
Research on Structural Holes and Closeness of
Multi-Granularity Software Networks

Hui Li, Hui Zhang

School of Informational Science and Engineering, Shenyang University of Technology, Shenyang, China
Email: dialee6@yahoo.com.cn

Hai Zhao, Wei Cai

School of Information Science and Engineering, Northeastern University, Shenyang, China
Email: zhangluyi2007@126.com

Abstract—Object-Oriented software structures represent
multi-level characteristics. In this paper, two parameters --
structural holes and closeness used in complex networks are
introduced to study topological characteristics of software
networks from multi-granularity perspective. By this
method, software networks are observed and analyzed in
three levels: package granularity, class granularity and
method granularity. Then correlations between these two
parameters and node degrees are investigated and analyzed
by case studies, respectively. The results show that this
method is useful for measuring the extent of dependence
and centralization in software networks, and help us deeply
understand different scales of software structural
characteristics.

Index Terms—multi granularity, software networks,
structural holes, closeness

I. INTRODUCTION

Complex networks have been widely studied across
many fields of science. Examples include the movie actor
collaboration [1], Internet [2], the World Wide Web [3],
etc. In recent years, some researchers have studied on a
great deal of orient-object software and found the
structure of these software systems are not random and
out of order, instead, most of them present the features of
complex networks such as “small world” property and
“scale-free” property. These findings led researchers to
think about software structure from the perspective of
complex network. The software is abstracted as a
complex network to study, and then gradually formed a
network view [4]. The combination between complex
network theory and software engineering provides an
unprecedented research means for software. By this way,
the characteristics hidden in software structure can be
obtained and we can better understand the development
of software design rules.

As the software scale increase and the software
complexity rise ceaselessly, software structure has
appeared in multiple levels, multiple granularities, and
multiple integration modes of organization method.
Software attributes largely depend on its component

elements and the complex interactions between two
elements; these elements are small to methods and
variable in the class, big to pack and subsystems.
Nevertheless, it can be found that the work carried out in
[5-7] is confined to a single level of granularity level. So
whether the properties they got can fit in with other levels
of granularity is still a problem faced by software
structure. At the same time, it is difficult to observe the
new properties showed in different levels. To solve this
problem and give a more complete view of software
structures, it is necessary to divide the object-oriented
software into three levels of software networks (package
level, class level and method level) and use them to
explore software properties.

Based on the current research results of complex
networks, we further study multi-granularity software
networks nodes in the dependency and center degree by
means of the two new parameters--structural holes [8]
and closeness in this paper. This work provides a more
comprehensive understanding of structural properties in
different levels and is useful for the software
development and software maintenance.

II. RELATED WORK

Several researches regarding software networks at
different levels of granularity have been performed.
LaBelle et al [12] studied the inter-package dependency
relationship of software networks at the package level,
and found that these networks are of scale free and small
world type. In [13-15], Valverde et al abstracted classes
and methods of a class for nodes and discovered the same
conclusion in [12].

In [16], collaboration graphs were produced at the
package, class and method levels and formed networks
which exhibited approximately scale-free properties at all
three levels. The researchers analyzed the significant
differences among the magnitudes of power law
exponents at three levels of granularity.

In [10], the definition of multi-granularity software
networks was given exactly. Nodes represent the network
component units (methods or classes or packages), links

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 337

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.2.337-343

represent the relationships between unit and unit. The
definition of interactions between two classes depended
on the interactions among methods of classes; while the
definition of interactions between two packages depended
on the interactions among classes of packages. By this
way, some basic parameters of multi-granularity software
networks were researched to analysis software structure.

The above research results are useful for us to do
further study, which will be discussed in Section III.

