into 2 sub-items; 

428 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER



Figure 5. Two requests with different data size. 

6.          Sub-item0’s original address is SA0, and its 
last address is DA, sub-item1’s original address is 
DA+DS, last address is LA0; 

7.          Return true; 
8. } 
9. if(SA1≤ DA≤LA1) 
10. { 
11.          Split item1 into 2 sub-items; 
12.          Sub-item0’s original address is SA1, and its 

last address is DA, sub-item1’s original address is 
DA+DS, last address is LA1; 

13.          Return true; 
14. } 
15. Return false; 

Example 2. The request reads 1KB at 0x11000 in “Fig. 
4”. 

First find the largest address which less than 0x11000, 
and that is 0x10000 in “Fig. 4”. Then calculate the last 
address of the item. The item shows this data block chain 
has 2 data blocks which is 1KB, and 2 data blocks which 
is 2KB, at last, 1 data block which 1KB. Total data size is 
7KB, so the last address of this chain is 0x11C00, it is 
larger than 0x11000, so the data stores in 0x11000 is 
correct data, the SM can send request to lower SDs. 

Example 3. Add 1KB data at 0x11000 in “Fig. 3”. 
According to the “Algorithm 1”, DA = 0x11000, 

DS=1KB, the largest address which less than DA is 
0x10000, LA=0x11000. Because DA == LA, (1KB,1) 
should added to the item. The item is all 1KB data blocks, 
so only modify the number of data block to 5, that is 
(0x10000,1,5). 

Example 4. Remove 1KB data at 0x10C00 in “Fig. 3”. 
According to the “Algorithm 2”, DA = 0x10C00, SA0 

= 0x10000, LA0 = 0x11000, SA0≤ DA≤LA0, so we split 
the item into 2 sub-items. First sub-item is(0x10000,1,3), 
the second sub-item really does not exist because the 
original address of sub-item1 is DA+DS = 0x11000, it is 
the same as LA0, so there are no data in sub-item1. 

Example 5. Remove 1 KB data at 0x10800 in “Fig. 4”. 
According the algorithm, the item found first. SA0 = 

0x10000, LA0 = 0x11C00, DA = 0x10800, DS = 1KB, 
and SA0≤ DA≤LA0. Two sub-items will be split. Sub-
item0 is (0x10000, 1,2). Sub-item1’s original address is 
DA+DS, that is 0x10C00, the data block at 0x10800 is a 
2KB-size data block, 1KB removed and 1KB remained. 
So the sub-item1 is (0x10C00, 1,1,2,1,1,1). 

For storing OAT in different level 2 SMs, the problem 
we described at the beginning of this section has not 
solved yet. 32KB data stores in zone2, while the next 
request read 4KB data, it still be dispatched to zone0. So 
the OAT should store in level 1 SMs, when requests 
come, level 1 SMs should not dispatch it to the zones 
simply according its data size, but first lookup the OAT 
to find the probable address. If the address is not found, 
new item will add to OAT (if the request is write request) 
or return false to file system (if the request is read 
request). 

OAT will be large in level 1 SMs. Larger the OAT is, 
more search time cost. To accelerate the searching, more 
SMs can be added to level 1. 

OAT in level 1 also has a problem. See the “Fig. 5”, 
two requests are described as follow: 

a) Write 1KB data block at 0x10000. 

b) Write 32KB data block at 0x10400. 
The item in OAT could be (0x10000,1,1,32,1). If a 

new request read 1KB at 0x10400, the SM still does not 
know dispatch the new request to which zone. The 
solution is identified the items in OAT with zone number. 
Each zone has an OAT, and searching OATs is 
synchronous. The items in different OAT should be 
(0x10000, 1,1) and (0x10400, 32,1). 

Another problem is write many small sized data blocks 
and read a large sized data block which covers all the 
small data blocks. 

If the small data are all in a single zone, the read 
request success. While if the data blocks are in different 
zones, more steps should be follow to search the correct 
data. 

For all data is the multiple of a base size, i.e. 1KB, so 
we can split the read request into more tiny requests that 
each tiny request has 1KB data read request. The big read 
request success till all the tiny requests success. 

