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Abstract—The construction of similarity relationship a-
mong data points plays a critical role in manifold learning.
There exist two popular schemes, i.e., pairwise-distance
based similarity and reconstruction coefficient based similar-
ity. Existing works only have involved one scheme of them.
These two schemes have different drawbacks. For pairwise-
distance based similarity graph algorithms, they are sensitive
to the noise and outliers. For reconstruction coefficient based
similarity graph algorithms, they need sufficient sampled
data and the neighborhood size is sensitive. This paper
proposes a novel algorithm, called Local Neighborhood
Embedding (LNE), which preserves pairwise-distance based
similarity and reconstruction coefficient based similarity for
finding the latent low dimensional structure of data. It has
following three advantages: Firstly,it is insensitive to the
choice of neighborhood size; Secondly, it is robust to the
noise; Thirdly, It works well even in under-sampled case.
Furthermore, the proposed objective function has a closed-
form solution, which means it has a low computational
complexity, and the experimental results illustrate that LNE
has a competitive performance in dimensionality reduction.

Index Terms—dimension reduction, manifold learning,
similarity graph, unsupervised learning

I. INTRODUCTION

In many topics of machine intelligence, information
retrieval and computer vision, we are confronted with very
high dimensional data, and it is really a challenge for us
to understand and analyze these high dimensional data.
Fortunately, they are located on a low-dimensional mani-
fold [1]–[3]. Therefore, it is important to find the essential
structure hidden in the high-dimensional observation data,
and get more compact representations of the original data
for higher-level decision making. Following the scheme
of machine learning, a variety of dimensionality reduction
methods under supervised, semi-supervised, and unsuper-
vised scenarios have been proposed in the last decades.
The supervised dimensionality reduction methods include
linear discriminant analysis (LDA) [4], maximum margin
criterion (MMC) [5], marginal Fisher analysis (MFA)
[6], etc. The semi-supervised dimensionality reduction
methods include semi-supervised dimensionality reduc-
tion (SSDR) [7], semi-supervised discriminant analysis
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(SDA) [8], etc. The unsupervised methods include prin-
cipal component analysis (PCA) [9], locality preserving
projections (LPP) [10], neighbor preserving embedding
(NPE) [11], etc. In this paper, we mainly focus on
unsupervised scenario.

One of the most well-known unsupervised dimension
reduction methods is principal component analysis (PCA),
which works well when the data points lie close to a single
linear subspace. However, many real data are situated
on several nonlinear subspaces. To reveal the nonlinear
hidden structure of high-dimensional data, some works
introduced a kernel function into PCA to map the original
data into a linear space, namely Kernel PCA [12] . Even
though it can solve nonlinear dimensionality reduction
problems, much of them do not explicitly find the latent
manifold structure of the data set. In addition, Selecting
kernel function is another problem in many practical
application and it is difficult to solve.

