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Abstract—Managing and querying inconsistent 
database is a challenge problem: approaches of 
picking sure part or selecting one from the conflicting 
tuples result in information lose, while methods of 
computing all possible query answers can be 
meaningless because of the little probability of each 
possible query answer. We present an approach 
named Annotation Based Query Answer over 
Inconsistent Database which tries to calculate proper 
answer by distinguishing inconsistent data from 
consistent ones in the answer with annotations. It can 
correctly tell user inconsistency of query result down 
to attribute level when only functional dependency is 
considered. In this approach, information is preserved 
while query answer is one single. In this paper, we 
propose a method of query rewriting to compute 
Annotation Based Query Answer for any given SQL 
query without aggregation function and correlated 
sub query. Through the query rewriting, this 
approach doesn’t require a new query language and 
can be easily embedded into existing database 
applications. Except for the information preserving, 
the experimental results both on TPC-H database and 
synthesized database show the effectiveness and 
applicability of our approach* 
 
Index Terms—data quality; inconsistency; uncertain data; 
certain query answer 
 

I.  INTRODUCTION 

Although integrity constraints are adopted to guarantee 
consistency of data for long time, inconsistent data still 
exists in wide range applications from data integration [1], 
data exchange, data cleaning, information retrieval [2], to 
sensor networks [3]. Uncertainty implied in query answer 
over inconsistent database makes it incredible. And 
computing proper query answer over them is tougher than 
over conventional databases, even only constraint of 
functional dependency is violated. Major challenges 
include finding proper semantics for their query answers, 

                                                           
* Supported by National Natural Science Foundation of China under 
Grant No. 61202022 and Science & technology program of shanghai 
Maritime University No. 20110042 

developing efficient query evaluation algorithms, and 
preserving as much information as we can in the query 
results. 
   Inconsistent database is considered to be correspond to 
a set of deterministic database, and so do query answers 
over them. Although from the user’s perspective, a single 
sure query answer would be desirable in most cases. The 
probabilistic nature of inconsistent data makes it difficult 
to find such query answer. Approaches of data cleaning 
with insert or update [9] are limited by accuracy and 
human intervener, approaches of data cleaning with 
delete and that of consistent query answer [5] result in 
information loss.  

On the other hand, instead of a single sure query 
answer, it would be significant if all inconsistent data of 
the query answer are marked out. User can learn which 
part of the query answer is credible and which is not, or 
even deduce the true value of incredible ones. 

We present a weak representation with annotation for 
inconsistent relational database that may violate a set of 
functional dependencies (FDs for short below) but have 
only one candidate key in [6]. In this representation, 
inconsistent attribute values in both data source and query 
results are attached with annotations. We call such 
relation Annotated Relation, such database Annotated 
Database, and the query answer Annotation Based Query 
Answer (AQA for short below). The approach can avoid 
information loss. 

For a given Annotated Database and a query over it, 
can AQA be figured out in way of evaluating SQL queries 
in current DBMS? No. To give a formally solution, seven 
basic algebra operations are defined in [6]: selection, 
selection with domain equality, projection, join, join with 
domain equality, union and difference. Queries can be 
represented as these operations or their combination. 
Soundness and completeness of the approach are proved 
in [6]. 

But for any SQL query, how to compute its AQA? A 
strategy is to extend or rewrite the query evaluation 
module of current DBMS [17,19]. But the modified 
DBMS can not efficiently manage database managed by 
commercial DBMS. Therefore, it needs to develop a 
middleware which accepts user’s SQL queries, translates 
it into one or a set of SQL queries and returns AQA. 
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In this paper, we propose rewritten algorithms to 
calculate AQA. The main advantage of our method is its 
supporting of attribute-level inconsistency. Furthermore, 
our approach doesn’t require a new query language and 
can be easily embedded into existing database 
applications. Still more, our approach can deal with 
databases from different DBMS. 
Contributions. The main contributions include: 

We present algorithms for rewriting SQL queries. 
Except for creating Annotated Batabase, the approach 
doesn’t need neither pre- & post-processing nor 
modification of current database system. This enables the 
technique applicable to databases in many applications. 
Further more, it almost doesn’t change the original 
database and loss no information. 

We present rules for calculating valid FDs on the query 
result for any given query over any given database 
schema.  

We present a performance study using both data and 
queries of the TPC-H benchmark and those generated by 
our data generator. We compare time performance of 
evaluating SQL queries and their rewritten ones. We test 
performance of the approach against database with 
different degrees of inconsistency and in different scale to 
show its adaptability.  

We present an optimization technique so that it is 
practical for join queries between many large tables. 
Organization.  Section 2 is related work, section 3 
briefly introduces the annotation based data model and 
outline main idea of approach of AQA discussed in [6]. 
Section 4 presents algorithm for rewriting Select-Project-
Join queries, and followed by algorithms for union and 
difference queries in section 5. Section 6 states 
experimental evaluation. And last is the conclusion. 

II. RELATED WORK  

Problems of computing “clean” or credible query 
answers on inconsistent, incomplete and uncertain 
database have received renewed attention in the last few 
years. Generally, there are three strategies to solve this 
problem: data cleaning [7-9], consistent query answer 

(CQA) [5,10,11] and probabilistic databases [1, 12-15]. 
Data cleaning focus on algorithms to correct data errors 
so that “clean” answer can be evaluated against “clean” 
data source. It is useful in many applications, but it 
usually requires user’s interference, and no algorithm can 
assure 100% correctness when insertion or modification 
is used. CQA tries to compute consistent query answer 
without modification of inconsistent data source. Here 
consistent query answer is defined as the common part of 
answers to the query on all repairs [5]. It avoids 
correcting inconsistent data, but produces sure query 
answers.  

