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Abstract— Identifying change-prone classes can enable de-
velopers to pay more attention to classes with similar
characteristics in the future and thus test resources and time
can be used more effectively. In this paper, we collect a set of
static metrics and change data at class level from an open-
source software product, Datacrow. With this data, we first
validate Pareto’s Law and find that about 80% of the lines
changed are located in only 20% of the classes. We then use
classification methods to identify these change-prone classes.
Our experimental results show that our classification results
are useful for identifying change-prone classes and thus can
help to improve the efficiency of developers.

Index Terms— open-source software, change-prone classes,
static metrics, classification methods.

I. INTRODUCTION

Open-source software is of increasing importance
nowadays. More and more companies are investing in
open-source software and profit from developing and
maintaining it. As a result, software products are becom-
ing very large and complex. Maintaining these software
products requires a large amount of effort. But sometimes
resources and time are limited and testing a software
product in an exhaustive way is infeasible. In this case, us-
ing these limited resources and time effectively becomes
an extremely important goal for developers to boost the
competitiveness of their company. Identifying change-
prone classes and then distributing more resources and
time to these classes can help developers to achieve this
goal.

To identify change-prone classes, we must first make
sure that such classes exist. That is to say, we must
make sure that some classes are more likely to change
than others. Suppose that all the classes have the same
probability to change, identifying change-prone classes
would not work. For close-source software, Porter and
Selby [1] stated with the 80:20 rule that approximately
20 percent of a software system is responsible for 80
percent of its faults, costs, and rework. This phenomenon
is generally referred to as Pareto’s Law.

Can Pareto’s Law be applied to open-source software?
Koru and Liu [2] validated Pareto’s Law to two open-
source projects and their experimental results strongly
support Pareto’s Law. But they used change count, which
indicated the number of times a class was changed, to
measure the change-proneness of a class. With the con-
sideration that a change on one line and a change on 100
lines should not be treated equally in the measurement of

the change-proneness of a class, in this paper, we used
changed-line instead of change count as the label of a
class to reflect its change proneness. In this case, can
Pareto’s Law still be applied? This is the first question to
answer in this paper.

If the answer to the first question is yes, how can
developers identify this small proportion of change-prone
classes? This is the second question to answer in this
paper.

To answer the two questions brought forward above, we
conducted experiments with data extracted from an open-
source software product, Datacrow. This data includes
both static metrics data and changed-line data, which is
used to reflect the change-proneness of a class. The data
collection process will be described in detail later.

The remainder of the paper is arranged as follows.
Section II introduces some related work. Section III is
devoted to the description of research method. Section IV
focuses on data collection. Section V validates Pareto’s
Law. The experimental results are reported in Section VI.
Finally, the paper is concluded in Section VII.

II. RELATED WORK

Many researchers have studied the relationship between
static metrics and risk factors, such as change, defects and
effort [2] [3] [4] [5]. They have also tried to predict these
factors with static metrics.

Some work paid attention to predicting maintenance
effort using static metrics. Li and Henry [3] conducted
research with data collected from two commercial soft-
ware systems. They found a strong relationship between
the metrics and the maintenance effort, which is measured
by the number of lines changed per class. They also
found that the maintenance effort can be predicted from
the combination of metrics. Bayesian network [6] and
multivariate adaptive regression splines [7] were further
used to build maintenance effort prediction models with
the data collected by Li and Henry [3].

Some work was concerned about fault-proneness. Gy-
imothy et al. [4] calculated the object-oriented metrics
given by Chidamber and Kemerer [8]. They employed
both well-known statistical methods and machine learn-
ing techniques to predict fault-proneness for open-source
software. Vandecruys et al. [5] used software metrics
to classify software modules as fault-prone or not fault
prone. They used a classification technique AntMiner+
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Figure 1. Analysis Pipeline.

to predict erroneous software modules. Kim et al. [9]
used a machine learning classifier to predict bugs in file-
level software changes. Their classifier aimed to explore
whether there was a bug in any of the lines that were
changed in one file in one SCM commit transaction.
Information features and source code terms are both
used in the building of prediction model. Other work
concentrated on predicting change-proneness, which is
most related to our work. Koru and Liu [2] collected a set
of static metrics and change data at class level from two
open-source projects. Using this data, they found that a
great majority of changes are rooted in a small proportion
of classes. They then identified and characterized the
change-prone classes by producing tree-based models.

