

Query Rewriting Algorithms for Computing
Credible Query Answers over Annotated

Inconsistent Database

Aihua Wu
Dept. C.S. of Shanghai Maritime University, Shanghai, China

Email: 061021058@fudan.edu.cn

Abstract—Managing and querying inconsistent
database is a challenge problem: approaches of
picking sure part or selecting one from the conflicting
tuples result in information lose, while methods of
computing all possible query answers can be
meaningless because of the little probability of each
possible query answer. We present an approach
named Annotation Based Query Answer over
Inconsistent Database which tries to calculate proper
answer by distinguishing inconsistent data from
consistent ones in the answer with annotations. It can
correctly tell user inconsistency of query result down
to attribute level when only functional dependency is
considered. In this approach, information is preserved
while query answer is one single. In this paper, we
propose a method of query rewriting to compute
Annotation Based Query Answer for any given SQL
query without aggregation function and correlated
sub query. Through the query rewriting, this
approach doesn’t require a new query language and
can be easily embedded into existing database
applications. Except for the information preserving,
the experimental results both on TPC-H database and
synthesized database show the effectiveness and
applicability of our approach*

Index Terms—data quality; inconsistency; uncertain data;
certain query answer

I. INTRODUCTION

Although integrity constraints are adopted to guarantee
consistency of data for long time, inconsistent data still
exists in wide range applications from data integration [1],
data exchange, data cleaning, information retrieval [2], to
sensor networks [3]. Uncertainty implied in query answer
over inconsistent database makes it incredible. And
computing proper query answer over them is tougher than
over conventional databases, even only constraint of
functional dependency is violated. Major challenges
include finding proper semantics for their query answers,

* Supported by National Natural Science Foundation of China under
Grant No. 61202022 and Science & technology program of shanghai
Maritime University No. 20110042

developing efficient query evaluation algorithms, and
preserving as much information as we can in the query
results.
 Inconsistent database is considered to be correspond to
a set of deterministic database, and so do query answers
over them. Although from the user’s perspective, a single
sure query answer would be desirable in most cases. The
probabilistic nature of inconsistent data makes it difficult
to find such query answer. Approaches of data cleaning
with insert or update [9] are limited by accuracy and
human intervener, approaches of data cleaning with
delete and that of consistent query answer [5] result in
information loss.

On the other hand, instead of a single sure query
answer, it would be significant if all inconsistent data of
the query answer are marked out. User can learn which
part of the query answer is credible and which is not, or
even deduce the true value of incredible ones.

We present a weak representation with annotation for
inconsistent relational database that may violate a set of
functional dependencies (FDs for short below) but have
only one candidate key in [6]. In this representation,
inconsistent attribute values in both data source and query
results are attached with annotations. We call such
relation Annotated Relation, such database Annotated
Database, and the query answer Annotation Based Query
Answer (AQA for short below). The approach can avoid
information loss.

For a given Annotated Database and a query over it,
can AQA be figured out in way of evaluating SQL queries
in current DBMS? No. To give a formally solution, seven
basic algebra operations are defined in [6]: selection,
selection with domain equality, projection, join, join with
domain equality, union and difference. Queries can be
represented as these operations or their combination.
Soundness and completeness of the approach are proved
in [6].

But for any SQL query, how to compute its AQA? A
strategy is to extend or rewrite the query evaluation
module of current DBMS [17,19]. But the modified
DBMS can not efficiently manage database managed by
commercial DBMS. Therefore, it needs to develop a
middleware which accepts user’s SQL queries, translates
it into one or a set of SQL queries and returns AQA.

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 375

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.2.375-386

In this paper, we propose rewritten algorithms to
calculate AQA. The main advantage of our method is its
supporting of attribute-level inconsistency. Furthermore,
our approach doesn’t require a new query language and
can be easily embedded into existing database
applications. Still more, our approach can deal with
databases from different DBMS.
Contributions. The main contributions include:

We present algorithms for rewriting SQL queries.
Except for creating Annotated Batabase, the approach
doesn’t need neither pre- & post-processing nor
modification of current database system. This enables the
technique applicable to databases in many applications.
Further more, it almost doesn’t change the original
database and loss no information.

We present rules for calculating valid FDs on the query
result for any given query over any given database
schema.

We present a performance study using both data and
queries of the TPC-H benchmark and those generated by
our data generator. We compare time performance of
evaluating SQL queries and their rewritten ones. We test
performance of the approach against database with
different degrees of inconsistency and in different scale to
show its adaptability.

We present an optimization technique so that it is
practical for join queries between many large tables.
Organization. Section 2 is related work, section 3
briefly introduces the annotation based data model and
outline main idea of approach of AQA discussed in [6].
Section 4 presents algorithm for rewriting Select-Project-
Join queries, and followed by algorithms for union and
difference queries in section 5. Section 6 states
experimental evaluation. And last is the conclusion.

II. RELATED WORK

Problems of computing “clean” or credible query
answers on inconsistent, incomplete and uncertain
database have received renewed attention in the last few
years. Generally, there are three strategies to solve this
problem: data cleaning [7-9], consistent query answer

(CQA) [5,10,11] and probabilistic databases [1, 12-15].
Data cleaning focus on algorithms to correct data errors
so that “clean” answer can be evaluated against “clean”
data source. It is useful in many applications, but it
usually requires user’s interference, and no algorithm can
assure 100% correctness when insertion or modification
is used. CQA tries to compute consistent query answer
without modification of inconsistent data source. Here
consistent query answer is defined as the common part of
answers to the query on all repairs [5]. It avoids
correcting inconsistent data, but produces sure query
answers.

Both approaches of data cleaning with deletion and
CQA are unavoidable of Information loss. The former
loses tuples with inconsistent attribute, even they are
consistent on all attributes of the query answer. While the
latter ignores tuples who are inconsistent on one attribute
of the query result, even its other attributes are credible.
Our approach doesn’t modify or filter data, but add an
extra annotation dimension for each attribute value. It
loses nothing.