D.  Data Address Hashing in Level 2 SMs 
We talked about data address mapping above. All we 

talked about are based on mapping table, including OAT. 
This section we will talk about hashing algorithm. 

Hashing algorithm also mapping data address to 
storage devices. Consistent hashing algorithm is a good 
option, if multiple SDs in a zone and the SDs is 
distributed environment. If a zone has only 1 SD or all 
the SDs are composed a RAID, whatever which level the 
RAID is, simple linear hashing function can used. 

In our design, no distributed environment is present, so 
we give the linear hashing function we used. 

COANA mod=                 (3) 
In (3), NA is new address in SDs, and OA is original 

address that request’s data, and C is the capacity of SDs. 
If the zone has only 1 storage device, C is the real 
capacity of the device, while if all the SDs are the devices 
in a RAID, the capacity of C decided by the RAID level. 
If the RAID has parity, the C is less than arithmetic 
capacity of sum of every device’s capacity.  

III.  EVEN DISTRIBUTION OF REQUESTS 

Data requests in different application will be not the 
same. Commonly, we do not know the requests’ size and 
its address before it comes. But we can collect a day trace, 
and then analyze the trace to confirm the trace structure 
and data distribution according to the size. 

In (2), three zones are divided and three size periods 
are: (0, 8kB], (8kB, 16kB],(16kB,+∞). This is only an 
example.  

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 429

© 2013 ACADEMY PUBLISHER



Generally, system has Z zones and zone Zi has Si SDs. 
Each SD in a zone numbered with D0, D1,…, DSi. 
Totally, there are M SDs in the system. 

∑
−

=

=
1

0

Z

i
iSM                         (4) 

Requests’ size period splitting is to find an optimized 
way to fill different sized storages with different sized 
data, and it is a NP-hard problem. NP-hard problem has 
no optimized solution in global, or it is waste of time to 
get the solution.  

To solve the problem, we assume two scenarios: the 
first one is fixed storage devices and the second one is 
requests’ data size periods are fixed. The first scenario 
means the devices in each zone is fixed. 

We will analyze the two methods to distribute data 
evenly. There are three hypothesizes that: a) all the 
storage devices are the same capacity, b) no parity exist 
in the RAID and c) the bandwidth of each storage devices 
are the same, that means if a single device’s bandwidth is 
B, than a RAID’s bandwidth with 3 devices will achieve 
3B. 

A.  Fixed Storage Devices 
Even distribution means each SD has the same size of 

data. Suppose the trace has Ni requests with data size is 
DSi, total data size T is the sum-up of all the requests, 
without rewrite operation: 

( )∑ ×= ii DSNT                   (5) 
The write new data requests will distribute in M SDs, it 

will be prorated to the each zone according to the SD’s 
number. The proportion P will be: 

1210 :...::: −= zSSSSP       (6) 
Each zone will get corresponding portion of data 

according to (6), suppose DZi is the data size stored in Zi. 

M

TS
DZ i

i =                (7) 

For allocating new data write requests, we should 
group the requests according to the data size. G0 contains 
all the requests that data size less than 1KB, G1 contains 
all the requests that data size less than 2KB, and so on. 
Totally, there may be thousands of groups. The algorithm 
here shows how to allocate data size periods according to 
DZ. 
Algorithm 3. Generate data size periods orderly 
Require: Total new data size(T), SD number in each zone 
(Si), total SDs number(M), data size group account(GN) 
Return: portion list P. 
1. Construct a list L that has Z elements, each element 

is the max capacity of each zone, which is DZi. 
2. Construct P that has Z elements, each element is the 

begin size of the periods, P[0] is 0KB. 
3. j=-1; 
4. For i =0 to Z-2; 
5. { 
6.       CurrentCount = 0; 
7.       While(j++<=GN) 
8.       { 

9.              if(CurrentCount+ total data size in Gj<L[i]) 
10.             { 
11.                    CurrentCount+=total data size in Gj; 
12.                    P[i+1]=single data size of Gj; 
13.               } 
14.               Else  break; 
15.        } 
16. }  

The algorithm returns P and it contains all the start 
data size of the periods. So the size periods can 
be:[P[0],P[1]),[P[1],P[2]), … ,[P[Z-1], +∞). 