Both approaches of data cleaning with deletion and 
CQA are unavoidable of Information loss. The former 
loses tuples with inconsistent attribute, even they are 
consistent on all attributes of the query answer. While the 
latter ignores tuples who are inconsistent on one attribute 
of the query result, even its other attributes are credible. 
Our approach doesn’t modify or filter data, but add an 
extra annotation dimension for each attribute value. It 
loses nothing. 

Information loss doesn’t exist in methods based on 
probabilistic database, too. However, possible answers 
can be exponentially large in size and the probability 
associated with each single answer is extremely small. 
Furthermore, the techniques view that the probability of 
each attribute value is equal to the probability of the 
whole tuple. But in fact, those attribute are different in 
reliability. Techniques of probabilistic database aim at 
likelihood of each query answer, but our goal is 
maximum consistent data in the query answer. 

III.  ANNOTATION BASED QUERY ANSWER OVER 
INCONSISTENT DATABASE 

We present the framework of approach stated in [6], 
and related basic concept in this section. It defines 
inconsistent database as those that violates any of its 
integrity constraints. And it supposes that the database 
only violates FDs and all determine attributes are 
creditable. Determine attributes are those that appear as 
left side of a FD. 
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Figure 1.   Two annotated relation of database Student 

 
Figure 2.  query answers of Q1 over Student
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3.1 Data Model 
Inconsistency is a property of data, and can be 

described. We extend relation data model by adding a 
description dimension: for each attribute X, attribute XA 
are added to record inconsistency of each tuple on X, e.g 
in annotated Class of figure 1, t5[Major] conflicts with 
t6[Major] according to CName->Major, so annotation 
“*” is assigned to t5[MajorA] and t6[MajorA]. 

For any given relation and its FD set, it is easy to judge 
inconsistency of each attribute value. But if nothing 
changed, annotations in the query result can’t correctly 
denote inconsistency of its corresponding attribute value. 
For example, if we apply query Q1 over annotated 
relations shown in figure 1 and simply rewrite it as Q1’, 
annotations can be wrongly returned back. As shown in 
figure 2(a), cell phones of two tutors of class Art05 are 
inconsistent. The FD CName->Phone that they violate is 
not valid on input tables but valid on the query result. 
Tuples in the query result should be verified against the 
“new born” FD.                 

Q1: select CName, Phone       
From Class, Techaer          
Where class.Tutor=Teacher.Tname and major=’Art’  

Q1’:select CName, CNameA, Phone, PhoneA 
from Class, Techaer 

where class.Tutor=Teacher.Tname and major=’Art’ 
To recognize cell values who are consistent in input 

table but inconsistent in query result, we use determine 
attribute of the “new born” FD it violates as the 
annotation. For example, in figure 2(b), “Class.CName” 
is assigned to the first two tuples of R’, denoting their 
inconsistency w.r.t. CName->Phone. 

The following is a formal definition of our data model. 
Definition1 uncertain data: Given a relation R, and a 

set of FD ψ  on it, Rttyx ∈∀∈>−∀ 2,1,)( ψ , if 
t1[X]=t2[X] and t1[Y]!=t2[Y], we say that piece of data 
t1[Y] and t2[Y] is uncertain data w.r.t. x->y. 

Definition2 Annotated Relation: Given a relation R 
and its FD sets F, if all uncertain pieces of data of R w.r.t. 
F are attached with one or more marks, R is an annotated 
relation w.r.t. F. Similarly, for any query Q over R, if all 
uncertain pieces of data of Q(R) are attached by marks, 
Q(R) is Annotation Based Query Answer. 

In annotated relation, certain piece of data has no mark 
with it while uncertain piece of data can have one or more 
marks with it. There are two types of annotation: mark 
“*” and determine attribute name. We call the former 
static mark and the latter dynamic mark. Static mark can’t 
be changed, while dynamic marks can be attached to or 
eliminated from the data after another query expression. 

3.2 Derived Functional Dependency 
Data in the query result are assigned with dynamic 

mark because they violate derived FD. And derived FDs 
can be implied with domain equality between attributes.  

Definition3 domain equality (DEQ): Given database 
schema D, domain equality statement X

D
= Y is true iff for 

any instance of D and any tuple t of the instance, ∃ t’, 
that t[X]=t’[Y], here t and t’ can be same tuple.  

Definition 4. Given a query Q and a set of FD F, 
suppose U1,U2,…,Un are attributes appear in select, 
where, group by, having, order by of Q, projection of F 
on Q is project of F on R(U1,U2,…Un), similarly, 
projection of domain equality DEQ on Q is projection of 
DEQ on R(U1,U2,…Un). 

The next rules can be used to compute DEQ for any 
given query expression over relational database. 

Let s be a schema, let e be an expression over s. The 
derivation rules producing new domain equalities on e are 
as follows (where “|-” means “derives”) (based on [20]): 
1) X

D
= Y |- Y

D
= X 

2) X
D
= Y, Y

D
= Z |- X

D
= Z 

3) |- X
D
= X 

4) X
D
= Y |- X->Y  

5) Z->A1, Z->A2, ∀ t1,t2 if t1[Z]=t2[Z], t1[A1]=t2[A2] 
|- A1

D
= A2 

Let s be a database schema, F be FD set in s and e a 
query expression over s. The set Drv(e) of derivable 
constraints on e is defined by the following rules which 
use induction on operations in e when only domain 
equality considered ((based on [20])). 
1) Drv(R): Picture each of R’s FDs as FD tree [20], then 

take the closure. 

2) Drv(e[X])(projection): Take all DEQs Y
D
= Z where 

X[Y] 
D
= X[Z] is in Drv(e), and all FDs Z->A that 

X[Z]->X[A] is in Drv(e). 