Information loss doesn’t exist in methods based on
probabilistic database, too. However, possible answers
can be exponentially large in size and the probability
associated with each single answer is extremely small.
Furthermore, the techniques view that the probability of
each attribute value is equal to the probability of the
whole tuple. But in fact, those attribute are different in
reliability. Techniques of probabilistic database aim at
likelihood of each query answer, but our goal is
maximum consistent data in the query answer.

III. ANNOTATION BASED QUERY ANSWER OVER
INCONSISTENT DATABASE

We present the framework of approach stated in [6],
and related basic concept in this section. It defines
inconsistent database as those that violates any of its
integrity constraints. And it supposes that the database
only violates FDs and all determine attributes are
creditable. Determine attributes are those that appear as
left side of a FD.

376 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

Figure 1. Two annotated relation of database Student

Figure 2. query answers of Q1 over Student

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 377

© 2013 ACADEMY PUBLISHER

3.1 Data Model
Inconsistency is a property of data, and can be

described. We extend relation data model by adding a
description dimension: for each attribute X, attribute XA
are added to record inconsistency of each tuple on X, e.g
in annotated Class of figure 1, t5[Major] conflicts with
t6[Major] according to CName->Major, so annotation
“*” is assigned to t5[MajorA] and t6[MajorA].

For any given relation and its FD set, it is easy to judge
inconsistency of each attribute value. But if nothing
changed, annotations in the query result can’t correctly
denote inconsistency of its corresponding attribute value.
For example, if we apply query Q1 over annotated
relations shown in figure 1 and simply rewrite it as Q1’,
annotations can be wrongly returned back. As shown in
figure 2(a), cell phones of two tutors of class Art05 are
inconsistent. The FD CName->Phone that they violate is
not valid on input tables but valid on the query result.
Tuples in the query result should be verified against the
“new born” FD.

Q1: select CName, Phone
From Class, Techaer
Where class.Tutor=Teacher.Tname and major=’Art’

Q1’:select CName, CNameA, Phone, PhoneA
from Class, Techaer

where class.Tutor=Teacher.Tname and major=’Art’
To recognize cell values who are consistent in input

table but inconsistent in query result, we use determine
attribute of the “new born” FD it violates as the
annotation. For example, in figure 2(b), “Class.CName”
is assigned to the first two tuples of R’, denoting their
inconsistency w.r.t. CName->Phone.

The following is a formal definition of our data model.
Definition1 uncertain data: Given a relation R, and a

set of FD ψ on it, Rttyx ∈∀∈>−∀ 2,1,)(ψ , if
t1[X]=t2[X] and t1[Y]!=t2[Y], we say that piece of data
t1[Y] and t2[Y] is uncertain data w.r.t. x->y.

Definition2 Annotated Relation: Given a relation R
and its FD sets F, if all uncertain pieces of data of R w.r.t.
F are attached with one or more marks, R is an annotated
relation w.r.t. F. Similarly, for any query Q over R, if all
uncertain pieces of data of Q(R) are attached by marks,
Q(R) is Annotation Based Query Answer.

In annotated relation, certain piece of data has no mark
with it while uncertain piece of data can have one or more
marks with it. There are two types of annotation: mark
“*” and determine attribute name. We call the former
static mark and the latter dynamic mark. Static mark can’t
be changed, while dynamic marks can be attached to or
eliminated from the data after another query expression.

3.2 Derived Functional Dependency
Data in the query result are assigned with dynamic

mark because they violate derived FD. And derived FDs
can be implied with domain equality between attributes.

Definition3 domain equality (DEQ): Given database
schema D, domain equality statement X

D
= Y is true iff for

any instance of D and any tuple t of the instance, ∃ t’,
that t[X]=t’[Y], here t and t’ can be same tuple.

Definition 4. Given a query Q and a set of FD F,
suppose U1,U2,…,Un are attributes appear in select,
where, group by, having, order by of Q, projection of F
on Q is project of F on R(U1,U2,…Un), similarly,
projection of domain equality DEQ on Q is projection of
DEQ on R(U1,U2,…Un).

The next rules can be used to compute DEQ for any
given query expression over relational database.

Let s be a schema, let e be an expression over s. The
derivation rules producing new domain equalities on e are
as follows (where “|-” means “derives”) (based on [20]):
1) X

D
= Y |- Y

D
= X

2) X
D
= Y, Y

D
= Z |- X

D
= Z

3) |- X
D
= X

4) X
D
= Y |- X->Y

5) Z->A1, Z->A2, ∀ t1,t2 if t1[Z]=t2[Z], t1[A1]=t2[A2]
|- A1

D
= A2

Let s be a database schema, F be FD set in s and e a
query expression over s. The set Drv(e) of derivable
constraints on e is defined by the following rules which
use induction on operations in e when only domain
equality considered ((based on [20])).
1) Drv(R): Picture each of R’s FDs as FD tree [20], then

take the closure.

2) Drv(e[X])(projection): Take all DEQs Y
D
= Z where

X[Y]
D
= X[Z] is in Drv(e), and all FDs Z->A that

X[Z]->X[A] is in Drv(e).

3) Drv(e[X
D
= Y])(selection with domain equality): Add

X
D
= Y to Drv(e) and take the closure

4) Drv(e1 >< e2)(join): Rename the constraints in
Drv(e2) according to the degree of e1, i.e. a DEQ

X
D
= Y becomes X+k=Y+k (k=degree(e1)) and an FD

Z->A becames Z+k->A+k. Then add renamed
Drv(e2) to Drv(e1) and take the closure.

5) Drv(e1 U e2)(union): A DEQ X
D
= Y is in Drv(e1 U e2)

if it is in both Drv(e1) and Drv(e2). If Z->A is in
Drv(e1) and Z->A is in Drv(e2) , e1.Z is domain
equal to e2.Z and e1.A is domain equal to e2.A, Z->A
in Drv(e1 U e2).

6) Drv(e1-e2)(difference): Use Drv(e1).
From the above, it can be proved that Drv(e) is

projection of +F on schema of e. Here we call those FD
Derived FD which does not belong to input FD set F but
belong to +F according to given DEQs, denoted as
Drvd(F,DEQs). Derived FDs can be computed by the
following method:
1) Replace every determined attribute of FD with its

domain equal attribute and add the new FD to FD set.
2) Replace every determine attribute of FD with its

domain equal attribute and add the new FD to FD set.
3) For any functional A->B, C->D, if B is domain equal

to C, add A->C, A->D, B->D to the FD set.
4) Repeated 3) until the FD set unchanged.
5) Remove duplicate FDs and input FDs . The left are

378 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

Derived FDs.