This algorithm fill the data orderly to the zones, each 
zones must contains data less than it max capacity. A 
better algorithm is use best fit first algorithm. Best fit 
means find the best capacity of zone that fit the sum of 
data size of several groups. The total data size of several 
groups may less than capacity of the zone, or large than 
capacity of the zone. 
Algorithm 4. Generate data size periods at best fit first 
Require: Total new data size(T), SD number in each zone 
(Si), total SDs number(M), data size group account(GN) 
Return: portion list P. 
1. Construct a list L that has Z elements, each element 

is the max capacity of each zone, which is DZi. 
2. Construct P that has Z elements, each element is the 

begin size of the periods, P[0] is 0KB. 
3. Construct a list K that has Z elements, each element 

are false, it mark the zone filled or not. 
4. j=-1; 
5. while(K has 2 elements are true at least) 
6. { 
7.       CurrentCount = 0; 
8.       while(j++<GN) 
9.      { 
10.             CurrentCount+=total data size in Gj; 
11.              if(CurrentCount best fit L[i] and K[i] == 

false) 
12.             { 
13.                    K[i] = true; 
14.                    P[i] = single data size of Gj; 
15.                    if(only 1 element in K is true) 
16.                    { 
17.                           Find the element K[k]; 
18.                           P[k] = +∞; 
19.                    } 
20.                    break; 
21.              } 
22.        } 
23.  }  
24. Sort P ascend; 

Algorithm 4 also returns P, but the element in P is the 
max data size of each period, that means the periods are: 
[0,P[0]) ,[P[0],P[1]), … ,[P[Z-2], P[Z-1]). Algorithm 4 
set P[k] is +∞ in line 18, and +∞ can be a comparative 
large number such as 10000, only guarantee no single 
request write such a big data. 

B.  Fixed Data Size Periods 
Fixed data size periods need rearrange the zones. It 

also has two strategies: orderly and best fit first. 

430 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER



Figure 6. Data size count of TPC-C 

Figure 7. Data size count of HM 

Figure 8. Data size count of Prxy 

Figure 9. Data size count of MDS 

For rearrange the zones should remove and add SDs 
inter zone, we do not talk about it here. 

IV.  EXPERIMENTAL RESULTS 

We use real traces to evaluate our design. The traces 
used are: 
a) TPC-C: is a database trace [9]. It is a whole day trace 

collected by the Performance Evaluation laboratory 
at Brigham Young University. 

b) MSR-Cambridge: this is a serial of traces [10]. They 
are collected according the volume of disks. The 
volumes include hardware monitoring server (HM), 
Media server (MDS), Firewall/web proxy server 
(Prxy) and others. But we only choose these three to 
evaluate our design. 

Table I illustrates the trace characteristics. For we only 
focus the new write requests, the table list the write traffic 

and working set. They are all sectors, means 512B. 

“Fig. 6” through “Fig. 9” are data size sum, it is the 
multiple of write requests count and single request’s data 
size. 

The environment we present here is a variable 

configured SMs and SDs. That is to say, for different 

trace, we use different configurations to compare which 
one will fit well. 

A.  Same Amount of SDs in Each Zone 
To evaluate simply, we first configure 3 zones and 

each zone has the same amount of SDs. 
Table II is the data size periods splitting of the traces 

with two algorithms. 
The evaluation results show TPC-C will distribute 

more evenly than other traces. Some traces like MDS, 
different zones have notable uneven distribution. The 
reason of this situation is some data size is too 
concentrated. For MDS, request whose data size is 128 
sectors almost a thousand times than others, this cause 
whichever the data is, the zone will store very large data. 
We can adjust the SDs’ amount in every zone to achieve 
more even distribution. 