3) Drv(e[X
D
= Y])(selection with domain equality): Add 

X
D
= Y to Drv(e) and take the closure 

4) Drv(e1 >< e2)(join): Rename the constraints in 
Drv(e2) according to the degree of e1, i.e. a DEQ 

X
D
= Y becomes X+k=Y+k (k=degree(e1)) and an FD 

Z->A becames Z+k->A+k. Then add renamed 
Drv(e2) to Drv(e1) and take the closure. 

5) Drv(e1 U e2)(union): A DEQ X
D
= Y is in Drv(e1 U e2) 

if it is in both Drv(e1) and Drv(e2). If Z->A is in 
Drv(e1) and Z->A is in Drv(e2) , e1.Z is domain 
equal to e2.Z and e1.A is domain equal to e2.A, Z->A 
in Drv(e1 U e2). 

6) Drv(e1-e2)(difference): Use Drv(e1).  
From the above, it can be proved that Drv(e) is 

projection of +F on schema of e. Here we call those FD 
Derived FD which does not belong to input FD set F but 
belong to +F according to given DEQs, denoted as 
Drvd(F,DEQs). Derived FDs can be computed by the 
following method: 
1) Replace every determined attribute of FD with its 

domain equal attribute and add the new FD to FD set. 
2) Replace every determine attribute of FD with its 

domain equal attribute and add the new FD to FD set. 
3) For any functional A->B, C->D, if B is domain equal 

to C, add A->C, A->D, B->D to the FD set. 
4) Repeated 3) until the FD set unchanged. 
5) Remove duplicate FDs and input FDs . The left are 
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Derived FDs. 

3.3 Annotation Based Query Answer 
For a given database D and query Q, suppose that all 

derived FD on Q(D) is known. AQA is the evaluation 
result of Q over correctly dynamic marked D by verifying 
it w.r.t. all derived FD. The next are examples of AQAs. 

  
Figure 3.   AQA of Q2. 

O  OX  P  PX  Q  QX
1           A    *      g      *
1           B    *      e     *
1           A    *      n     *
4           D            v

O  OX  P    PX Q  QX
1           A           g     *
1           A    *     n     *
4           D           v

R1 R2

FDs: O->P, O->Q

O  OX  P  PX  Q  QX
4           D            v

R1-R2

 
Figure 4.  An example of difference between 2 annotated tables 

Q2: select *  From Student  Where Age<=18  

Phone    PhoneA
5651565
3822820
6544460
6881234
6425151

Q3 ∏phone(R)  

Phone     PhoneA

 3822820   R.CName
 6544460   R.CName

Q4: σCName= Art05 (∏phone(R))

R=Class∞Teacher  
Figure 5.  Suppose R is inner join result of Class and Teacher, 

annotation-based Query Answer of Q3, Q4. 

Q3:select Phone from R  
Q4:select Phone from R where CName=’Art05’ 

In [6], we present evaluation rules for any algebra 
query, which are proved to be sound and valid. Based on 
those rules, the problem we try to solve in this paper is 
how to compute AQA by query rewriting for given SQL 
queries when valid set of FD on the query result is know 
and the base database is annotated. 

IV.  SPJ QUERIES 

In this section, we present rewriting strategy for SPJ 
queries without aggregation or grouping. We illustrate the 
rewriting strategy with the next examples with DEQ 
Tutor=Tname. 

Example1: let’s start with a simplest query which asks 
for all classes. 

Q5: select * from Class            
Q5’: select * from Class 

Rewritten query of Q5 is Q5’. Notice that * in Q5 and 
* in Q5’ denote to different set of attributes, the latter 
includes all attributes of annotations. FDs are not checked 
on the query result, because no Derived FD exists here. 

Example2:consider a query which retrieve all class 
whose major is “Art”. 

Q6: select CName, Tutor from Class   
       where Major=’Art’         
Q6’: select CName, CNameA,Tutor,TutorA from Class    

where Major=’Art’ 
Q6’’:select CName,CNameA,Tutor,TutorA, Major,MajorA 
      from Class 

      where Major=’Art’ or CName in ( 
select CName From Class  
Where Major=’Art’ and MajorA is not null) 

Naturally, AQA for Q6 is thought as {(‘Art05’,’’,’Lee’, 
\’*’), (‘Art05’,’’,’Kimi’,’*’), (‘Art081’,’’,’Lee’,’’)} which 
can be obtained by evaluating Q6’. Notice that Major of 
t5 is actually unknown. If all possible classes are 
considered, t5 should also be included. While if only 
exact classes are considered, t5 should be excluded. Here 
we take the narrow semantic of incomplete database that 
classes satisfy Q6 can only be those whose major is “Art” 
or those who conflict with a class whose major is “Art”. 
Furthermore, attribute Major and MajorA are also 
returned so that user can know inconsistency of records 
on condition attributes. 

Now, let’s discuss rewritten strategy of join queries. 
Derived FDs are usually implied in join result. Thus, we 
need to recheck inconsistency of the join result according 
to the derived FDs. Furthermore, as for tuples who are 
inconsistent on join attributes, they will join with those 
tuples who satisfy join condition with value of himself or 
of his conflicting values. In evaluation of Q1, t3 will join 
with t10 and t11, and t4 will also join with t10 and t11. 

An optimization technique can be used to reduce 
unnecessary inconsistent checking and dynamic marking: 
departing the data source into two parts according to its 
possibility of violating Derived FD, computing dynamic 
annotations for the former, calculating query answer with 
both of them and returning the union query result.  