3.3 Annotation Based Query Answer
For a given database D and query Q, suppose that all

derived FD on Q(D) is known. AQA is the evaluation
result of Q over correctly dynamic marked D by verifying
it w.r.t. all derived FD. The next are examples of AQAs.

Figure 3. AQA of Q2.

O OX P PX Q QX
1 A * g *
1 B * e *
1 A * n *
4 D v

O OX P PX Q QX
1 A g *
1 A * n *
4 D v

R1 R2

FDs: O->P, O->Q

O OX P PX Q QX
4 D v

R1-R2

Figure 4. An example of difference between 2 annotated tables

Q2: select * From Student Where Age<=18

Phone PhoneA
5651565
3822820
6544460
6881234
6425151

Q3 ∏phone(R)

Phone PhoneA

 3822820 R.CName
 6544460 R.CName

Q4: σCName= Art05 (∏phone(R))

R=Class∞Teacher
Figure 5. Suppose R is inner join result of Class and Teacher,

annotation-based Query Answer of Q3, Q4.

Q3:select Phone from R
Q4:select Phone from R where CName=’Art05’

In [6], we present evaluation rules for any algebra
query, which are proved to be sound and valid. Based on
those rules, the problem we try to solve in this paper is
how to compute AQA by query rewriting for given SQL
queries when valid set of FD on the query result is know
and the base database is annotated.

IV. SPJ QUERIES

In this section, we present rewriting strategy for SPJ
queries without aggregation or grouping. We illustrate the
rewriting strategy with the next examples with DEQ
Tutor=Tname.

Example1: let’s start with a simplest query which asks
for all classes.

Q5: select * from Class
Q5’: select * from Class

Rewritten query of Q5 is Q5’. Notice that * in Q5 and
* in Q5’ denote to different set of attributes, the latter
includes all attributes of annotations. FDs are not checked
on the query result, because no Derived FD exists here.

Example2:consider a query which retrieve all class
whose major is “Art”.

Q6: select CName, Tutor from Class
 where Major=’Art’
Q6’: select CName, CNameA,Tutor,TutorA from Class

where Major=’Art’
Q6’’:select CName,CNameA,Tutor,TutorA, Major,MajorA
 from Class

 where Major=’Art’ or CName in (
select CName From Class
Where Major=’Art’ and MajorA is not null)

Naturally, AQA for Q6 is thought as {(‘Art05’,’’,’Lee’,
\’*’), (‘Art05’,’’,’Kimi’,’*’), (‘Art081’,’’,’Lee’,’’)} which
can be obtained by evaluating Q6’. Notice that Major of
t5 is actually unknown. If all possible classes are
considered, t5 should also be included. While if only
exact classes are considered, t5 should be excluded. Here
we take the narrow semantic of incomplete database that
classes satisfy Q6 can only be those whose major is “Art”
or those who conflict with a class whose major is “Art”.
Furthermore, attribute Major and MajorA are also
returned so that user can know inconsistency of records
on condition attributes.

Now, let’s discuss rewritten strategy of join queries.
Derived FDs are usually implied in join result. Thus, we
need to recheck inconsistency of the join result according
to the derived FDs. Furthermore, as for tuples who are
inconsistent on join attributes, they will join with those
tuples who satisfy join condition with value of himself or
of his conflicting values. In evaluation of Q1, t3 will join
with t10 and t11, and t4 will also join with t10 and t11.

An optimization technique can be used to reduce
unnecessary inconsistent checking and dynamic marking:
departing the data source into two parts according to its
possibility of violating Derived FD, computing dynamic
annotations for the former, calculating query answer with
both of them and returning the union query result.

Example3 gives the rewritten query of Q1 through 3
steps. Firstly, it joins tuples who share same determine
attribute value with other tuples because they may violate
a Derived FD. Notice that join condition is modified from
Tname=Tutor to Tname equal to any Tutor in the
conflicting Tutor set of the Class. Secondly, it checks
derived FD and attaches dynamic annotation to the temp
table. Thirdly, it apply query condition on each part of
data source and union them together.

Example3: Rewritten query of Q1 is as follows
1) Select C.*, T.* Into tmpR1

From Class C, Teacher T
Where (Tname = any (select Tutor from Class C2 where

Cname=C.CName))
 and CName in (select CName from Class

group by CName having count(*) >1);
2) update T

set T.PhoneA=T.PhoneA+'Class.CName'
from tmpR1 T
where exists (select B.CName from tmpR1 B
 where T.CName=B.CName
 group by B.CName.
 having count(distinct b.Phone)>1);

2) select CName, CNameA, Phone, PhoneA,
Major, MajorA, Tutor, TutorA

from tmpR1
where major=’Art’ or CName in (

select CName From Class
Where Major=’Art’ and MajorA is not null))

Union
select CName, CNameA, Phone, PhoneA,

Major, MajorA, Tutor, TutorA
from ((select * from Class C1 where CName in (

select CName from Class group by CName

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 379

© 2013 ACADEMY PUBLISHER

having count(*) =1)) C, Teacher T
where Tutor=Tname and (major=’Art’ or CName in (

select CName From Class
Where Major=’Art’ and MajorA is not null));

Example4: Irrelevant sub query in Q7 is rewritten to
return all possible TName.
Q7: select Cname, Major from class

where Tutor in (select tname from Tutor Where city='Brea')
Q7’:select Cname,CNameA,Major,MajorA, Tutor,TutorA

from class
where Tutor in (Where city='Brea' or tname in (

select tname From teacher
Where city='Brea' and cityA is not null))

Or cname in (
select cname From class
where TutorA is not null and Tutor in (

select tname From teacher
where city='Brea' or tname in (

select tname From teacher
Where city='Brea' and cityA is not null)));

The next is our algorithm for rewriting SPJ queries. It
first rewrite all vaθ (v is not attribute, θ is predicate and
a is determined attribute) in where clause so that tuples
who are uncertain on condition attributes can be return
back. In the rewritten query of vaθ , L1,L2,…are all
determine attributes that Lj-> a is valid on some relation
Ri in from clause. Secondly, if no derived FDs are valid
on the query, it will be directly rewritten to return both
value and annotation of attributes not only in select but
also in where. If derived FDs are valid on the query,
normally there is more than one table in from clause, it
will be translated into a series queries in three levels:
query to create table for records which may violate
Derived FD, queries to update annotations w.r.t Derived
FD, and query to retrieve records with annotations.

