
Realistic Real-time Facial Expressions
Animation via 3D Morphing Target

Mengzhao Yang
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.

School of Computer Information Engineering, Heilongjiang University of Science and Technology, Harbin, China
Email: yangmengzhao@gmail.com

Kuanquan Wang and Lei Zhang
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.

Email: wangkq@hit.edu.cn

Abstract— Realistic facial animation can enhance the im-
mersion characteristic of 3D games. This paper proposes
a 3D morphing target method based on GPU for real-time
animation of facial expressions. We employ texture mapping
to obtain a realistic appearance, and design a fast morphing
process to achieve a relatively high FPS by modifying
the morph data structure and implementing the morphing
algorithm in the shader. The algorithm can be realized and
divided into seven steps including creating morph target
expressions, evaluating difference vector, initializing morph
data structure, loading data into VBO, linking attributes
to shader and rendering facial expressions. The rendering
system also gives us convenient interaction with the digital
character and realizes quick expressions shift for practical
application. Experiment results show that the proposed
approach yields realistic real-time expressions animation.

Index Terms— morphing target, real-time, facial expression,
realistic appearance, digital character

I. INTRODUCTION

Realistic expressions animation from digital character
can enhance immersion of computer games and give
lifelike in film production, computer-aided instruction and
other fields [1]. As growing needs for interactivity, the
main challenge of computer-based expressions is not only
to approximate expressions to give a realistic looking but
also develop efficient method to realize it for real-time
and implement it easily, so that it can be well integrated
with existing GPU pipelines for practical application.

Therefore, we intended to research how to generate
realistic facial expression animation using 3D morphing
target technology. Furthermore, we hold that the inter-
active applications should be taken into account, so we
decrease complexity in computation and obtain a high
frames per second (FPS) to satisfy the needs for 3D game
by exploring the parallelism features of the current GPUs.

II. RELATED WORKS

Several facial expressions animation algorithms have
already been introduced, primarily in psychology and
computing research.

Corresponding author: Kuanquan Wang.

Ekman and Friesen [2] firstly introduced psycholog-
ical studies into facial perception which have helped
to identify universal expressions. Then, they proposed
a Facial Action Coding System (FACS) for describing
facial expressions [3]. The system described the set of
all possible basic actions (Action Units) performable on
a human face and their effects on facial expressions.
FACS has not only informed subsequent studies into
observation, but has also informed animation practice and
computing projects. Then facial animation can be quickly
generated using morphing technology between neutral
expression and target expression which is conventional
method in both computing [4] [5] and psychology [6]
research. They also proposed some effective ways to
simplify the transition between neutral expression and
target expression, and acquire a fast morphing. More-
over muscle model can generate 3D facial animation by
simulating movements of facial muscles [7]. Based on
the morphable model, a 3D facial animation model is
presented and can effectively generate highly realistic
facial animation sequence automatically [8]. Later, Pighin
et al. [9] developed a system to reconstruct 3D human
face through multiple human images. However, these
techniques are not completely investigated into the real-
time realization for interactive applications and can’t meet
the needs of 3D game nowadays.

On the other hand, Yang et al. [10] designed a simple
and intuitive facial expression generation system to gen-
erate vivid 2D facial expressions. Later, based MPEG-
4, Dai et al. [11] proposed a method for human face
morphing and expression synthesis by operating a picture
of neutral human face. Tang et al. [12] rendered a number
of facial images in advance, and continuously displayed
the images for facial animations. Recently Shechtman
et al. [13] implement a new method for image mor-
phing where the traditional warp and blend approach
was replaced with a regenerative approach. The approach
does not require manual correspondence, and generates
compelling results even when the images are of very
different objects. Fu et al. [14] research the human facial
features localization with expression and arbitrary face
pose in complex background. Wang and Sun [15] analyze

418 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.2.418-425

the expression features using the optimal kernel marginal
fisher. However, these techniques are applicable only
for 2D applications and can’t be applied to 3D game
development.