Example3 gives the rewritten query of Q1 through 3 
steps. Firstly, it joins tuples who share same determine 
attribute value with other tuples because they may violate 
a Derived FD. Notice that join condition is modified from 
Tname=Tutor to Tname equal to any Tutor in the 
conflicting Tutor set of the Class. Secondly, it checks 
derived FD and attaches dynamic annotation to the temp 
table. Thirdly, it apply query condition on each part of 
data source and union them together. 

Example3: Rewritten query of Q1 is as follows 
1) Select C.*, T.*  Into tmpR1   

From Class C, Teacher T 
Where (Tname = any (select Tutor from Class C2 where 

Cname=C.CName )) 
 and CName in (select CName from Class  

group by CName having count(*) >1); 
2) update T 

set T.PhoneA=T.PhoneA+'Class.CName' 
from tmpR1 T 
where exists (select B.CName from tmpR1 B 
          where T.CName=B.CName 
          group by B.CName. 
          having count(distinct b.Phone)>1); 

2) select CName, CNameA, Phone, PhoneA,  
Major, MajorA, Tutor, TutorA 

from tmpR1 
where major=’Art’ or CName in ( 

select CName From Class  
Where Major=’Art’ and MajorA is not null)) 

Union 
select CName, CNameA, Phone, PhoneA,  

Major, MajorA, Tutor, TutorA 
from ((select * from Class C1 where CName in ( 

select CName from Class group by CName  
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having count(*) =1)) C, Teacher T 
where Tutor=Tname and (major=’Art’ or CName in ( 

select CName From Class   
Where Major=’Art’ and MajorA is not null)); 

Example4: Irrelevant sub query in Q7 is rewritten to 
return all possible TName.  
Q7: select Cname, Major  from class                    

where Tutor in ( select tname from Tutor Where city='Brea')           
Q7’:select Cname,CNameA,Major,MajorA, Tutor,TutorA 

from class 
where Tutor in (Where city='Brea' or tname in ( 

select tname  From teacher   
Where city='Brea' and cityA is not null)) 

Or cname in ( 
select cname From class 
where TutorA is not null and Tutor in ( 

select tname From teacher  
where city='Brea' or tname in ( 

select tname From teacher  
Where city='Brea' and cityA is not null))); 

The next is our algorithm for rewriting SPJ queries. It 
first rewrite all vaθ (v is not attribute, θ is predicate and 
a  is determined attribute) in where clause so that tuples 
who are uncertain on condition attributes can be return 
back. In the rewritten query of vaθ , L1,L2,…are all 
determine attributes that Lj-> a  is valid on some relation 
Ri in from clause. Secondly, if no derived FDs are valid 
on the query, it will be directly rewritten to return both 
value and annotation of attributes not only in select but 
also in where. If derived FDs are valid on the query, 
normally there is more than one table in from clause, it 
will be translated into a series queries in three levels: 
query to create table for records which may violate 
Derived FD, queries to update annotations w.r.t Derived 
FD, and query to retrieve records with annotations. 

The first level of query joins the tables on rewritten 
join condition so that tuples who are inconsistent on join 
attributes can be joined correctly. After join, a super 
relation who includes all required attributes can be build, 
and annotations can be updated over it. By the rewritten 
join conditions, tuple from Ri will be joined not only with 
tuples from Rj who satisfy original join condition but also 
tuples who conflict with those in Rj on join attribute. In 
the algorithm, if θ  is predicate >,<,>=,<=,= or <>, θ  
would be <,>,<=,>=,= or <> respectively. 

The bunch of queries in the second level updates 
annotations. Each of them checks one Derived FD. In this 
example, only one Derived FD needs to be verified. 

The last query answer is made up of two parts: one is 
potentially inconsistent w.r.t. Derived FD and the other 
can not violate any Derived FD. The third level query 
unions them together. 
------------------------------------------------------------ 
Algorithm: SPJ(Ω ,Ψ ,Q, I) 
Input: domain equalityΩ , derived FD setΨ , return type I (0 

for query answer, 1 for rewritten query), and user query Q 
in form of: 

Select A1,A2,…,An   
From R1,R2,…Rk   
Where ω    
Order by κ  

 Suppose W1,W2,…Wn are attributes that appear in ω  but 
not in { A1,A2,…An}. 
Output: AQA of Q or rewritten queryϕ  
------------------------------------------------------------- 
1.Rewrite ω  to ϖ  according to the next rule: 

a)For each vaθ inω (v isn’t attribute and θ is predicate 
and a is determined attribute). 

Replace vaθ  with ( vaθ or L1 in (select L1 from Ri 
Where taθ and a is not null) or L2 in (select L2 from Rj 
Where taθ and a is not null) …) 

 b)For each sub query δ  in ω  
Replace δ  with SPJ( 'Ω , 'Ψ ,δ , 1), here 'Ω  and 'Ψ  are 
projection of Ω  and Ψ  on δ respectively. 

2.Set 'Ψ =Projection of Ψ  on Q 
3.If 'Ψ =NULL 

 If (I=0) 
Excute the next query and return the query answer: 
 select A1,A2,…,An, A1A, A2A,…AnA, W1,  

W1A,…Wm,WmA   
From R1,R2,…Rk   Where ϖ   Order by κ  

 else 
 {ϕ = select A1,A2,…,An From R1,R2,…Rk Where ϖ  
      Return ϕ } 

Else 
{ a) 'Ω ={E | ∈E Projection ofΩ on R1∪ R2∪…∪ Rk} 

b) Depart ϖ  into two part: 1ϖ  which includes all 

. .Ri A Rj Bθ  where Ri and Rj { }R1,...,Rk∈ , A and B are 

attributes, θ is predicate, and 2ϖ  of  the left. 

c) For each . .Ri A Rj Bθ  in 1ϖ  
{ S=””; 