TABLE II.   
TRACE CHARACTERISTICS 

Trace R/W Ratio Write Traffic 
(Sectors) 

Working Set 
(Sectors) 

TPC-C 223.03 187,024 4,405,685 

HM 0.55 42,943,920 5,235,621 

Prxy 0.03 112,821,145 2,040,080 

MDS 0.13 15,446,039 6,443,362 

TABLE I.   
DATA SIZE PERIODS SPLITTING IN SAME SDS 

Trace Orderly(sector) Best fit first(sector) 

TPC-C 0,144,208,+∞ 0,152,216,+∞ 

HM 0,9,80,+ ∞ 0,9,80,+ ∞ 

Prxy 0,9,66,+ ∞ 0,9,66,+ ∞ 

MDS 0,104,128,+ ∞ 0,105,152,+ ∞ 

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 431

© 2013 ACADEMY PUBLISHER



Figure 10. TPC-C’s Data distribution in three zones 

Figure 13. MDS’s Data distribution in three zones 

Figure 12. Prxy’s Data distribution in three zones 

Figure 11. HM’s Data distribution in three zones 

Figure 14. TPC-C’s Data distribution in a SD 

Figure 15. HM’s Data distribution in a SD 

Figure 16. Prxy’s Data distribution in a SD 

Figure 17. MDS’s Data distribution in a SD 

B.  Arbitary SDs in Every Zone 
This configuration is designed for uneven distributed 

traces like MDS and Prxy. 

Uneven distributed traces need more SDs to store the 
extra-large data. We set zone0 has 3 SDs, zone1 has 10 
SDs, and zone2 has 20 SDs. 

“Fig. 14” through “Fig. 17” illustrated the results of 

432 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER



Figure 18. 2 zones in SAN 

Figure 21. 10 zones in SAN 

Figure 19. 3 zones in SAN 

Figure 20. 4 zones in SAN 

this configuration; Table III is the data size periods. 

 
Evaluation results showed that even distributed traces 

like TPC-C can work well in arbitrary SDs in zone. If the 
SDs’ amount varies according to the trace trend, like 
MDS, it works better than the same SDs amount in each 
zone. But if the SDs’ amount varies against the trace 
trend, like HM and Prxy, the distribution can be worse. 

C.  Contrast of Different Zone Amount 
Zone amount can also affect the distribution of the data. 

More SDs can average the data. We use the TPC-C to 
evaluate the data distribution. In this configuration, we 
compare the data distribution of 2 zones, 3 zones, 4 zones 
and 10 zones, each zone has 3 SDs. 

Table IV is the data size periods splitting about the 
configuration. 

“Fig.18” through “Fig. 21” showed more zones the 
SAN has, more evenly the data distribute. 

V. CONCLUSIONS 

The experimental results showed that our design offers 
a new data distribution method. This method can 
distribute data evenly in every storage devices. 

There are some conclusions from the results: 
1) Even distributed trace can work well in arbitrary 

zones and arbitrary SDs in each zone. 
2) If the arrangement of zones and SDs tie in the 

trace’s trend, data can evenly distribute. 
3) More zones are better than fewer zones. 

REFERENCES 

[1] Y. Zhou, Q. Zhu and Y. Zhang, "Spatial Data Dynamic 
Balancing Distribution Method Based on the Minimum 
Spatial Proximity for Parallel Spatial Database," Journal of 
Software, volume. 6, pp. 1337-1344, 2011. 

TABLE III.   
DATA SIZE PERIODS SPLITTING IN ARBITRARY SDS 

Trace Orderly(sector) Best fit first(sector) 

TPC-C 0,56,160,+∞ 0,64,168,+∞ 

HM 0,9,65,+ ∞ 0,9,65,+ ∞ 

Prxy 0,9,66,+ ∞ 0,9,66,+ ∞ 

MDS 0,16,128,+ ∞ 0,17,128,+ ∞ 

TABLE IV.   
DATA SIZE PERIODS SPLITTING IN DIFFERENT ZONE AMOUNT WITH 

TPC-C 

Zone 
amount Orderly(sector) Best fit first(sector) 

2 0,192,+∞ 0,192,+∞ 

3 0,144,208,+ ∞ 0,152,216,+ ∞ 

4 0,120,184,224,+ ∞ 0,128,192,232,+ ∞ 

10 0,64,104,136,160,176,192,
208,216,224,+ ∞ 

0,64,104,136,160,184,200,216, 
232,248,+ ∞ 

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 433

© 2013 ACADEMY PUBLISHER



[2] C. Jin, N. Liu and L. Qi,"Research and Application of Data 
Archiving based on Oracle Dual Database Structure," 
Journal of Software, vol. 7, pp. 844-848, 2012. 