The first level of query joins the tables on rewritten
join condition so that tuples who are inconsistent on join
attributes can be joined correctly. After join, a super
relation who includes all required attributes can be build,
and annotations can be updated over it. By the rewritten
join conditions, tuple from Ri will be joined not only with
tuples from Rj who satisfy original join condition but also
tuples who conflict with those in Rj on join attribute. In
the algorithm, if θ is predicate >,<,>=,<=,= or <>, θ
would be <,>,<=,>=,= or <> respectively.

The bunch of queries in the second level updates
annotations. Each of them checks one Derived FD. In this
example, only one Derived FD needs to be verified.

The last query answer is made up of two parts: one is
potentially inconsistent w.r.t. Derived FD and the other
can not violate any Derived FD. The third level query
unions them together.
--
Algorithm: SPJ(Ω ,Ψ ,Q, I)
Input: domain equalityΩ , derived FD setΨ , return type I (0

for query answer, 1 for rewritten query), and user query Q
in form of:

Select A1,A2,…,An
From R1,R2,…Rk
Where ω
Order by κ

 Suppose W1,W2,…Wn are attributes that appear in ω but
not in { A1,A2,…An}.
Output: AQA of Q or rewritten queryϕ

1.Rewrite ω to ϖ according to the next rule:

a)For each vaθ inω (v isn’t attribute and θ is predicate
and a is determined attribute).

Replace vaθ with (vaθ or L1 in (select L1 from Ri
Where taθ and a is not null) or L2 in (select L2 from Rj
Where taθ and a is not null) …)

 b)For each sub query δ in ω
Replace δ with SPJ('Ω , 'Ψ ,δ , 1), here 'Ω and 'Ψ are
projection of Ω and Ψ on δ respectively.

2.Set 'Ψ =Projection of Ψ on Q
3.If 'Ψ =NULL

 If (I=0)
Excute the next query and return the query answer:
 select A1,A2,…,An, A1A, A2A,…AnA, W1,

W1A,…Wm,WmA
From R1,R2,…Rk Where ϖ Order by κ

 else
 {ϕ = select A1,A2,…,An From R1,R2,…Rk Where ϖ
 Return ϕ }

Else
{ a) 'Ω ={E | ∈E Projection ofΩ on R1∪ R2∪…∪ Rk}

b) Depart ϖ into two part: 1ϖ which includes all

. .Ri A Rj Bθ where Ri and Rj { }R1,...,Rk∈ , A and B are

attributes, θ is predicate, and 2ϖ of the left.

c) For each . .Ri A Rj Bθ in 1ϖ
{ S=””;

Suppose B-related FDs are B1->B,…,Bn->B and A-
related FDs are A1->A,…,An->A

if Rj.B is determined attribute
S=Ri.Aθ any (select B from Rj T

where T.B1=Rj.B1 and … and T.Bn=Rj.Bn)
 If Ri.A is determined attribute

If S=””
S= Rj.Bθ any (select A from Ri T

where T.A1=Ri.A1 and … and T.An=Ri.An)
 Else

S=S+ or Rj.Bθ any (select A from Ri T
where T.A1=Ri.A1 and … and T.An=Ri.An)

 Replace . .Ri A Rj Bθ with S;}
d) Execute the next query where Ei '∈Ω , and fdli is

determine attribute of a FDi in 'Ψ :
 Select R1.*, R2.* Into tmpR From R1,R2,…Rk
 Where 1ϖ and fdl1 in (select fdl1 from Ri group by fdl1

having count(distinct fdr1)>1)
and fdl2 in (select fdl2 from Rj group by fdl2 having

count(distinct fdr2)>1);
…

e) For each FD fdl->fdr in 'Ψ , execute the next query
update T set T.fdrA=T.fdrA+'fdl' from tmpR T
where exists (select b.fdl from tmpR b

where T.fdl=b.fdl group by b.fdl
having count(distinct b.fdr)>1)

f) If (I=0)
Excute the next query and return the query answer:

380 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

 select A1,A2,…,An, A1A, A2A,…AnA, W1,
W1A,…Wm,WmA

From tmpR Where 2ϖ Order by κ
 Union
 select A1,A2,…,An, A1A, A2A,…AnA, W1,

W1A,…Wm,WmA
 From ((select * from R1 where R1.key in (

select key from R1
group by fdl1,fdl2,…fdln
having count(*) =1)) R1, …,

((select * from Rk where Rk..key in (
select key from Rk
group by fdl1,fdl2,…fdln
having count(*) =1)) Rk

Where ϖ Order by κ
else
{ϕ = select A1,A2,…,An From tmpR Where 2ϖ

 Union
 select A1,A2,…,An

 From ((select * from R1 where R1.key in (
select key from R1
group by fdl1,fdl2,…fdln
having count(*) =1)) R1, …,

((select * from Rk where Rk..key in (
select key from Rk
group by fdl1,fdl2,…fdln
having count(*) =1)) Rk

Where ϖ }

V. UNION AND DIFFERENCE QUERIES

In this section, we will present the rewriting algorithms
for union and difference queries.

Figure 6. Example of Union over Annotated table

Example5 ： considering query Q8 and Q9 over
inconsistent tables Class1 and Class2 in Figure 6.

Q8：select * from Class1
Union
Select * from Class2

Q9: select cname,major from class1
where Tutor = 'Nancy'
union

select cname, major from class2
where major<> 'EE'

As for Q8, according to traditional semantic of Union,
the query result should be {t1,t2,t3,t4,t5,t6,t7}. But notice
that: 1) t1[Tutor] and t5[Tutor] are inconsistent in the
query result, they should be annotated, and 2) Although

t2 is consistent in Class1, it should be annotated for
conflicting with t7 on attribute Tutor, and after annotating,
it should be removed because it is completely equal to t6.

Now, let’s look into query Q9, of course, t2 is the only
record in the result, but notice that t7 in Class2 implies
another version of class ‘Art05’, which conflict with t2
on Tutor. Therefore, t2[Tutor] should be marked with “*”.

According to the above discussion, we present our
algorithm to compute AQA for query R1∪ R2. It first
extends the query condition so that all possible tuples will
be involved in. Then a series of rewritten query are
executed to compute AQA: 1) queries to get tuples who
satisfy query condition from R1 and R2 into tmpR1 and
tmpR2 respectively; 2) queries to verify consistency of
tuples who are consistent in R1 or R2 against with tuples
in the other table, and to attach marks to inconsistent ones,
and 3) queries to get answer from merged and remarked
tmpR1 and tmpR2. Though these queries, tuples who
satisfy query condition will be correctly marked out and
selected as query answer.

algorithm: Union
input: FD setΨ , user query in form of :

select A1,….An from R1 where 'ω
union
select A1,….An from R2 where "ω

Suppose W1,…,Wn are determined attributes in 'ω or "ω
but ∉{ A1,A2,…An} .
output: AQA

1. Rewrite 'ω to 'ϖ according to the next rule:

For each vaθ in 'ω where v is const.
{ Suppose L1-> a , L2-> a ,… , Ln-> a are FDs on R1.
Replace taθ with (vaθ or L1 in (select L1 from R1

Where vaθ and a is not null) or L2 in (select L2 from R1
Where vaθ and a is not null)…) }

2. Similary rewrite "ω to "ϖ
3. Excute the next queries:

a) select A1,A1A,….An,AnA, W1,W1A,…,Wm1,Wm1A
into tmpR1 From R1 where 'ϖ ;

b) select A1,A1A,….An,AnA, W1,W1A,…,Wm2,Wm2A
into tmpR2 From R2 where "ϖ ;

4. For each fdl->fdr Ψ∈ in R1(R2), fdl ∈ tmpR1 and
fdr∈ tmpR1, execute the next queries

a) update T set T.fdr =T.fdr+',*'
from tmpR1 T
where T.fdr is null and exists (select A.fdl

from R2 A where T.fdl=A.fdl
group by A.fdl having count(distinct A.fdr)>1);

b) update T set T. =T.fdr+',*'
from tmpR2 T
where T.fdr is null and exists (select A.fdl

from R1 A where T.fdl=A.fdl
group by A.fdl having count(distinct A.fdr)>1);

5. Last execute the next query and return query result:
 select A1,A1A,….An, AnA W1,W1A,…,Wm2,Wm2A

from (select * from tmpR1
union
select * from tmpR2) T

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 381

© 2013 ACADEMY PUBLISHER

In union operation, the two relations descript the same
entity. Original annotations in both relations can not
exactly denote to its inconsistency without global
checking. It’s similar to relations involved in difference
operation. In the rewritten algorithm of query R1-R2, we
first recheck and remark cell values in R1 against records
in R2, then doing difference to exclude tuples in R1 who
are equal to or value equal to a tuple in R2.

algorithm: difference
input: FD set Ψ ={fdli->fdri (i=1,2,…,n)} and user query in
form of :

select A1,….An from R1 where 'ω
 minus

select A1,….An from R2 where "ω
Suppose W1,…,Wn are determined attributes in 'ω or "ω

but ∉{ A1,A2,…An} .
output: AQA
--
1.Rewrite 'ω to 'ϖ according to the next rule:
For each taθ in 'ω where t is const.
{ Suppose L1-> a , L2-> a ,… , Ln-> a are FDs on R1,

Replace vaθ with (vaθ or L1 in (select L1 from R1
Where vaθ and a is not null) or L2 in (select L2 from R1
Where vaθ and a is not null)…)}

2. Similary rewrite "ω to "ϖ
3. Execute the next query:

select A1,A1A,….An,AnA, W1,W1A,…,Wm1,Wm1A into
tmpR1 from R1 where 'ϖ

4. For each fdl->fdr Ψ∈ in R1, fdl, fdr∈ tmpR1, execute the
next queries to remark tmpR1:

update T set T. =T.fdr+',*'
from tmpR1 T
where T.fdr not like '%*%' and exists (select A.fdl

 from R2 A where "ϖ and T.fdl=A.fdl
group by A.fdl having count(distinct A.fdr)>1);

5. Excute the next query and return query result.
select A1,A1A,….An ,W1,W1A,…,Wm2,Wm2A
from tmpR1
where not exists (select * from R2 where "ϖ and

R2.A1=tmpR1.A1 and … and R2.An=tmpR1.An)

VI. EXPERIMENTAL EVALUATION

We mainly state the experimental evaluation of query
rewriting algorithms presented in this paper, to compare
performance of AQA queries and SQL queries, and
different AQA queries over different scale database with
different ratio of inconsistent data.

Experimental environment. Settings of the
experiment are: Intel Celeron 420 2.0GHZ CPU, 1GB
memory, XP+SP2, C#/VC6.0 and SQL Server 2000.

Data set generation. To test the efficiency of AQA on
different size of data sets, we developed a synthetic data
generator which can be run with two parameters, the
scaling factor (database size, ds) and the inconsistency
factor (dirty ratio, dr) that controls ratio of “dirty” tuples.
All generated data conform to schema shown in figure 1.

The two group data sets used in the experiments are
shown in table1. The first group data sets are in size of
1GB but with different dr of 1%, 5%, 10% and 15%.
While the second group data sets are in size of 0.1GB,
0.5GB, 1GB and 1.5GB, and with dr of 5%. All the data
sets are sorted by primary key attribute in advance.

TABLE I.

DATA USED IN THE EXPERIMENTS

 name Size Dirty ratio
group1 DB11 1GB 1%

DB12 1GB 5%
DB13 1GB 10%
DB14 1GB 15%

group2 DB21 103MB 5%
DB22 536MB 5%
DB23 1GB 5%
DB24 1.5GB 5%

TABLE II.

TPC-H DATA USED IN THE EXPERIMENTS

table Records noise records Updated Attributes
supplier 10,000 1,750 s_nationkey

partsupp 800,000 100,000 ps_supplycost
part 200,000 45,000 P_brand
orders 1500,000 337,500 o_custkey
customer 150,000 30,000 c_address
lineitem 6000,000 1200,000 l_quanlity, l_shipdate
nation 25 0
region 5 0

Queries. 11 queries are used in the experiment. Queries
q1-q6 are about table Class and without join, q7 is a
nested query, q8 and q9 are join operations. Query q10
and q11 are union and difference.
q1: select cname, major q2: select cname,major
 from class from class
 where cname='c5' or major='m93'

q3: select major,cname
 from class

where cname = 'c2' and major = 'm3' and Tutor >= 't1500'
q4: select * q5: select *
 from class from class
 where cname like 'c2000%' where cname is null
q6: select major,cname q7: select *
 from class from class
 where cname = 'c5' where Tutor in (
 and major >= 'm21035' select tname from teacher
 or major <= 'm1000' where city='Brea')
q8: select cname,major, Tutor, city,Phone
 from class,teacher

 where cname = 'c2000' and class.Tutor = teacher.tname
q9: select *
 from student s,class c,teacher t
 where s.class=cname and Tutor=t.tname and cname='c65'
q10: select cname,major q11: select cname,major
 from class from class
 where cname = 'c18' where cname in ('c18','c108')
 union minus
 select cname,major select cname,major
 from class from class
 where cname = 'c108' where cname = 'c18'

382 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

0

2

4

6

8

10

12

14

time(s)

q1 q2 q3 q4 q5 q6 q7

SQL

AQA

(a) Time of AQA and SQL over DB14

0

2

4

6

8

10

12

time(s)

DB11 DB12 DB13 DB14

SQL

AQA

(b) Time of AQA and SQL of q8

0

5

10

15

20

25

30

35

time(s)

DB21 DB22 DB23 DB24

SQL

AQA

(c) Time of AQA and SQL of q11

Figure 7. Performance of AQA and normal SQL

Time performance of AQA rewriting. The first group
experiments compare time performance of q1-q11 (SQL
queries) and their corresponding rewritten query(AQA
queries). As shown in figure 7, for queries over a single
table where no derived FDs are implied, performance of
AQA is close to SQL. But for join query, evaluation of
AQA queries need much more time than SQL queries.
That is because when derived FD exists, computations of
annotation require table scanning for each derived FD.
Furthermore, the execution time goes more sharply as
more tables are joined together. In fact, mark maintaining
is the most time consuming operation.

The second group of experiments test performance of
AQA queries over database with difference ds and
different dr. As figure 8(a) shows, when only dr changes,
queries without join changes little, while time of join
queries is polynomial against the dr. The reason is that
more inconsistency validation is executed as more dirty
tuples exist in the database. On the other side, when dr
keeps no change and ds changes, as shown in figure 8 (b),
time of query q3, q4, q5, q9 and q10 changes little
because of index on cname, time of q2, q6 and q7 goes
sharply because full scan time goes sharply, while q8 and
q11 go sharper with database scale.

0

2

4

6

8

10

12

14

DB11 DB12 DB13 DB14

ti
me

(s
)

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

(a) time of AQA when noisy data changed

0

5

10

15

20

25

30

35

1 2 3 4

ti
m
e
(s

)

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

(b) time of AQA when database size changed

Figure 8. Time performance of q1-q11 over databases with different
dr and different ds.

Query optimization of AQA. To improve the time
performance join query, we present an optimization of
AQA. Difference between AQA and its optimization is
the query sequence. In AQA, we first do query for all
tuples to form the “possible world” and compute their
annotations, then filter them with query condition.
Meanwhile, in the query optimization, we first filter
tuples with query condition, then compute their
annotation. For those who don’t conflict with a record in
the query result, we will validate its consistency in the
“possible world”. Take query Q1 as an example, with the
optimization, its rewritten queries are:

Select C.*, T.* Into tmpR
From Class C, Teacher T
Where (major=’Art’ or majorA is not null)

and (Tname = any (select Tutor from Class C2
where Cname=C.CName));

update T
set T.PhoneA=T.PhoneA+'Class.CName'
from tmpR T
where exists (select B.CName from tmpR B
 where T.CName=B.CName
 group by B.CName.
 having count(distinct b.Phone)>1);
update T
set T.PhoneA=T.PhoneA+'Class.CName'
from tmpR T
where T.PhoneA is null and exists

(select * from Class C, Teache
 where (Tname = any (select Tutor

from Class C2 where Cname=C.CName))
and T.CName=C.CName
and T.Phone!=Teacher.Phone);

select CName, CNameA, Phone, PhoneA,
Major, MajorA, Tutor, TutorA

From tmpR;

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 383

© 2013 ACADEMY PUBLISHER

0

1

2
3

4
5

6
7

8

9
10

time

(s)

DB11 DB12 DB13 DB14

AQA with
optimization
AQA

(a) result when noisy data changed

0

5

10

15

20

time(s)

DB21 DB22 DB23 DB24

AQA with
optimization

AQA

(b) result when database size changed

Figure 9. Time performance of AQA and its optimization of q11

0

2

4

6

8

10

12

time(s)

DB11 DB12 DB13 DB14

AQA with
optimization

AQA

(a) result when noisy data changed

0

5

10

15

20

25

30

35

time(s)

DB21 DB22 DB23 DB24

AQA with
optimization

AQA

(b) result when database size changed

Figure 10. Time performance of AQA and its optimization of q8

The query optimization evidently improves AQA’s
performance when a few records satisfy the query. As
shown in figure 10 and figure 11, after optimization,
performance of q8 and q11 are sharply improved and
close to normal SQL query, regardless different level of
database size, dirty ratio and tables joined together.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t
i
m
e

(s)

DB11 DB12 DB13 DB14

SQL

AQA with
optimization

(a) SQL and AQA with optimization of q8

0

5

10

15

20

t
i
m
e

(s)

DB21 DB22 DB23 DB24

SQL

AQA with
optimization

 (b) SQL and AQA with optimization of q11

Figure 11. Time performance of SQL and AQA with optimization

Information Loss. Here we analyzes the information
preserving ability of CQA and database repairing with
tuple deletion (RWD below), and compare them with
AQA on query q1 and q7. Information loss rate is
calculated as follows: total number of all lost attribute
values divide total number of attribute values satisfying
the query, for example, there are 4 tuples satisfy q7 with
no consideration of inconsistency, and two of them
conflict on Major but consistent on CName and Tutor
which will not appear in query answer with method of
RWD, so that information lost rate is 4/12=33.3%. The
experimental results in figure 12 (a) and (b) show that
although information loss varies among different queries,
RWD and CQA loss lots of information while AQA lose
nothing in any case.