In the past decade, manifold learning has become one
of the most important dimension reduction methods. It
aims to project the high-dimensional data points into
their low-dimensional counterparts, and simultaneously
preserves certain geometric properties. Many algorithms
based on manifold learning have been proposed. The
most famous and efficient three algorithms are Isometric
feature mapping (ISOMAP) [1], Laplacian Eigenmaps
(LE) [13], and Locally Linear Embedding (LLE) [2], [3].
ISOMAP embeds the neighborhood relationship of data
points with geodesic distance. LE is based on computing
the low dimensional representation that best preserves
locality measured by heat kernel with pairwise distance.
LLE computes certain linear reconstruction coefficients to
maintain the local geometric properties in the manifold.
We can divided them into two schemes, i.e., pairwise-
distance based similarity and reconstruction coefficient
based similarity for manifold learning. These two schemes
have different drawbacks. For pairwise-distance based
similarity graph algorithms, they are sensitive to the noise
and outliers. For reconstruction coefficient based similari-
ty graph algorithms, they need sufficient sampled data and
the neighborhood size is sensitive. A small neighborhood
size K may not capture sufficient information about the
manifold. On the other hand, a large neighborhood size K
will lead to inaccurate representation since the K nearest
neighbors of a data point may include faraway inhomoge-
neous data. In [14], they employ the dual weighted voting
method to choose the neighbors in classification task.
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In this paper, we propose an algorithm, namely Lo-
cal Neighborhood Embedding (LNE), which incorporates
pairwise-distance based similarity with reconstruction co-
efficient based similarity for finding the latent low dimen-
sional structure of data. A key assumption of LNE is that
there exists a small neighborhood in which only the points
that come from the same manifold lie approximately in
a low-dimensional affine subspace. It is different from
previous works that use only one similarity scheme. Our
algorithm combines these two relationships together. It
uses the pairwise distances, from a specified point to
its neighbors, to weigh the neighbors’ contribution to
represent this point. So that it preserves pairwise distance
similarity and represent coefficient similarity at the same
time. Moreover, the proposed objective function for LNE
has a closed-form solution, which means its computing
cost is very low, and the demonstrations show that LNE
has a competitive performance in dimensionality reduc-
tion.

The rest of this paper is organized as follows: Section
2 reviews three popular unsupervised dimensionality re-
duction algorithms, i.e., ISOMAP, LLE, and LE. Section
3 presentes our LNE algorithm. Section 4 carries out
the experiments to confirm the effectiveness of LNE for
dimensionality reduction. Finally, Section 5 concludes this
work.

II. RELATED WORK

Let X = [x1,x2, . . . ,xn] ∈ Rm×n be a set of n
sampled data points from Rm space. The dimensionality
reduction algorithms are proposed to find a set of points
Y = [y1,y2, . . . ,yn] ∈ Rd×n, d ≪ m, to represent
the given data set X, such that it keeps the geometrical
property.

Isometric feature mapping (ISOMAP) [1] is built on
classical Multidimensional Scaling (MDS) [15], but it
seeks to preserve the intrinsic geometry of the data,
as captured in the geodesic manifold distances between
all pairs of data points. Laplacian Eigenmaps (LE) [13]
employs a heat kernel function to represent the pairwise
distance between two points. Then, computes a low-
dimensional representation of the data set by using the
laplace Beltrami operator to the similarity graph. They
both construct a similarity graph based on a pairwise
distance. As another pioneer work of manifold learning,
locally linear embedding (LLE) [3] obtains the similarity
relationship by using linear reconstruction coefficients
among data points. We will review these three classical
manifold learning algorithms below.

A. Isometric feature mapping (ISOMAP)

1. Searching the nearest neighbors. Find the K-nearest
neighbors for each point xi by using the Euclidean
distance.

2. Constructing the similarity matrix. Find a matrix
G ∈ Rn×n whose entries Gij is the similarity be-
tween xi and xj . Gij equals the Euclidean distance
between xi and xj if xj is a K-nearest neighbors of

xi, otherwise, enforcing Gij = ∞. Then, for each value
of k = 1, 2, . . . , n in turn, replace all entries Gij by
min{Gij ,Gik+Gkj}. Finally, the matrix G will contain
the shortest path distances between all pairs of the points.

3. Embedding the high-dimensional data. Let λp be
the p-th eigenvalue (in decreasing order) of the matrix
τ(G) = −HSH/2, where S is the matrix of squared
distances {Sij = G2

ij}, H is the ”centering matrix”
{Hij = δij − 1/n}, δij = 1 if i = j, otherwise,
δij = 0, and vi

p be the i-th component of the p-
th eigenvector. Then, set the p-th component of the d-
dimensional coordinate vector yi equal to

√
λpvi

p.

B. Laplacian Eigenmaps (LE)

1. Searching the nearest neighbors. Find the K-nearest
neighbors for each point xi by using the Euclidean
distance.

2. Constructing the similarity matrix. Construct a ma-
trix G ∈ Rn×n whose entries Gij is the similarity
between xi and xj . Enforcing Gij = 0 if xj is not a
K-nearest neighbors of xi, otherwise,
(a) Heat kernel (parameter σ ∈ R).

Wij = exp(−∥xi − xj∥22/σ2).

(b) Simple-minded (no parameters (σ = ∞)).

Wij = 1.

This simplification avoids the need to choose σ.
3. Embedding the high-dimensional data. Find vectors

Y = [y1,y2, . . . ,yn] ∈ Rd×n that minimize the follow-
ing objective function,

Φ =
∑
i,j

∥yi − yj∥22Wij√
DiiDjj

= trace(YLYT ),

where D is a diagonal matrix whose entries Dii =∑
j Wij , and L = I−D− 1

2WD− 1
2 .

C. Locally Linear Embedding

1. Searching the nearest neighbors. Find the K-nearest
neighbors x1

i ,x
2
i , . . . ,x

K
i for each point xi by using the

Euclidean distance.
2. Constructing the similarity matrix. For each data

point xi, calculating its reconstruction coefficients Cl
i(l =

1, 2, . . . ,K) over the collection of the corresponding K
nearest neighbors via minimizing the following objection
function,

E =
n∑

i=1

∥∥∥∥∥xi −
K∑
l=1

Cl
ix

l
i

∥∥∥∥∥
2

2

,

where xl
i denotes the l-th nearest neighbors of xi, and Cl

i

denotes the reconstruction coefficient of xi over xl
i.

Construct a similarity matrix W ∈ Rn×n. For each
point xi, we set Wij , the similarity between xi and xj ,
as the corresponding similarity in Cl

i(l = 1, 2, . . . ,K),
which have been calculated above, if xj is a K-nearest
neighbors to xi, otherwise, set Wij = 0.
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3. Mapping each high dimensional input xi to a low
dimensional output yi. This is done by finding vectors
Y = [y1,y2, . . . ,yn] ∈ Rd×n that minimize the follow-
ing objective function,

Φ =
∑
i

∥∥∥∥∥∥yi −
∑
j

Wijyj

∥∥∥∥∥∥
2

2

s.t.
∑
i

yi = 0,
1

n

∑
i

yiy
T
i = I.

III. LOCAL NEIGHBORHOOD EMBEDDING

It is difficult to interpret the real structure of the data
if its dimensionality is more than four. One approach
to simplification is to assume that the data actually lie
on a non-linear manifold within the higher-dimensional
space. Therefore, many non-linear and linear dimension
reduction methods are proposed to find the real structure
of data, i.e., ISOMAP, LLE, LE, etc. In these works, a key
philosophy is that the real similarity relationship among
data points is invariant to the dimensionality. Thus, the
construction of similarity relationship plays an essential
role in manifold learning.

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 1. Illustration of local neighborhood embedding representation.

In this section, we will describe our algorithm Lo-
cal Neighborhood Embedding (LNE) which preserves
pairwise-distance based similarity and reconstruction co-
efficient based similarity for finding the latent low di-
mensional structure of the data sets. Refer to Fig. 1,
we sampled the data from a bend rope, and there is a
outlier x12. The two points have highest similarities to
x1 should be x2 and x3. However, the pairwise distance
based similarity algorithms will give x12 a higher weight
than x2 and x3, and it’s same to LLE if the neighborhood
size is very small (i.e., K = 2 here). The similarity
based on reconstruction coefficient algorithms will give
x5 and x6 highest scores, since x5 and x6 spanned an
affine subspace across x1, which means that x5 and
x6 can represent x1 perfectly. But the distances from
x5 and x6 to x1 are much further than x2 and x3

to x1. Obviously, the similarity based on reconstruction
coefficient algorithms ignored this important information.
From above analysis, for a specified point xi, we should

give xj high similarity if xj is close to xi and can well
represent xi at the same time. x2 and x3 are close to
x1, and the subspace spanned by x2 and x3 is also very
close to x1. As a result, LNE will give x2 and x3 higher
similarity scores than others.