[3] Xianhui Li, Cuihua Ren, Menglong Yue, “A Distributed 
Real-time Database Index Algorithm Based on B+ Tree 
and Consistent Hashing”, In International Conference on 
Advances in Engineering 2011 , Volume 24, pp 171-176, 
2011 

[4] Zhenbin Yan, Wenzheng Li , “Research of a scheduling 
and load balancing scheme based on large-scale distributed 
systems”, in Software Engineering and Service Science 
(ICSESS), 2012 IEEE 3rd International Conference, pp 22-
24, June 2012 

[5] Bong Jun Ko, Vasileios Pappas, Ramya Raghavendra, 
Yang Song, Raheleh B. Dilmaghani, Kang-won Lee, 
Dinesh Verma, “An information-centric architecture for 
data center networks”, in ICN '12 Proceedings of the 
second edition of the ICN workshop on Information-
centric networking, pp 79-84, 2012. 

[6] Jui-Chi Liang, Jyh-Cheng Chen, Tao Zhang, “An adaptive 
low-overhead resource discovery protocol for mobile ad-
hoc networks”, Wireless Networks, Volume 17, pp 437-
452, 2011. 

[7] Ricardo Vilaca, Rui Oliveira and Jose Pereira, “A 
correlation-aware data placement strategy for key-value 
stores”, in proceedings of the 11th IFIP WG 6.1 
international conference on distributed applications and 
interoperable systems, pp 214-227, 2011 

[8] Ramanzan S. Aygun, Yi Ma, Kemal Akkaya, Glenn Cox, 
Ali Bicak, “A conceptual model for data management and 
distribution in peer-to-peer systems”, in Peer-to-Peer 
Networking and applications, Springer New York, volume 
3, issue 4, pp 294-322, 2010 

[9] “TPC-C blocks i/o trace.” Performance Evaluation 
Laboratory, Brigham Young University, 2010. 
http://tds.cs.byu.edu/tds/. 

[10] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-
loading: Practical Power Management for Enterprise 
Storage,” ACM Transactions on Storage, vol. 4, pp. 1–23, 
Nov. 2008. 

 
Yihua Lan received his Ph.D. degree in 
Computer Science from the School of 
Computer Science and Technology, 
Huazhong University of Science and 
Technology, Wuhan(HUST) in 2011, 
now he held teaching and research 
positions at School of Computer 
Engineering, Huaihai Institute of 
Technology (HHIT), Jiangsu, China. His 

research areas are image processing and analysis. His research 
interests include PDE methods for image processing, iterative 
methods, Krylov subspace methods, optimization algorithms, 
artificial intelligence, and high performance computer. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Haozheng Ren received the M.S.degree 
in computer engineering, China, in 2006, 
from the Lanzhou University of 
Technology. She is currently a teacher of 
the School of Computer Engineering, 
Huaihai Institute of Technology, where 
she has been an Instructor since 2008. 
Her research interests include PDE 
methods for image processing, iterative 
methods, Krylov subspace methods, and 

parallel algorithms. 
 

Yong Zhang received the M.S.degree in 
in School of computer science, SuZhou 
University in 2007, China. His M.S. 
subject is digital image processing.  He 
held teaching and researching positions 
at the School of Computer Engineering, 
Huaihai Institute of Technology, where 
he has been an instructor. His research 
interests include image processing and 
machine vision. 

 
Chao Yin has received his bachelor 
degree in chemistry in Huazhong 
University of Science and Technology in 
2001 has received his master degree in 
software engineer in Huazhong 
University of Science and Technology in 
2005. Now he is a Ph.D. student of grade 
two in Computer Science in Huazhong 
University of Science and Technology. 
His research areas are storage and theory 

analysis. His research interests include storage, high 
performance computer, and reliability research and energy 
consumption. 

434 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER