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8

data source

R
at

i
o

of
 l

o
st

 c
el

l
va

l
ue

RWD

CQA

AQA

(a) Information loss of RWD, CQA and AQA for q1

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

1 2 3 4 5 6 7 8

data source

r
at

io
 o

f
lo
s
t

ce
ll

 v
al

ue

RWD

CQA

AQA

(b) Information loss of RWD, CQA and AQA for q7

Figure 12. Information loss compare of RWD, CQA and AQA

Experiment evaluation for tpc-h data and queries. The
next experiment compares time performance of AQA and
SQL over a tpc-h database [18]. The database is stored in
SQL Server 2000, and initial size of each table is listed in
table 2. We don’t change its integrity constraints but add
some noise data. For each of the first 6 tables, we copy a
number of its records into another table, and update these
records on specified attributes, and then append them
back into the original table so that they must conflict with
their corresponding records on the updated attributes.
Number of the appended revised records and the updated

384 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

attributes are listed in table 2. By this way, dirty ratio of
the database is 5%.

Experiment result in figure 13 shows that AQA with
optimization is close to SQL queries.

0

500

1000

1500

2000

2500

t
i
m
e

(s)

Q1 Q2 Q3 Q4 Q6 Q9 Q11 Q17 Q18 Q20

SQL

AQA with
optimization

Figure 13. Performance over TPC-H databases

VII. CONCLUSION AND FUTURE WORK

Conflicting and incomplete information are implied in
inconsistent data and query answers over it. Hot
discussed problems include how to represent inconsistent
data, what its query answer should be, and how to
compute it. Although from the user’s perspective, a single
sure query answer would be desirable in most cases. The
probabilistic nature of inconsistent data makes such query
answer impossible.

As previous work, we present a weak representation
named AQA where inconsistent cell values in both data
source and query results are attached with annotations. It
can avoid information loss, a vital and common
deficiency of many previous works in this area. In this
paper, we focus on an implementation strategy of it. We
propose algorithms to rewrite queries without aggregation
and correlated sub query so that its AQA can be correctly
computed. The main difference between our method and
other related work is its support of attribute-level
inconsistency. Furthermore, our approach doesn’t require
a new query language and can be easily embedded into
existing database applications. Still more, our approach
can deal with databases from different DBMS.

Insofar, our approach is limited to constraint type of
FD and SPJUD queries. As a future work, we will extend
it so that it can deal with other type of constraint and
aggregation queries.

REFERENCES

[1] Periklis Andritsos, Ariel Fuxman, Ren´ee J. Miller. Clean
Answers over Dirty Databases: A Probabilistic Approach.
In Proc. of the 22nd Intl. Conference on Data Engineering,
April 3-8, 2006, Atlanta, USA. 2006, pp.30.

[2] Prithviraj Sen, Amol Deshpande. Representing and
querying correlated tuples in probabilistic databases. In
Proc. of the 23rd Intl. Conference on Data Engineering
Istanbul, Turkey, April 15-20, 2007, ICDE, pp.596-605.

[3] Amol Deshpande, Carlos Guestrin, Sam Madden, etc.
Model-driven data acquisition in sensor networks. In Proc.
of the 30th Intl. Conference on Very Large Data Bases,
Toronto, Canada, 8.31 – 9.3, 2004, pp. 588—599.

[4] Serge Abiteboul, Richard Hull, Victor Vianu: Foundations
of Databases. Addison-Wesley 1995

[5] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent
query answers in inconsistent databases. In Proc. of the
18th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, May 31 - June 2, 1999,
Philadelphia, USA, 1999, pp.68-79.

[6] Aihua Wu, Zijing Tan, Wei Wang. Annotation Based
Query Answer over Inconsistent Database. Journal of
Computer Science and Technology. 2010, 25(3):467-479.

[7] Philip Bohannon, Michael Flaster, Wenfei Fan, etc. A
Cost-Based Model and Effective Heuristic for Repairing
Constraints by Value Modification. In Proc. of the 24th
ACM SIGMOD intl. conference on Management of data,
June 14-16, 2005, Baltimore, Maryland, pp.143-154.

[8] L. Bertossi, L. Bravo, E. Franconi, etc. Complexity and
Approximation of Fixing Numerical Attributes in
Databases under Integrity Constraints. In Proc. of 10th Intl.
Symposium on Database Programming Languages,
Trondheim, Norway, August 28-29, 2005, pp. 262-278.

[9] J. Wijsen. Database Repairing using Updates. ACM
Transactions on Database Systems, 30(3):722-768, 2005.

[10] L. Bravo and L. Bertossi. Logic programs for consistently
querying data integration systems. In Proc. of the 18th Intl.
Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003, pp. 10-15.

[11] J. Chomicki, Consistent Query Answering: Five Easy
Pieces. In Proc. of the 11th Intl. Conference of Database
Theory, Barcelona, Spain, January 10-12, 2007, pp.1-17.

[12] Xi Zhang, Jan Chomicki: On the semantics and evaluation
of top-k queries in probabilistic databases. In Proc. of the
24th Intl. Conference on Data Engineering Workshops,
Cancún, México, April 7-12, 2008, pp. 556-563.

[13] Graham Cormode, Feifei Li, and Ke Yi. Semantics of
ranking queries for probabilistic data and expected ranks.
In Proc. of the 25th Intl. Conference on Data Engineering,
Shanghai, China, March 29 - April 2, 2009, pp. 305-316.