Our work focuses on identifying change-prone classes
in open-source software. This is different from works that
used data from closed-source software [3] [6] [7] and
works that focused on predicting fault-proneness [4] [5]
[9]. We use changed-line to reflect the change-proneness
of a class. This is different from work [2] that used change
count instead to reflect the change-proneness of a class.

III. RESEARCH METHOD

In this section, we present a big picture overview of the
research method. Our research method consists of three
parts. An outline is shown in Figure 1.

As seen in Figure 1, we start by first collecting the
necessary data. We collect this data at the class level and
treat each class as a data point. Each data point includes
a set of static metrics and a changed-line label, which
reflects the change-proneness of the corresponding class.
To validate Pareto’s Law, we first sort all of the classes
according to their changed-line labels in descending order.
We then calculate the cumulative sum of the changed-line
labels. With this data, we can determine the dis- tribution
of the changed lines across classes and get the answer
to the first question. If 80% of the changed lines are not
concentrated in 20% of the classes, Pareto’s Law does
not hold and the identification of change-prone classes
using our method can not work here. If Pareto’s Law
does hold, we can build a classification model to identify
change-prone classes. To obtain a training data set, we
substitute the changed-line label with a change-proneness
label, which states whether a class is change-prone. The
top 20% of classes by the number of changed lines
are labeled as change-prone and the remaining 80% are

labeled as not-change-prone. A classification model can
be built using this new set of data points. Such a model
is called a simple model.

Some classes, such as very small classes, library classes
or reused classes may have no line changed. Their features
may be different from other not change-prone classes.
Thus, classes that are not change-prone should be further
divided into two categories. Classes with no changed lines
are labeled as no-change and the other not change-prone
classes are labeled as change. A classification model can
be built using the set of data points with new labels. Such
a model is called an improved model. With a classification
model, developers can predict whether a class is change-
prone and thus can decide whether more attention should
be paid to it.

In the following sections, we collect data from Dat-
acrow and conduct experiments to test our method using
the collected data.

IV. DATA COLLECTION

We analyzed the static metrics and changed-line data
from Datacrow 3 4 0, an open-source product written in
Java, in this paper. Release 3 4 0 was chosen for that it
was the first major release in the history log. Static metrics
were obtained using Understand 1 and Software-Metrics-
in-Eclipse 2. In all, 68 metrics, 41 from Understand and
27 from Software-Metrics-in-Eclipse, were extracted for
each data point.

Changed-line label for a class was calculated from the
history log, which can be obtained from CVS (Concurrent
Versions System). Changed-line is the sum of all the
added and deleted lines of revisions from the release date
for Datacrow 3 4 0 to the data extraction date. Therefore,
changed-line for a given class c in Datacrow 3 4 0 from
the history log can be calculated in the following proce-
dure: 1) Firstly, we check if release 3 4 0 of Datacrow
has any revisions for class c. If the answer is negative,
we can omit it because no metrics data can be extracted
for c in Datacrow 3 4 0; 2) If the answer is positive, we
find revision r of c corresponding to release 3 4 0; 3) The
sum of all the added lines and deleted lines for revisions
from r to the latest one is the changed-line for c.

At last, 490 data points were obtained. Each point has
68 static metrics data as its features and a changed-line
label.

V. VALIDATING PARETO’S LAW

In this section, we introduce the results regarding the
validity of Pareto’s Law for Datacrow.

Using the cumulative sum data of changed-line of
Datacrow, we drew a plot as shown in Figure 2. Sorted
data points are aligned on the x-axis from left to right.
The tick marks on the x-axis show the percentile of classes
and those on the y-axis show the percentile of cumulative
sum of changed lines. The horizontal dashed line shows

1http://www.scitools.com/
2http://agile.csc.ncsu.edu/SEMaterials/tutorials/metrics/
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Figure 2. Validating Pareto’s Law for Datacrow.

the 80th percentile of cumulative sum of changed lines
and the vertical dashed line shows the 20th percentile of
classes.

From Figure 2, we can see that the intersection of the
horizontal dashed line and the vertical dashed line almost
meets the curve. This reveals that about 80% of lines
changed are located in about 20% of classes, providing
strong support for Pareto’s Law. We can conclude from
the result that a small proportion (20%) of classes are
more likely to be changed than a large majority (80%) of
other classes. Identifying this small proportion of classes
could help developers to improve their efficiency.

VI. IDENTIFICATION RESULTS AND ANALYSIS

From the discussion in Section 5, we can see that the
top 20% of classes, or about 98 classes, in Datacrow are
change-prone. In this section, we show and analyze the
results of the identification of change-prone classes using
data from Datacrow.