Suppose B-related FDs are B1->B,…,Bn->B and A-
related FDs are A1->A,…,An->A 

if Rj.B is determined attribute 
S=Ri.Aθ  any (select B from Rj T  

where T.B1=Rj.B1 and … and T.Bn=Rj.Bn) 
  If Ri.A is determined attribute 

If  S=””  
S= Rj.Bθ  any (select A from Ri T  

where T.A1=Ri.A1 and … and T.An=Ri.An) 
   Else 

S=S+ or Rj.Bθ  any (select A from Ri T  
where T.A1=Ri.A1 and … and T.An=Ri.An) 

  Replace . .Ri A Rj Bθ  with S;} 
d) Execute the next query where Ei '∈Ω , and fdli is 

determine attribute of a FDi in 'Ψ : 
  Select R1.*, R2.*  Into tmpR  From R1,R2,…Rk 
  Where 1ϖ  and fdl1 in ( select fdl1 from Ri group by fdl1 

having count(distinct fdr1)>1) 
and fdl2 in ( select fdl2 from Rj group by fdl2 having 

count(distinct fdr2)>1); 
… 

e) For each FD fdl->fdr in 'Ψ , execute the next query 
update T  set T.fdrA=T.fdrA+'fdl'   from tmpR  T 
where exists (select b.fdl from tmpR  b   

where T.fdl=b.fdl  group by b.fdl   
having count(distinct b.fdr)>1) 

f) If (I=0) 
Excute the next query and return the query answer: 
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  select A1,A2,…,An, A1A, A2A,…AnA, W1, 
W1A,…Wm,WmA    

From tmpR  Where 2ϖ    Order by κ  
  Union 
 select A1,A2,…,An, A1A, A2A,…AnA, W1,  

W1A,…Wm,WmA 
      From ((select * from R1 where R1.key in ( 

select key from R1  
group by fdl1,fdl2,…fdln  
having count(*) =1)) R1, …, 

((select * from Rk where Rk..key in ( 
select key from Rk  
group by fdl1,fdl2,…fdln  
having count(*) =1)) Rk 

Where ϖ    Order by κ  
else 
{ϕ = select A1,A2,…,An   From tmpR  Where 2ϖ             

  Union 
  select A1,A2,…,An 

      From ((select * from R1 where R1.key in ( 
select key from R1  
group by fdl1,fdl2,…fdln  
having count(*) =1)) R1, …, 

((select * from Rk where Rk..key in ( 
select key from Rk  
group by fdl1,fdl2,…fdln  
having count(*) =1)) Rk 

Where ϖ  } 
------------------------------------------------------------- 

V. UNION AND DIFFERENCE QUERIES 

In this section, we will present the rewriting algorithms 
for union and difference queries. 

 
Figure 6.   Example of Union over Annotated table 

Example5 ： considering query Q8 and Q9 over 
inconsistent tables Class1 and Class2 in Figure 6.  

Q8：select *  from Class1          
Union                              
Select *  from Class2                 

Q9: select cname,major from class1  
where Tutor = 'Nancy'   
union                 

select cname, major from class2  
where major<> 'EE'  

As for Q8, according to traditional semantic of Union, 
the query result should be {t1,t2,t3,t4,t5,t6,t7}. But notice 
that: 1) t1[Tutor] and t5[Tutor] are inconsistent in the 
query result, they should be annotated, and 2) Although 

t2 is consistent in Class1, it should be annotated for 
conflicting with t7 on attribute Tutor, and after annotating, 
it should be removed because it is completely equal to t6. 

Now, let’s look into query Q9, of course, t2 is the only 
record in the result, but notice that t7 in Class2 implies 
another version of class ‘Art05’, which conflict with t2 
on Tutor. Therefore, t2[Tutor] should be marked with “*”.  

According to the above discussion, we present our 
algorithm to compute AQA for query R1∪ R2. It first 
extends the query condition so that all possible tuples will 
be involved in. Then a series of rewritten query are 
executed to compute AQA: 1) queries to get tuples who 
satisfy query condition from R1 and R2 into tmpR1 and 
tmpR2 respectively; 2) queries to verify consistency of 
tuples who are consistent in R1 or R2 against with tuples 
in the other table, and to attach marks to inconsistent ones, 
and 3) queries to get answer from merged and remarked 
tmpR1 and tmpR2. Though these queries, tuples who 
satisfy query condition will be correctly marked out and 
selected as query answer. 
------------------------------------------------------------- 
algorithm: Union 
input: FD setΨ , user query in form of :  

select A1,….An  from R1  where 'ω  
union 
select A1,….An  from R2  where "ω  

Suppose W1,…,Wn are determined attributes in 'ω or "ω  
but ∉{ A1,A2,…An} . 
output: AQA 
------------------------------------------------------------- 
1. Rewrite 'ω  to 'ϖ  according to the next rule: 

For each vaθ  in 'ω  where v is const. 
{ Suppose L1-> a , L2-> a ,… , Ln-> a  are FDs on R1. 
Replace taθ  with ( vaθ  or L1 in (select L1 from R1 

Where vaθ and a is not null) or L2 in (select L2 from R1 
Where vaθ and a is not null)…) } 

2. Similary rewrite "ω  to "ϖ  
3. Excute the next queries: 

a) select A1,A1A,….An,AnA, W1,W1A,…,Wm1,Wm1A   
into tmpR1  From R1  where 'ϖ ;      

b) select A1,A1A,….An,AnA, W1,W1A,…,Wm2,Wm2A   
into tmpR2  From R2  where "ϖ ; 