A. The algorithm

The algorithmic procedure is formally stated as below:
Step 1: Searching the nearest neighbors
For each point xi, calculate the Euclidean distance

between xi and other points. Then, choose K-nearest
neighbors x1

i ,x
2
i , . . . ,x

K
i to construct a local dictionary

Di, and the corresponding distances S = [s1i , s
2
i , . . . , s

K
i ].

Step 2: Constructing the similarity matrix
Constructing the similarity matrix by reconstruction

coefficient based similarity incorporating with pairwise
similarity. LNE assumes that there exists a small neigh-
borhood in which only the points that come from the
same manifold lie approximately in a low-dimensional
affine subspace. We use Ci ∈ RK×1(i = 1, 2, . . . , n) to
represent the similarities between xi and its neighbors. In
the local dictionary Di, the points which are close to xi

should give higher contributions than the points that are
further to represent xi, mathematically,

min
Ci

λ∥SiCi∥22 + (1− λ)∥xi −DiCi∥22

s.t. 1TCi = 1,
(1)

where Di = [x1
i ,x

2
i , . . . ,x

K
i ], Si =

diag(s1i , s
2
i , . . . , s

K
i ), and λ ∈ [0, 1] is a balance

parameter.
The solution of the problem (1) is:

Ci =
M−11

1TM−11
,

where M = λST
i Si +(1−λ)(Xi −Di)

T (Xi −Di), and
Xi = [xi,xi, . . . ,xi] ∈ Rm×K .

Construct a matrix of similarities W ∈ Rn×n. For the
point xi, we set Wij , the similarity between xi and xj ,
as the corresponding similarity in Ci , which have been
calculated above, if xj is a K-nearest neighbors to xi,
otherwise, set Wij = 0.

Step 3: Embedding to the global coordinates
After getting the similarity relationship W among data

points, as in LLE, the low dimensional representation can
be achieved by preserving the W and minimizing the
following objective function:

Φ(Y) =
∑
i

∥yi −
∑
j

Wijyj∥
2

2

= trace(YQYT )

s.t.
∑
i

yi = 0,
1

n

∑
i

yiy
T
i = I,

(2)

where Q = (I−W)T (I−W).
The solution of the embedding objective function can

be achieved by solving a sparse n×n eigenvalue problem.
The output is a matrix consisted by d eigenvalue eigen-
vectors, which corresponding to the second to (d+ 1)-th
smallest eigenvalue of the matrix Q.
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B. Theory analysis

In this subsection, we provide theoretical analysis of the
LNE algorithm. For a given data point xi, its similarity
relationship with the other points is calculated by solving
the following problem,

min
Ci

λ∥SiCi∥22+(1−λ)∥xi −DiCi∥22 s.t. 1TCi = 1,

Using Lagrangian method, we can get following objec-
tive function,

L = λ∥SiCi∥22 + (1− λ)∥xi1
TCi −DiCi∥

2

2

+ θ(1TCi − 1)

= λ∥SiCi∥22 + (1− λ)∥(Xi −Di)Ci∥22 + θ(1TCi − 1),

where θ is the Lagrangian multiplier, and Xi =
[xi,xi, . . . ,xi] ∈ Rm×K . Clearly,

∂L

∂Ci
= 2MCi + θ1,

where M = λST
i Si + (1− λ)(Xi −Di)

T (Xi −Di).
Letting ∂L

Ci
= 0, it gives that,

Ci = −1

2
θM−11 (3)

Multiplying both sides of (3) by 1T , and since 1TCi = 1,
then,

θ = − 2

1TM−11
.

Substituting θ into (3), the solution is then given by

Ci =
M−11

1TM−11
.

where M = λST
i Si + (1− λ)(Xi −Di)

T (Xi −Di).