A. Data set

To test the classification results of the simple and
improved models, we conducted an experiment using
data collected from Datacrow. In the data set for the
simple model, 98 classes have change-prone label and 392
classes have not change-prone label. In the data set for the
improved model, 98 classes have change-prone label, 275
classes have change label and 117 classes have no-change
label. When the improved model is used, the predicted
label of a new class is not change-prone if it is predicted
as change or no-change. So the classification result is
correct for a not change-prone class to be predicted as
either change or no-change.

B. Setup

To make full use of the data set and obtain more
realistic estimates, we used 10-fold cross-validation in the
experiment. For each fold, 9/10th of the data set was used
as the training set to build a classification model. The
remaining 1/10th of the data set was used as the test set.
We used five different kinds of classification methods,
including a statistical method, Naive Bayes (NB) [10]; a
tree-based method, C4.5 [11]; an instance-based classifi-
cation method, k -NN [12]; a kernel-based method, SVM
[13]; and an associative classification method, ACWV
[14].

C. Evaluating measures

Accuracy is an important measure for the evaluation
of classification results. In our data set, class labels are
unevenly distributed. Not change-prone data points are
much more numerous than change-prone data points.
Moreover, we aim to identify as many change-prone
classes as possible. As such, we should consider the recall
of the classification results in addition to the accuracy.

D. Classification results

Table I shows the results of different classification
methods for both the simple and improved models.

From Table I, we can see that when the random method,
or no classification method, is used, results obtained from
the simple and improved models are identical. For the
random method, accuracy and recall-2 are 80.0%, and
recall-1 is 20.0%. The accuracy and the recall-2 are
acceptable due to uneven distribution of change-proneness
labels in the data set. However, the recall-1 is so low that
only 19 out of 98 change-prone classes are identified,
which is not acceptable. Thus, identification methods
are required to identify more change-prone classes. We
analyze classification results of the simple and improved
models separately in the following.

We first analyzed the results when the simple model
was used. The accuracies of all of the classification
methods are higher than 80.0% and are all acceptable.
SVM obtained highest accuracy among all the classifi-
cation methods. However, SVM identified only 30.6%
of change-prone classes. Considering that our aim is
to identify change-prone classes, we should place more
importance on their correct classification. In this way,
ACWV is better than the other classification methods.
What is more, its accuracy of 82.2% is as good as those
of the other methods.

We then analyzed the results when the improved model
was used. For NB, SVM and ACWV, accuracy was
improved over that obtained when the simple model was
used while for C4.5 and k-NN, accuracy decreased. SVM
still obtained highest accuracy among all the classification
methods. However, its recall-1 is only 35.7%, which is not
acceptable. ACWV is still the best method considering
both accuracy and recall-1. No matter which model, the
simple model or the improved model, is used, ACWV
obtained better result than the other methods. We can
conclude that ACWV is more appropriate for the iden-
tification of change-prone classes for Datacrow than the
other methods.

When using ACWV in improved model, 61.2% of
the change-prone classes and 88.3% of the not change-
prone classes are correctly classified. This means that
61.2% of the change-prone classes can be identified and
paid more attention to by developers. Such ability is
extremely useful when resources and time are precious.
Suppose that only 20% of the classes can be tested
due to resource and time limitations. In this situation, if
developers select 20% of the classes randomly, only 20%
of the change-prone classes will be tested. Thus, only a
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TABLE I.
CLASSIFICATION RESULTS(%)

Classification Method Simple Model Improved Model
Accuracy Recall-1 Recall-2 Accuracy Recall-1 Recall-2

Random 80.0 20.0 80.0 80.0 20.0 80.0
NB 82.9 51.0 90.8 83.7 45.9 93.1
C4.5 82.7 50.0 90.8 79.6 49.0 87.2
k-NN(k=3) 81.0 36.7 92.1 77.3 42.8 86.0
SVM 84.3 30.6 97.7 85.3 35.7 97.7
ACWV 82.2 60.2 87.8 83.1 61.2 88.3

small percentage of test resources and time can be used on
change-prone classes. But with the classification results,
most (more than 60%) test resources and time can be used
on change-prone classes, which is a strong support to the
validity of the identification of change-prone classes using
classification methods.