4. For each fdl->fdr Ψ∈  in R1(R2), fdl ∈ tmpR1 and 
fdr∈ tmpR1, execute the next queries 

a) update T set T.fdr =T.fdr+',*'  
from tmpR1 T  
where T.fdr is null and exists ( select A.fdl   

from R2 A  where T.fdl=A.fdl   
group by A.fdl  having count(distinct A.fdr)>1); 

b) update T set T. =T.fdr+',*'  
from tmpR2 T  
where T.fdr is null and exists (select A.fdl   

from R1 A  where T.fdl=A.fdl   
group by A.fdl  having count(distinct A.fdr)>1); 

5. Last execute the next query and return query result: 
 select A1,A1A,….An, AnA W1,W1A,…,Wm2,Wm2A  

from ( select * from tmpR1    
union    
select * from tmpR2)  T 

------------------------------------------------------------- 
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In union operation, the two relations descript the same 
entity. Original annotations in both relations can not 
exactly denote to its inconsistency without global 
checking. It’s similar to relations involved in difference 
operation. In the rewritten algorithm of query R1-R2, we 
first recheck and remark cell values in R1 against records 
in R2, then doing difference to exclude tuples in R1 who 
are equal to or value equal to a tuple in R2. 
------------------------------------------------------------- 
algorithm: difference 
input: FD set Ψ ={fdli->fdri (i=1,2,…,n)} and user query in 
form of :   

select A1,….An  from R1  where 'ω  
    minus 

select A1,….An  from R2  where "ω  
Suppose W1,…,Wn are determined attributes in 'ω or "ω  

but ∉{ A1,A2,…An} . 
output: AQA 
------------------------------------------------------------ 
1.Rewrite 'ω  to 'ϖ  according to the next rule: 
For each taθ  in 'ω  where t is const. 
{ Suppose L1-> a , L2-> a ,… , Ln-> a  are FDs on R1, 

Replace vaθ  with ( vaθ  or L1 in (select L1 from R1 
Where vaθ and a is not null) or L2 in (select L2 from R1 
Where vaθ and a is not null)…)} 

2. Similary rewrite "ω  to "ϖ  
3. Execute the next query: 

select A1,A1A,….An,AnA, W1,W1A,…,Wm1,Wm1A  into 
tmpR1  from R1  where 'ϖ  

4. For each fdl->fdr Ψ∈  in R1, fdl, fdr∈ tmpR1, execute the 
next queries to remark tmpR1: 

update T set T. =T.fdr+',*'  
from tmpR1 T  
where T.fdr not like '%*%' and exists (select A.fdl 

    from R2 A  where "ϖ  and T.fdl=A.fdl  
group by A.fdl  having count(distinct A.fdr)>1); 

5. Excute the next query and return query result. 
select A1,A1A,….An ,W1,W1A,…,Wm2,Wm2A  
from tmpR1  
where not exists ( select * from R2  where "ϖ  and  

R2.A1=tmpR1.A1 and … and R2.An=tmpR1.An) 
------------------------------------------------------------- 

VI. EXPERIMENTAL EVALUATION 

We mainly state the experimental evaluation of query 
rewriting algorithms presented in this paper, to compare 
performance of AQA queries and SQL queries, and 
different AQA queries over different scale database with 
different ratio of inconsistent data. 

Experimental environment. Settings of the 
experiment are: Intel Celeron 420 2.0GHZ CPU, 1GB 
memory, XP+SP2, C#/VC6.0 and SQL Server 2000. 

Data set generation. To test the efficiency of AQA on 
different size of data sets, we developed a synthetic data 
generator which can be run with two parameters, the 
scaling factor (database size, ds) and the inconsistency 
factor (dirty ratio, dr) that controls ratio of “dirty” tuples. 
All generated data conform to schema shown in figure 1.  

The two group data sets used in the experiments are 
shown in table1. The first group data sets are in size of 
1GB but with different dr of 1%, 5%, 10% and 15%. 
While the second group data sets are in size of 0.1GB, 
0.5GB, 1GB and 1.5GB, and with dr of 5%. All the data 
sets are sorted by primary key attribute in advance.  

TABLE I.   

DATA USED IN THE EXPERIMENTS 

 name Size Dirty ratio 
group1 DB11 1GB 1% 

DB12 1GB 5% 
DB13 1GB 10% 
DB14 1GB 15% 

group2 DB21 103MB 5% 
DB22 536MB 5% 
DB23 1GB 5% 
DB24 1.5GB 5% 

TABLE II.   

TPC-H DATA USED IN THE EXPERIMENTS 

table Records noise records Updated Attributes 
supplier 10,000 1,750 s_nationkey 

partsupp 800,000 100,000 ps_supplycost 
part 200,000 45,000 P_brand 
orders 1500,000 337,500 o_custkey 
customer 150,000 30,000 c_address 
lineitem 6000,000 1200,000 l_quanlity, l_shipdate
nation 25   0    
region 5  0    

Queries. 11 queries are used in the experiment. Queries 
q1-q6 are about table Class and without join, q7 is a 
nested query, q8 and q9 are join operations. Query q10 
and q11 are union and difference. 
q1: select cname, major  q2: select cname,major               
      from class                       from class                        
                                            where cname='c5' or major='m93' 

q3: select major,cname          
      from class                   

where cname = 'c2' and major = 'm3' and Tutor >= 't1500'  
q4: select *                                 q5: select *      
      from class                                   from class 
      where cname like 'c2000%'        where cname is null 
q6: select major,cname              q7: select  *   
      from class                                  from class 
      where cname = 'c5'                    where Tutor in ( 
          and major >= 'm21035'             select tname  from teacher 
          or major <= 'm1000'                  where city='Brea') 
q8: select cname,major, Tutor, city,Phone     
   from class,teacher                                

    where cname = 'c2000' and class.Tutor = teacher.tname    
q9: select *                                     
     from student s,class c,teacher t                   
     where s.class=cname and Tutor=t.tname and cname='c65'  
q10: select cname,major         q11: select cname,major 
        from class                               from class 
        where cname = 'c18'              where cname in ('c18','c108') 
        union                                      minus 
        select cname,major                select cname,major 
        from class                              from class  
        where cname = 'c108'           where cname = 'c18' 
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Figure 7.   Performance of AQA and normal SQL 