[14] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on
probabilistic databases. In Proc. of the 30th Intl Conference
on Very Large Data Bases, Toronto, Canada, August 31 -
September 3, 2004, pp. 864-875.

[15] M. Hua, J. Pei, W. Zhang, X. Lin. Efficiently answering
probabilistic threshold top-k queries on uncertain data. In
Proc. of the 24th Intl. Conference on Data Engineering,
Cancún, México, April 7-12, 2008,1403-1405.

[16] Aihua Wu, Zijing Tan, Wei Wang. Query Answer over
Inconsistent Database with Credible Annotations. Journal
of software (China), 2012,23(5):1167-1182.

[17] L. Antova, C. Koch, and D. Olteanu. MayBMS: Managing
Incomplete Information with Probabilistic World-Set
Decompositions. In: Proc. 23rd Intl. Conference on Data
Engineering (ICDE2007), Istanbul, Turkey, April 15-20:
IEEE Computer Society , 2007, 1479-1480.

[18] T. P. C. (TPC). TPC Benchmark H: Standard Specification,
2009. http://www.tpc.org/tpch.

[19] J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In: Proc. 2nd Biennial
Conference on Innovative Data Systems Research
(CIDR2005), Asilomar, USA, January 4-7, 2005, 262-276.

[20] Anthony C. Klug: Calculating Constraints on Relational
Expressions. ACM Trans. Database Syst. 5(3): 260-290
(1980).

APPENDIX A QUERIES USED IN THE EXPERIMENTS

The following are the 11 queries, adapted from the
TPC-H specification, that were used in the experiments.
Query 1:
select l_returnflag, l_extendedprice as avg_price,

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 385

© 2013 ACADEMY PUBLISHER

 l_quantity as sum_qty, l_quantity as avg_qty,
 l_linestatus, l_extendedprice as sumBasePrice,
l_extendedprice*(1- l_discount) as sumDiscPrice,
l_extendedprice*(1-l_discount)*(1+l_tax) as

sumCharge,
 l_discount as avg_disc

from lineitem
where DAYS(’1998-12-01’)-DAYS(l_shipdate) >90
order by l_returnflag, l_linestatus;
Query 2:

select s_acctbal, s_name, n_name, p_partkey,
p_mfgr, s_address, s_phone, s_comment

from part, supplier, partsupp, nation, region
where p_partkey = ps_partkey
 and s_suppkey = ps_suppkey
 and p_size = 15
 and p_type like ’%BRASS’
 and s_nationkey = n_nationkey
 and n_regionkey = r_regionkey
 and r_name = ’EUROPE’
order by s_acctbal desc, n_name, s_name, p_partkey

Query 3:
select l_orderkey, o_orderdate, o_shippriority,

l_extendedprice * (1 - l_discount) as revenue
from customer, orders, lineitem
where c_mktsegment = 'BUILDING'
 and c_custkey = o_custkey
 and l_orderkey = o_orderkey
 and o_orderdate < '1995-03-15'
 and l_shipdate > '1995-03-15'
order by revenue desc, o_orderdate

Query 4:
select o_orderpriority
from orders, lineitem
where o_orderdate >= ’1993-07-01’
 and days(o_orderdate) <days(’1993-07-01’) + 90
 and l_orderkey = o_orderkey
 and l_commitdate < l_receiptdate
order by o_orderpriority

Query 6:
select l_extendedprice * l_discount as revenue
from lineitem
where l_shipdate >= ’1994-01-01’

and days(l_shipdate) < days(’1994-01-01’)+365
 and l_discount >= 0.06 - 0.01
 and l_discount <= 0.06 + 0.01
 and l_quantity < 24

Query 9:
select n_name as nation,
 YEAR(o_orderdate) as o_year,
 l_extendedprice * (1 - l_discount) -

ps_supplycost * l_quantity as amount
from part, supplier, lineitem, partsupp, orders, nation
where s_suppkey = l_suppkey
 and ps_suppkey = l_suppkey
 and ps_partkey = l_partkey
 and p_partkey = l_partkey
 and o_orderkey = l_orderkey
 and s_nationkey = n_nationkey
 and p_name like ’gr%’
order by nation, o_year desc

Query 10:
select c_custkey, c_name, c_acctbal, n_name,
 l_extendedprice * (1 - l_discount) as revenue,
 c_address, c_phone, c_comment
from customer, orders, lineitem, nation
where c_custkey = o_custkey
 and l_orderkey = o_orderkey
 and o_orderdate >= ’1993-10-01’
 and days(o_orderdate) < days(’1993-10-01’) + 90
 and l_returnflag = ’R’
 and c_nationkey = n_nationkey
order by revenue desc

Query 11:
select ps_partkey,

ps_supplycost * ps_availqty as value
from partsupp, supplier, nation
where ps_suppkey = s_suppkey
 and s_nationkey = n_nationkey
 and n_name = ’GERMANY’
order by value desc

Query 17:
select l_extendedprice / 7.0 as avg_yearly
from lineitem, part
where p_partkey = l_partkey
 and p_brand = 'Brand#23'
 and p_container = 'MED BOX'

Query 18:
select c_name, c_custkey, o_orderkey,

 o_orderdate, o_totalprice, l_quantity
from customer, orders, lineitem
where o_orderkey = l_orderkey
 and l_quantity > 300
 and c_custkey = o_custkey
 and o_orderkey = l_orderkey
order by o_totalprice desc, o_orderdate

Query 20:
select s_name, s_address
from supplier, nation, partsupp, part
where s_suppkey=ps_suppkey
 and ps_partkey=p_partkey
 and p_name like 'forest%'
 and s_nationkey = n_nationkey
 and n_name ='CANADA'
order by s_name

Aihua Wu Born in Jiangxi Province,
China, 1976.7, and received her M.Sc.
and PH.D. of computer science from
International Database Center, Fudan
University, China, in 2004 and 2010.

In 2007 - 2008, she worked on
uncertain database while visiting
University of California at Santa Barbara.
And now she is an associate professor of
Shanghai Maritime University, China.

Her current research interests include uncertain database,
inconsistent XML, BPM, data mining and knowledge discovery.

Dr. Wu is membership of China Computer Federation.

386 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