E. Analysis of incorrectly classified classes

Regardless of the classification method used, some
change-prone and not change-prone classes are not cor-
rectly classified. Incorrectly classified classes will misdi-
rect the distribution of test resources and time. As such,
we have to further analyze these classes, including classes
incorrectly classified as change-prone and not change-
prone. As discussed in Subsection 6.4, ACWV obtained
better results than the other classification methods. There-
fore, here we only analyze the results using ACWV. In
Section 5, to validate Pareto’s Law, we sorted all of
the data points according to their changed-line label in
descending order. Here, to facilitate analysis, we give
each data point an ID that indicates its position in the
ordered data set. Six statistics, which are count, mean,
median, min, max and standard deviation (STD), are used
to describe the IDs of incorrectly classified classes. Table
II shows the values of these statistics.

From Table II, we can see that the improved model
produces better result than the simple model does on the
whole. The number of incorrectly classified change-prone
classes and not change-prone classes found using the
improved model are both less than those obtained using
the simple model. The min ID of incorrectly classified
change-prone classes found using the improved model is
higher than that obtained using the simple model. The
mean value of incorrectly classified not change-prone
classes found using the improved model is higher than
that obtained using the simple model. The other values
for the two models are the same or similar.

Incorrectly classified change-prone classes will not be
paid much attention to during testing as they are classified
as not change-prone. If most of these classes have a
large amount of changed lines, they will increase the
maintenance effort. Figure 3 shows the box plots of the
IDs of these classes.

For a box plot, the bottom and top of the box are
always the 25th and 75th percentile (the lower and upper
quartiles, respectively), and the band near the middle of
the box is always the 50th percentile (the median). The
difference between the upper and lower quartiles is called
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Figure 3. The IDs of incorrectly classified change-prone classes.
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Figure 4. The IDs of incorrectly classified not change-prone classes.

the IQ. The line above the box identifies the value L1:
upper quartile + 1.5*IQ. The line below the box identifies
the value L2: lower quartile - 1.5*IQ. Points greater than
L1 or less than L2 are outliers and are shown as black
dots in the plot.

From Figure 3, we can see that for the simple model,
the lower quartile and upper quartiles are about 50 and
85, respectively. This means that most IDs range from
about 50 to 85. We can also see that no IDs are below
10. This absence means that the most largely changed
classes are all identified and can be tested thoroughly.
For the improved model, most IDs range from about 50
to 82. No IDs are below 15, which is better than that of the
simple model. We can conclude that whichever model is
used, we have not omitted many largely changed classes.

Not change-prone classes that are incorrectly classified
as change-prone will take up test resources and time, a
lot of which will be wasted if most of these classes have
only a few lines changed. Figure 4 shows the box plots
of the IDs of these classes.

From Figure 4, we can see that most IDs are in the
range of about 150 to 310 for the simple model and about
160 to 330 for the improved model. The upper and lower
quartiles of the simple model are both less than that of
the improved model, which indicates that simple model is
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TABLE II.
STATISTICS FOR IDS OF INCORRECTLY CLASSIFIED CLASSES

Statistics Simple Model Improved Model
Change-prone Not Change-prone Change-prone Not Change-prone

Count 39 48 37 46
Mean 66 246 66 256
Median 71 240 70 244
Min 10 99 16 99
Max 98 489 98 489
STD 23 104 22 103

superior to improved model. This result is opposite to our
conclusion obtained from Table I that improved model is
better than the simple model. This may be due to the fact
that simple model incorrectly classified two more classes
than the improved model. The IDs of these two classes
are small ones, thus lowering both the upper and the lower
quartiles of the simple model.

We can also see that, for both the simple and improved
models, only four IDs are below 374. In the ordered data
set, classes whose IDs are below 374 have no line changed
and totally there are 117 such classes. Therefore, using a
classification model, only four of the 117 classes with
no changed lines were classified as change-prone and
would be tested. Without the classification model, 23 such
classes will be tested when 20% of all classes are selected
randomly to test. What is more, some IDs are very near
100, meaning that the corresponding classes are very close
to the top 20%. We can conclude that although we will
test some not change-prone classes, we will not waste a
significant amount of test resources and time doing so.
We find from the discussion above that, although some
classes are incorrectly classified, the classification results
are acceptable. With these results, test resources and time
can be used much more effectively.

VII. CONCLUSIONS

In this paper, we presented an empirical study that
sought to identify change-prone classes. First, we collect-
ed static metrics data and change data from Datacrow.
We then validated Pareto’s Law and found that 80% of
lines changed are located in about 20% of classes. Finally,
classification methods were used to identify change-prone
classes. The experimental results revealed that the classi-
fication results allow test resources and time to be used
much more effectively.
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