Time performance of AQA rewriting. The first group 
experiments compare time performance of q1-q11 (SQL 
queries) and their corresponding rewritten query(AQA 
queries). As shown in figure 7, for queries over a single 
table where no derived FDs are implied, performance of 
AQA is close to SQL. But for join query, evaluation of 
AQA queries need much more time than SQL queries. 
That is because when derived FD exists, computations of 
annotation require table scanning for each derived FD. 
Furthermore, the execution time goes more sharply as 
more tables are joined together. In fact, mark maintaining 
is the most time consuming operation. 

The second group of experiments test performance of 
AQA queries over database with difference ds and 
different dr. As figure 8(a) shows, when only dr changes, 
queries without join changes little, while time of join 
queries is polynomial against the dr. The reason is that 
more inconsistency validation is executed as more dirty 
tuples exist in the database. On the other side, when dr 
keeps no change and ds changes, as shown in figure 8 (b), 
time of query q3, q4, q5, q9 and q10 changes little 
because of index on cname, time of q2, q6 and q7 goes 
sharply because full scan time goes sharply, while q8 and 
q11 go sharper with database scale. 
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Figure 8.   Time performance of q1-q11 over databases with different 
dr and different ds. 

Query optimization of AQA.  To improve the time 
performance join query, we present an optimization of 
AQA. Difference between AQA and its optimization is 
the query sequence. In AQA, we first do query for all 
tuples to form the “possible world” and compute their 
annotations, then filter them with query condition. 
Meanwhile, in the query optimization, we first filter 
tuples with query condition, then compute their 
annotation. For those who don’t conflict with a record in 
the query result, we will validate its consistency in the 
“possible world”. Take query Q1 as an example, with the 
optimization, its rewritten queries are:  

Select C.*, T.*  Into tmpR 
From Class C, Teacher T 
Where (major=’Art’ or majorA is not null) 

and (Tname = any (select Tutor from Class C2  
where Cname=C.CName )); 

update T 
set T.PhoneA=T.PhoneA+'Class.CName' 
from tmpR  T 
where exists (select B.CName from tmpR  B 
          where T.CName=B.CName 
          group by B.CName. 
         having count(distinct b.Phone)>1); 
update T 
set T.PhoneA=T.PhoneA+'Class.CName' 
from tmpR T 
where T.PhoneA is null and exists  

(select *  from Class C, Teache 
   where (Tname = any (select Tutor  

from Class C2 where Cname=C.CName )) 
and T.CName=C.CName  
and T.Phone!=Teacher.Phone ); 

select CName, CNameA, Phone, PhoneA,  
Major, MajorA, Tutor, TutorA   

From tmpR;  
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Figure 9.  Time performance of AQA and its optimization of q11 
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Figure 10.  Time performance of AQA and its optimization of q8 

The query optimization evidently improves AQA’s 
performance when a few records satisfy the query. As 
shown in figure 10 and figure 11, after optimization, 
performance of q8 and q11 are sharply improved and 
close to normal SQL query, regardless different level of 
database size, dirty ratio and tables joined together. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

t
i
m
e

(s)

DB11 DB12 DB13 DB14

SQL

AQA with
optimization

 
(a)  SQL and AQA with optimization of q8 

0

5

10

15

20

t
i
m
e

(s)

DB21 DB22 DB23 DB24

SQL

AQA with
optimization

     (b) SQL and AQA with optimization of q11 

Figure 11.   Time performance of SQL and AQA with optimization 

Information Loss. Here we analyzes the information 
preserving ability of CQA and database repairing with 
tuple deletion (RWD below), and compare them with 
AQA on query q1 and q7. Information loss rate is 
calculated as follows: total number of all lost attribute 
values divide total number of attribute values satisfying 
the query, for example, there are 4 tuples satisfy q7 with 
no consideration of inconsistency, and two of them 
conflict on Major but consistent on CName and Tutor 
which will not appear in query answer with method of 
RWD, so that information lost rate is 4/12=33.3%. The 
experimental results in figure 12 (a) and (b) show that 
although information loss varies among different queries, 
RWD and CQA loss lots of information while AQA lose 
nothing in any case. 
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(b) Information loss of RWD, CQA and AQA for q7 

Figure 12.   Information loss compare of RWD, CQA and AQA 

Experiment evaluation for tpc-h data and queries. The 
next experiment compares time performance of AQA and 
SQL over a tpc-h database [18]. The database is stored in 
SQL Server 2000, and initial size of each table is listed in 
table 2. We don’t change its integrity constraints but add 
some noise data. For each of the first 6 tables, we copy a 
number of its records into another table, and update these 
records on specified attributes, and then append them 
back into the original table so that they must conflict with 
their corresponding records on the updated attributes. 
Number of the appended revised records and the updated 
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attributes are listed in table 2. By this way, dirty ratio of 
the database is 5%. 

Experiment result in figure 13 shows that AQA with 
optimization is close to SQL queries. 
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Figure 13.   Performance over TPC-H databases 

VII. CONCLUSION AND FUTURE WORK 

Conflicting and incomplete information are implied in 
inconsistent data and query answers over it. Hot 
discussed problems include how to represent inconsistent 
data, what its query answer should be, and how to 
compute it. Although from the user’s perspective, a single 
sure query answer would be desirable in most cases. The 
probabilistic nature of inconsistent data makes such query 
answer impossible.  