Therefore, real-time animation for 3D facial expres-
sions is very practical and which is the main interest to
our research. In this paper, we focus on realizing and
optimizing the process of 3D facial morphing between
neutral expression and target expression. Combining the
real-time rendering technology based on GPU, we can
obtain a high FPS at interactive rates. Also we implement
a texture mapping between a texture map containing the
eyebrow, teeth, tongue and eyes, and the corresponding
position of face, which greatly enhances realistic appear-
ance of face.

The rest of this paper is organized as follows. The
proposed method for real-time facial rendering animation
is given a detailed description in section III. Experimental
results are showed in section IV, and finally conclusions
are given in section V.

III. REAL-TIME 3D MORPHING TARGET METHOD

In order to satisfy the needs for interactivity in
3D game, we implement the real-time morphing target
method and acquire a realistic facial animation via pro-
grammable vertex and fragment shaders on the GPU.
The rendering procedure of our method is designed to
realize the facial rendering easily and effectively. Also we
modify the morph data structure in the application, so we
can easily program the rendering procedure and improve
performance for real-time rendering. Using the merits of
vertex buffer object (VBO) and per vertex attribute (PVA)
provided by the GPU, we can accelerate the rendering
and achieve a high FPS when realizing transition between
different expressions.

A. Morphing Target Method

Morphing target is a way to modify a mesh with
more control than bone-based skeletal animation. A static
morphing target is a version of an existing mesh that
is slightly different in some way. It can present the
process of seamlessly generating a mesh by combining the
vertices from a neutral mesh with the equivalent vertices
from one or more pose meshes [16]. For example, you
can create a smiling version for a character, and import
that as a ”Smile” morphing target. Then in the game you
can apply this morphing target to modify the vertices on
the face and make your character smile, but with a great
deal of control over how each vertex moves.

The objective of mesh morphing is to perform an
interpolation on a per-vertex basis that allows different
points to be combined. Therefore, difference vectors delta
P are firstly calculated between the neutral head mesh
point and the target head mesh point as:

∆Pi = Ptarget − Pneutral (1)

where Ptarget is the position of target head mesh, and
Pneutral is the position of neutral head mesh.

This set of per-vertex difference vectors can be thought
of as a mesh of vectors. These difference vectors con-
tained in this mesh not only cover the vertex positions,
but also cover other properties such as surface normal,
texture coordinates, and tangent vectors. We can adjust
these sets of difference vectors by weights and add them
to the neutral vector [17]. So creating the final vertex is
as simple as computing a weighted sum of all the blend
shapes for the present animation as:

Pfinal = Pneutral +
k∑

i=1

wi ∗ ∆Pi (2)

where Pfinal is the final position of morphing mesh, and
wi is weight to adjust the difference vectors.

Finally, we can change the weights of the per-vertex
difference between a neutral pose and a target pose to
modify the deformation, and acquire the animation of
facial expressions.

Traditionally, mesh morphing animation has been pro-
hibitively expensive for complex meshes because it was
performed on the CPU, so it is not applicable to real-time
3D game development. In this paper we can now realize
interactive rendering for facial animation via graphics
hardware GPU, because it has replaced the traditional
fixed-function pipeline with programmable vertex and
fragment shaders.

B. Real-time Rendering Procedure

All animation features are done totally on the GPU
except some data pre-processing. Fig. 1 illustrates the
flowchart of the proposed real-time rendering system.
From Fig. 1 seven steps are needed to create a real-time
animation of facial expression.

• Firstly, we should use the same neutral head mesh to
create different facial expressions in Maya or Bend soft-
ware. Here we create four facial expressions as morphing
target.

• Then we can evaluate the difference vectors delta P
between the neutral head mesh and the target head mesh
as in (1).

• After evaluation of difference vectors we may ini-
tialize morph data structure in application through reading
into neutral head mesh and all the difference vectors delta
P .

• Then we would load all the data into vertex buffer
object using massive parallel processing units provided
by the GPU.

• Then we link all the attributes from application to
the GLSL Shader.

• Later, we can employ weights to adjust the deforma-
tion in the vertex shader as in (2) and evaluate each pixel
color in the fragment shader.

• At last, we can render the facial expressions in real
time, and implement some interactions and shifts between
different expressions.

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 419

© 2013 ACADEMY PUBLISHER

Figure 1. The flowchart of our rendering system

C. Modification to the Morph Data Structure

In order to realize the program easily and improve the
real-time performance, we pre-process the difference vec-
tors delta P obtained in the second step of the rendering
system. Firstly we compute and store all the delta P data
including position and normal of difference vectors into
a morph data file. Because we evaluate difference value
between the neutral mesh and the target mesh. so this file
only includes bunch of vector data which has three float
numbers in the direction of three XY Z axis. The file
which includes bunch of vector data can be temporarily
stored onto the disk and later read into the application.

The data in the morph data file can be partly shown in
Table 1. Each row has three float numbers in the direction
of three XY Z axis, and vertex value and normal value
appear alternately in every row.

Later, we only need to initialize morph data structure
in the application by loading neutral obj data and reading
all the data in the morph data file using massive parallel

TABLE I.
PART OF DATA IN THE MORPH DATA FILE.

X Y Z

......
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.03291300 -0.22675014 -0.42169952
-0.00348501 0.09945184 -0.20722115
0.00527000 -1.03810000 -0.06999969
-0.01683601 0.13125449 -0.31993321
0.00726300 -2.56822014 0.11532021
-0.10191403 0.13250518 -0.34031007
-0.02104999 0.03374004 -1.15294981
-0.13700302 -0.48498315 -1.45890927

......

GPU processing units. The code for initializing morph
data structure can be partly shown in Algorithm 1.

Algorithm 1 Reading the Morph Data File for Initializing
Morph Data Structure
Input: The morph data file which stores all the delta P ,

fin; The buffer which temporarily stores the morph
data, buf ; The length of max string for reading
morph data, MAXSTR; The difference value of
each vertex, vv− > mv; The difference value of each
normal , vv− > mn;

Output: The object of morph data structure containing
all the data such as vertex and normal of morphing
target and neutral mesh, vv;

1: repeat
2: fgets(buf,MAXSTR, fin);
3: sscanf(buf, v + 0, v + 1, v + 2);
4: vv− > mv[0] = v[0];
5: vv− > mv[1] = v[1];
6: vv− > mv[2] = v[2];
7: fgets(buf,MAXSTR, fin);
8: sscanf(buf, v + 0, v + 1, v + 2);
9: vv− > mn[0] = v[0];

10: vv− > mn[1] = v[1];
11: vv− > mn[2] = v[2];
12: until finish reading all the morph data;
13: return vv;

Finally, the morph data structure has included all the
position and normal of neutral mesh and difference vec-
tors delta P , so we can directly implement the interaction
between the morph data structure and the shader for real-
time rendering.

D. Vertex Buffer Object and Per Vertex Attribute

Vertex buffer object (VBO) is a big chunk of data
to hold all necessary vertex and normal vector data
for graphics hardware, which can provide method for
uploading these data to the GPU for non-immediate-mode
rendering. VBO can make data sit in the video device
memory rather than the system memory, so it can be
rendered directly by the video device and don’t worry
about bus bottleneck as long as those VBO fits to the

420 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

capacity of video memory. We use this merit of VBO
very nicely, and stream the vertex and normal vector
data to structure morph−vert as the storage at once.
Therefore we can enormously increase GPU performance
and acquire real-time morphing facial animation.

There are several ways to manipulate vertex on the
GPU using shader. In this paper we use per vertex attribute
(PVA) which is one of the most simplest solution. It packs
user defined data along with common vertex data set.
Improvement of our work here is to pack this lots of
numbers in the VBO, so that we can stream it instead
that CPU sends it one by one.

E. Shader Implementation

Using weights to adjust the difference vectors, morph-
ing algorithm accumulates difference of vertex position
from neutral to target expression as in (2). Both position
and normal of each vertex on the mesh are interpolated
at the same time. Algorithm 2 shows part code of vertex
shader to compute position and normal for morphing as
follows.

Algorithm 2 Realization of Morphing Target in the Vertex
Shader
Input: The normal of one vertex on the 3D head

mesh, gl−Normal; The weight to adjust the mor-
phing between neutral mesh and ith target mesh,
morphWeight(i); The difference vector of normal
coordinate between neutral mesh and ith target mesh,
normalMorph(i); One vertex on the 3D head mesh,
gl−V ertex; The difference vector of vertex coor-
dinate between neutral mesh and ith target mesh,
coordMorph(i);

Output: Final normal and position value on the head
mesh, Normal and Position;

1: n = morphWeight0 ∗ normalMorph0 +
morphWeight1 ∗ normalMorph1 +
morphWeight2 ∗ normalMorph2 +
morphWeight3 ∗ normalMorph3 +
morphWeight4 ∗ normalMorph4;

2: n = gl−Normal + n;
3: Normal = normalize(gl−NormalMatrix ∗ n);
4: p.xyz = morphWeight0 ∗ coordMorph0 +

morphWeight1 ∗ coordMorph1 +
morphWeight2 ∗ coordMorph2 +
morphWeight3 ∗ coordMorph3 +
morphWeight4 ∗ coordMorph4;

5: p.xyz = gl−V ertex.xyz + p.xyz;
6: p.w = 1.0;
7: Position = gl−ModelV iewProjectionMatrix∗p;
8: return Normal and Position;

In the fragment shader, per-pixel lighting and texture
mapping is computed and applied. Algorithm 3 gives part
code of fragment shader to compute color of per-pixel
as follows. Finally, we can acquire each pixel color after
morphing and implement an interactive rendering between
shader and application.

Algorithm 3 Evaluation of Pixel Color in the Fragment
Shader
Input: The texture map containing eyebrow, teeth,

tongue and eyes, faceTex; The texture coordinate
for indexing the texture map, gl−TexCoord; The
normal of each vertex on the mesh, normal; The
light direction from view point, lightDir; The color
from material of diffuse attribute, diffuse; The color
from environment, ambient;

Output: Each pixel color on the mesh, gl−FragColor;
1: texel = texture2D(faceTex, gl−TexCoord[0].st);
2: n = normalize(normal);
3: intensity = max(dot(lightDir, n), 0.0);
4: cf = intensity ∗ diffuse.rgb + ambient.rgb;
5: af = diffuse.a;
6: ct = texel.rgb;
7: at = texel.a;
8: gl−FragColor = vec4(ct ∗ cf, at ∗ af);
9: return gl−FragColor;

IV. EXPERIMENTAL RESULTS

We have implemented the proposed method to give
realistic animation of facial expressions in real time. With
AMD Athlon II X4 Four Cores and NVIDIA GeForce
GT230, we can realize the algorithm using GLSL Shader
and OpenGL programming in VS2008. We can achieve
frame rates of approximately 76 frames per second, which
is relatively high speed and is valuable practically in the
real-time 3D games development.

In order to obtain a realistic appearance of facial
expression, we can use a texture map containing the
eyebrow, teeth, tongue and eyes to map these skin fea-
tures onto the corresponding position of face, so we can
obtain some realistic features of face. Through the texture
mapping and coloring these features we acquire a realistic
appearance, which can enhance sense of reality in the
3D game. Texture mapping can be implemented in the
fragment shader, and the texture map we used can be
seen in Fig. 2.

Figure 2. Texture map containing eyebrow, teeth, tongue and eyes.

The weight we use to adjust the deformation can be
visualized on the 3D human face before texture mapping.
Here we select three basic expressions such as ”Cry”,
”Smile” and ”Fear” to see the distribution and changes
of weights as shown in Fig. 3, Fig. 4 and Fig. 5. From

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 421

© 2013 ACADEMY PUBLISHER

three figures we can observe the different colors on the
different region of face and these colors reflect big or
small weights when implementing the morphing in the
shader. Also we can adjust the weight value to control
and view different deformation effects on the 3D human
face, which greatly improves the interactivity.

Figure 3. The distribution and changes of weights when cry before
 texture mapping.

Figure 4. The distribution and changes of weights when smile before
 texture mapping.

Finally, we obtain the realistic animation of facial
expressions through texture mapping and 3D morphing
target in real time. Here we choose four basic expres-
sions including ”Cry”, ”Smile”, ”Fear” and ”Blink” to

Figure 5. The distribution and changes of weights when fear before
 texture mapping.

render. Fig. 6 shows the dynamic transition process of
facial expression on ”Cry”. Fig. 7 illustrates the dynamic
transition process of facial expression on ”Smile”. Fig. 8
and Fig. 9 give the dynamic transition process of facial
expression on ”Fear” and ”Blink” separately.

From Fig. 6 to Fig. 9, we can observe the realistic
appearance including eyebrow, eyes, teeth and tongue,
even double-fold eyelid and eyebrow. Different expres-
sions on the face are natural and realistic to us. We present
the transition process of facial expression and give a
dynamic vision. Through the quick shift between different
expressions we can easily control the digital character,
which can improve the interactivity between user and
game. Using the modification to the morph data structure
and usage of VBO , we also acquire a high FPS which
gives us convenient operation with the digital character
and realize quick shift from one expression to another.
Our rendering system in the experiment clearly shows
the effective implementation of the proposed technique.
All of merits bring our method into practical value of 3D
real-time game development.

V. CONCLUSION

We have implemented a 3D morphing target algorithm
based on the GPU for realistic animation of facial ex-
pressions at interactive speed, and combining the texture
mapping experiments show that our proposed technique
can generate real-time and realistic animation of facial ex-
pression. The vision of expression can enhance immersion
and realistic appearance of digital character. Moreover, we
design a fast morph process and obtain a relatively high
FPS, and our method also can be easily integrated into
modern GPU pipeline, so it has an important application
value for development in 3D game.

422 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

Figure 6. Animation process of expression on cry

Figure 7. Animation process of expression on smile

Figure 8. Animation process of expression on fear.

However, there are also disadvantages using morphing
target, which is that it have to be created primarily by
manual manipulation of the various vertex points in the
model, rather than using many of the automatic features

now inherent in many 3D modeling and animation pro-
grams.

Even though we see our work as a step in allowing
designers to quickly render and interact with realistic

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 423

© 2013 ACADEMY PUBLISHER

Figure 9. Animation process of facial on blink.

digital character, how the more realistic appearance is
approximated is an interesting direction which we are
currently working on. In future work, we will try to study
the physical properties of the skin and muscles [18], and
enhance realistic appearance and real-time performance.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation of China under Grant No.s 61173086
and 61179009, and Science and Technology Foundation
of Heilongjiang Province Education Department in China
under Grant No. 11551435.

REFERENCES

[1] I. Kerlow, The art of 3D computer animation and effects.
Wiley, 2004.

[2] P. Eckman and W. Friesen, “Unmasking the face: a guide
to recognizing emotions from facial clues,” 1975.

[3] P. Ekman and W. Friesen, “Facial action coding system: A
technique for the measurement of facial action,” Manual
for the Facial Action Coding System, 1978.

[4] D. Lin and H. Huang, “Facial expression morphing and
animation with local warping methods,” in Image Analysis
and Processing, 1999. Proceedings. International Confer-
ence on. IEEE, 1999, pp. 594–599.

[5] H. Pyun, Y. Kim, W. Chae, H. Kang, and S. Shin, “An
example-based approach for facial expression cloning.
acm siggraph,” in Eurographics Symposium on Computer
Animation, 2003, pp. 167–176.

[6] B. Montagne, R. Kessels, E. Frigerio, E. De Haan, and
D. Perrett, “Sex differences in the perception of affective
facial expressions: Do men really lack emotional sensi-
tivity?” Cognitive Processing, vol. 6, no. 2, pp. 136–141,
2005.