IV. EXPERIMENTAL VERIFICATION AND ANALYSIS

In this section, we will compare our algorithm with
other four popular dimension reduction methods, i.e.,
PCA, LE, ISOMAP, and LLE. Several synthetic data sets
and two real image databases are used to examine the
effectiveness of the competitive algorithms. For all the
experiments, we use the optimization program (1), where
we typically set λ = 0.05, 0.2, 0.5. If the data are well and
uniformly sampled from a smooth manifold, then pairwise
distance is not important, we should choose a smaller
value for λ. In case the data is contaminated by noises or
the neighbor size is quit large, we should give a bigger
value to λ, since we want to give a heavy penalty on the
faraway points which are included in the K neighbors.

−0.50
0.5−0.500.5

0.5
1

1.5

Puncture Sphere

(a)

−0.50
0.5−0.500.5

−0.5
0

0.5

Twin Peaks

(b)

−2 0 2
−202

−1

0

1

Toroidal Helix

(c)

Fig. 2. Synthetic manifolds used in the experiments. (a) Puncture
                        Sphere. (b) Twin Peaks. (c) Toroidal Helix.

A. Experiments with Synthetic Data

To test the ability of our proposed algorithm, we
used three data sets having different manifolds: Puncture
Sphere, Twin Peaks, and Toroidal Helix, as shown in Fig.
2. The effectiveness of tested algorithms are evaluated
with respect to the following aspects: 1) the sensitivity of
neighbors number K, 2) the ability to solve bend shape
data, 3) anti-noise ability, and 4) the performance in the
low sampled rate case. For the first three tests, 1000 points
are drawn from each manifold. For the last one, 300 points
from Puncture Sphere manifold are used.

(1) The performance versus the variance of the neigh-
borhood size K

As shown in Fig. 3, we give different K values to LNE
to evaluate its sensitivity to the parameter K. ISOMAP
is failed to get the correct manifold, since it maps the
manifold from the top into a plane. LE can get a quit
satisfied result when K = 20, but it going to bad when
K = 10 or K = 30. Similar to LE, LLE can get a
good result when K = 10, but it works worse and worse
along K become larger and larger. However, the proposed
algorithm LNE, which performances well over all cases,
is insensitive to K.

(2) The capability to the bend shape
Twin Peaks (Fig. 2(b) ), which is generated by folding

up the corners of a plane and the 2D projection should
show a roughly rectangular shape with blue and red
in opposite corners, is used in this experiment. We set
the degree of bend (Z-Scaling, marked as ζ in Fig. 4)
equals 1.0 and 2.0. The embedding result is illustrated in
Fig. 4, all tested algorithms are failed to reveal real low
dimensional structure on this data set, except LE and the
proposed LNE. Compared with LE, the result of LNE is
more similar to the real manifold which is nearly a square
plane. In addition, we can see that there are some blank
areas inside the result of LE.

(3) Robustness to noise
To examine the anti-noise ability of our method, a small

amounts of white gaussian noise (σ = 0.05, 0.1) are added
into a data set containing of 1000 points sampled from
Toroidal Helix (Fig. 2(c) ) whose real low dimensional
structure is unraveled into a circle. As shown in the Fig.
5, we can see that only LNE achieves correct result, while
PCA gets a top-down overlooking profile, and ISOMAP
over emphasizes the outliers.

(4) Performance in the case of low sampled rate
To evaluate the result of LNE in the under-sampled

case, we form a data set by sampling 300 points from
Punctured Sphere (as shown in Fig. 2(a) ). The result in
Fig. 6 shows that only LNE reveal the correct manifold in
case the samples are not enough, while other four algo-
rithms produced unsatisfied results because the number
of samples are too small which make them unable to
properly connect to each other.