As previous work, we present a weak representation 
named AQA where inconsistent cell values in both data 
source and query results are attached with annotations. It 
can avoid information loss, a vital and common 
deficiency of many previous works in this area. In this 
paper, we focus on an implementation strategy of it. We 
propose algorithms to rewrite queries without aggregation 
and correlated sub query so that its AQA can be correctly 
computed. The main difference between our method and 
other related work is its support of attribute-level 
inconsistency. Furthermore, our approach doesn’t require 
a new query language and can be easily embedded into 
existing database applications. Still more, our approach 
can deal with databases from different DBMS. 

Insofar, our approach is limited to constraint type of 
FD and SPJUD queries. As a future work, we will extend 
it so that it can deal with other type of constraint and 
aggregation queries. 
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APPENDIX A   QUERIES USED IN THE EXPERIMENTS       

The following are the 11 queries, adapted from the 
TPC-H specification, that were used in the experiments. 
Query 1:  
select l_returnflag, l_extendedprice as avg_price,                                              
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 l_quantity as sum_qty, l_quantity as avg_qty,                                    
 l_linestatus, l_extendedprice as sumBasePrice,                         
l_extendedprice*(1- l_discount) as sumDiscPrice,                                         
l_extendedprice*(1-l_discount)*(1+l_tax) as  

sumCharge,  
 l_discount as avg_disc                                     

from  lineitem                                                   
where DAYS(’1998-12-01’)-DAYS(l_shipdate) >90    
order by      l_returnflag,  l_linestatus; 
Query 2:    

select s_acctbal,  s_name,  n_name,  p_partkey,   
p_mfgr, s_address, s_phone, s_comment                                                  

from  part, supplier, partsupp, nation, region                                                     
where    p_partkey = ps_partkey                                     
     and s_suppkey = ps_suppkey        
     and p_size = 15                     
     and p_type like ’%BRASS’         
     and s_nationkey = n_nationkey     
     and n_regionkey = r_regionkey      
     and r_name = ’EUROPE’ 
order by s_acctbal desc, n_name, s_name, p_partkey  

Query 3:       
select l_orderkey, o_orderdate, o_shippriority,  

l_extendedprice * (1 - l_discount) as revenue  
from   customer,  orders,  lineitem           
where  c_mktsegment = 'BUILDING'       
     and c_custkey = o_custkey            
     and l_orderkey = o_orderkey           
     and o_orderdate < '1995-03-15'       
     and l_shipdate > '1995-03-15' 
order by   revenue desc,  o_orderdate 

Query 4:                
select  o_orderpriority        
from    orders, lineitem        
where  o_orderdate >= ’1993-07-01’ 
   and days(o_orderdate) <days(’1993-07-01’) + 90 
   and l_orderkey = o_orderkey 
   and l_commitdate < l_receiptdate 
order by  o_orderpriority       

Query 6: 
select  l_extendedprice * l_discount as revenue 
from    lineitem 
where   l_shipdate >= ’1994-01-01’ 

and days(l_shipdate) < days(’1994-01-01’)+365 
    and l_discount >= 0.06 - 0.01 
    and l_discount <= 0.06 + 0.01 
    and l_quantity < 24 

Query 9: 
select  n_name as nation, 
      YEAR(o_orderdate) as o_year, 
      l_extendedprice * (1 - l_discount) -  

ps_supplycost * l_quantity as amount 
from    part,  supplier,  lineitem,  partsupp,  orders,  nation 
where      s_suppkey = l_suppkey 
        and ps_suppkey = l_suppkey 
        and ps_partkey = l_partkey 
        and p_partkey = l_partkey 
        and o_orderkey = l_orderkey 
        and s_nationkey = n_nationkey 
        and p_name like ’gr%’ 
order by  nation,  o_year desc 

Query 10: 
select c_custkey, c_name, c_acctbal, n_name, 
    l_extendedprice * (1 - l_discount)  as revenue, 
     c_address, c_phone, c_comment 
from  customer,  orders,  lineitem,  nation 
where c_custkey = o_custkey 
  and l_orderkey = o_orderkey 
  and o_orderdate >= ’1993-10-01’ 
  and days(o_orderdate) < days(’1993-10-01’) + 90 
  and l_returnflag = ’R’ 
  and c_nationkey = n_nationkey 
order by  revenue desc 

Query 11: 
select ps_partkey,  

ps_supplycost * ps_availqty as value 
from  partsupp,  supplier,  nation 
where    ps_suppkey = s_suppkey 
      and s_nationkey = n_nationkey 
      and n_name = ’GERMANY’ 
order by value desc 

Query 17: 
select   l_extendedprice / 7.0 as avg_yearly 
from    lineitem,  part 
where       p_partkey = l_partkey 
         and p_brand = 'Brand#23' 
         and p_container = 'MED BOX' 

Query 18: 
select  c_name,  c_custkey,  o_orderkey,  

 o_orderdate,  o_totalprice,  l_quantity 
from  customer,  orders,  lineitem 
where    o_orderkey = l_orderkey 
      and l_quantity > 300 
      and c_custkey = o_custkey 
      and o_orderkey = l_orderkey 
order by  o_totalprice desc,   o_orderdate 

Query 20: 
select  s_name,  s_address 
from  supplier,  nation,  partsupp,  part 
where     s_suppkey=ps_suppkey 
      and ps_partkey=p_partkey 
      and p_name like 'forest%' 
      and s_nationkey = n_nationkey 
      and n_name ='CANADA'   
order by  s_name        
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