[7] K. Zhang, Z. Huang, and T. Chua, “A framework to cus-
tomize a face model for reusing animation,” in Computer
Graphics International, 2003. Proceedings. IEEE, 2003,
pp. 258–261.

[8] B. Yin, C. Wang, Q. Shi, and Y. Sun, “Mpeg-4 compat-
ible 3d facial animation based on morphable model,” in
Machine Learning and Cybernetics, 2005. Proceedings of
2005 International Conference on, vol. 8. IEEE, 2005,
pp. 4936–4941.

[9] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and
D. Salesin, “Synthesizing realistic facial expressions from
photographs,” in ACM SIGGRAPH 2006 Courses. ACM,
2006, p. 19.

[10] C. Yang and W. Chiang, “An interactive facial expression
generation system,” Multimedia Tools and Applications,
vol. 40, no. 1, pp. 41–60, 2008.

[11] Z. Dai, H. Zhu, S. Zhang, J. Jia, and L. Cai, “Mpeg-4 based
facial expression image morphing,” Journal of Image and
Graphics, 2009.

[12] Y. Tang, M. Xu, and Z. Cai, “Research on facial expression
animation based on 2d mesh morphing driven by pseudo
muscle model,” in Educational and Information Technol-
ogy (ICEIT), 2010 International Conference on, vol. 2.
IEEE, 2010, pp. V2–403.

[13] E. Shechtman, A. Rav-Acha, M. Irani, and S. Seitz,
“Regenerative morphing,” in Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on. IEEE,
2010, pp. 615–622.

[14] Y. Fu, H. Yan, J. Li, and R. Xiang, “Robust facial features
localization on rotation arbitrary multi-view face in com-
plex background,” Journal of Computers, vol. 6, no. 2, pp.
337–342, 2011.

[15] Z. Wang and X. Sun, “Optimal kernel marginal fisher anal-
ysis for face recognition,” Journal of Computers, vol. 7,
no. 9, pp. 2298–2305, 2012.

[16] R. Fernando, “Gpu gemsłprogramming techniques, tips
and tricks for real-time graphics,” Recherche, vol. 67, p. 02,
2004.

[17] T. Lorach, “Directx 10 blend shapes: Breaking the limits,”
GPU Gems, vol. 3, pp. 53–67, 2007.

[18] J. Jimenez, T. Scully, N. Barbosa, C. Donner, X. Al-
varez, T. Vieira, P. Matts, V. Orvalho, D. Gutierrez, and
T. Weyrich, “A practical appearance model for dynamic
facial color,” in ACM Transactions on Graphics (TOG),
vol. 29, no. 6. ACM, 2010, p. 141.

Mengzhao Yang was born in Lushan, Henan province in 1980.
He is currently a PhD student in the Biocomputing Research
Centre at the Harbin Institute of Technology, China. He received
his MS degree in the School of Information Engineering from
the Jiangnan University in Wuxi city in 2006. His research inter-
ests include realistic appearance rendering, real-time computing
and game development.

424 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

Kuanquan Wang is a full professor and PhD supervisor with
School of Computer Science and Technology at Harbin Institute
of Technology. He is a senior member of IEEE, a senior member
of China Computer Federation and a senior member of Chinese
Society of Biomedical Engineering. His main research areas
include image processing and pattern recognition, biometrics,
biocomputing, virtual reality and visualization. So far, he has
published over 200 papers and 6 books, got 10 patents, and
won 1 second prize of National Teaching Achievement.

Lei Zhang was born Heilongjiang province in 1980. He is
currently a PhD student in the School of Computer Science and
Technology at the Harbin Institute of Technology, China. He
received his MS degree from the Harbin Institute of Technology
in 2007. He is aslo a lecture in the Harbin University. His
research interests include 3D modeling and rendering, real-time
computing and virtual reality.

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 425

© 2013 ACADEMY PUBLISHER