B. Experiments with Real Data

In this subsection, we compare the performance of LNE
with three popular non-linear dimension reduction algo-
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    Fig.3. Comparison of LE, ISOMAP, LLE, and LNE to the number of neighbors on the Punctured Sphere data set (1000 points).
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Fig. 4. Performance of PCA, LE, ISOMAP, LLE, and LNE to the degree of bend (ζ = 1.0, 2.0) on the Twin Peaks data set (1000 points).
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Fig. 5. Comparison the robust of PCA, LE, ISOMAP, LLE, and LNE to the white gaussian noise (σ = 0.005, 0.1) on the Toroidal Helix data set
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Fig. 8. Two-dimensional representations of the ”Duck” images using LE, ISOMAP, LLE, and LNE with neighborhood size 5 and 8, respectively.

Fig. 9. Two-dimensional representations of the face images belonging to a person from Extended Yale B database using LE, ISOMAP, LLE, and
                                                                             LNEwith neighborhood size 5 and 9, respectively.

72

54

36

18

55

37

19

1

Fig. 7. The ”Duck” images of COIL-20. Each image is labeled with
      a identification number from 1 to 72 according to its view angle.

rithms, LE, ISOMAP, and LLE, on a subset of Columbia
Object Image Library (COIL-20) [16] and Extended Yale
B database [17].

The ”Duck” images which belongs to a subject of the
COIL-20, are sequentially obtained from 72 views at the

intervals of 5 degrees around a ”Duck”. We resized each
image from 128× 128 pixels to 32× 32 pixels, and mark
them with the identification number from 1 to 72 from
left to right and then top to down, as shown in the Fig.
7. The images in the first column are marked with the
identification number 1, 19, 37, and 55 corresponding to
γ equals 0◦, 90◦, 180◦, and 270◦ views, respectively.

Fig. 8 demonstrates the results of LE, ISOMAP, LLE
and LNE when neighbors number K equals 5 and 8. We
can see that the 2-D data representation form a closed
loop, and LNE captures the image variations of both view
angles and zooming effects. Specifically, the data points
No. 1 (γ = 0◦) and No. 37 (γ = 180◦) are nearly
symmetrically distributed with the axis, and their link
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is perpendicular to the link between the point No. 19
(γ = 90◦) and No. 55 (γ = 270◦). Moreover, we can
see LNE captures the drastic variation between the image
with γ = 90◦ and γ = 270◦ owing to the variation of the
beak of the duck. Furthermore, it is easy to find that the
points around No. 1 and No. 37 distributed denser than
other places, due to the extra strong zooming effects of
the fixed bounding box. It means that LNE discovers the
hidden structures successfully. On the other hand, LLE
failed to get the correct result. ISOMAP only get the
images variation of view angles, but not zooming effects.

The Extended Yale B database contains 38 individuals
and around 64 frontal images for each individual under
different illuminations. The images of the first person are
used in our experiment. Similar to [18], and each image
is resized from 192× 168 to 32× 32.

The tested algorithms projects each face onto a 2-D
plane, as shown in the Fig. 9. We can see that, as we
move along the horizontal axis, the direction of the light
source changes from left to right, while as we move
along the vertical axis, the overall darkness of the images
changes from dark to light. Moreover, the results of LNE
are nearly symmetrically distributed in the 2-D plane,
which reflects the real distribution of the data set. LE
and ISOMAP can get quit good results as well, but LLE
produces a irregular scatted distribution.

V. CONCLUSION

In this paper, we proposed LNE for unsupervised
dimensionality reduction by integrating the pairwise dis-
tance and local linear representation together to obtain
the similarity relationship among the points. The exper-
iments in synthetic and real data demonstrate that LNE,
compared with the algorithms that only use the pairwise
distance or reconstruction coefficients similarities, has
following advantages: 1) Insensitive to the choice of
neighborhood size; 2) Robust to the noise; 3) Works
well even in under-sampled case. Moreover, the proposed
algorithm is computational efficient owing to its analytic
solution.

There are several potential ways to improve or extend
this work. LNE determines the similarity relationship in
unsupervised way, the previous studies show that the label
information is helpful to find the real neighborhood of
data, i.e. , the semi-supervised learning way [19] [20]. It
is interesting to develop the supervised or semi-supervised
case for LNE.
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