III.MULTI-GRANULARITY SOFTWARE NETWORK

In this paper, the object-oriented software networks are
divided into package granularity, class granularity and
method granularity at three different levels of networks
[9-10]. Each granularity of software networks consists of
nodes and links. Nodes represent the network component
units; links represent the relationships between unit and
unit. We give their formal descriptions as follows.
Definition 1. Method granularity of software networks
(FN) is defined as a directed graph (,)F FFN V E= ,
where all methods of specific object-oriented software
can be treated as nodes Fn (where F Fn V∈).The call
relationship between every pair of methods if exists
forms a directed link Fl (where F Fl E∈) in the graph.
The direction of each link is from the caller (method that
calls other methods) to the callee (method that other
methods call). The interactions among the methods can
be divided into two categories :(1) methods in the same
class have indirect interactions by calling the same
instance variables;(2) methods in the different classes
happen interactions by calling each other. Fig. 1 shows
the course that how to extract network from the method
hierarchy.

Figure 1. Extraction instructions of method granularity network

Definition 2. Class granularity of software networks (CN)
is defined as a directed graph (,)C CCN V E= , where all
classes and interfaces of specific object-oriented software
can be treated as nodes cn (where c cn V∈). The
relationship between every pair of nodes if exists forms a
directed link cl (where c cl E∈) in the graph. In CN, the
relationship occurs when one class uses the services
provided by another class. Therefore, the links A B
can be defined if the following circumstances existing: (1)

If class A inherits from another class B via keyword
extends; (2) If class A realize interface B keyword
implements; (3) If class B has an attribute with type of
class A; (4) If one of class A's methods call a method on
an object of class B, and so on. Fig. 2 shows the course
that how to extract network from the class hierarchy.

Figure 2. Extraction instructions of class granularity network

Definition 3. Package granularity of software networks
(PN) is defined as a directed graph (,)P PP N V E= ,
where all packages of specific object-oriented software
can be treated as nodes pn (where p pn V∈). The
relationship between every pair of packages if exists
forms a directed link pl (where p pl E∈) in the graph. In
PN, the relationships among packages indirectly derive
from that among classes they contain, i. e., a relationship
between two classes in two different packages indicates
there exits a relationship between the two packages. Fig.
3 shows the course that how to extract network from the
package hierarchy.

Figure 3. Extraction instructions of package granularity network

In the traditional object-oriented software design, most
of the design principles and methods are all to the class
level design for guidance. The previous jobs mainly
analyzed and measured software networks characteristics
at class level of granularity, so it will appear what kinds
of feature at method level and package level, which are
the main tasks of the section IV.

IV. MULTI-GRANULARITY ANALYSIS

In this section, we modify the operating parameters of
Doxygen [11] software to analysis software source codes
and generate the XML file including each unit of
information as well as the interactive information
between two units. Then we extract the XML file and

338 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

finally get the nodes and links of software networks at
three levels of granularity.

The analysis of object-oriented software from a multi-
granularity perspective takes software system source
codes as the research object, so it needs to obtain open
source software. The granularity levels of software
written by JAVA language are relatively clear, which
contributes to abstracting software networks at different
levels of granularity. Hundreds of open source software
written by JAVA language are analyzed and calculated.
The sets of software cover the extensive application fields
and we take JBoss software as an example to analyze the
multi-granularity software networks from the following
aspects (other software researched in this paper also have
similar properties). As we all know, JBoss is the
joint efforts of worldwide developers and is an
application server based on J2EE.

A. Structural Holes
Structural holes theory was first proposed by Ronald S.

Burt [8] and was mainly used in the research of social
network. The so-called structural hole is that, in the social
network, one or some individuals have direct contact with
some individuals, but have no direct contact with other
individuals. Owing to the no direct contact or
discontinuous contact phenomenon, the network
structures appear the cave from the overall network
perspective. In short, structural hole is a relationship of
nonredundancy between two contacts.

The software networks formed by four nodes A, B, C,
D are used to explain the structural holes. In Fig. 4 (a),
node A has 3 structural holes: BC, BD and CD. There are
no direct contacts among nodes B, C and D, and only
node A directly connects with each of them. So, node A
has distinctive advantages in getting the resources of
network because other nodes connect with each other via
node A. Fig. 4 (b) is a closed network and there is no
structural holes in it.

(a) (b)

Figure 4. Examples of structural holes

Network Constraint Coefficient can be used to measure
structural holes. This coefficient describes the close
degree of direct connections or indirect connections
between a network node and other nodes. The higher the
coefficients are, the fewer structural holes are. The
specific steps are as follows:

 ∑ +

+
=

k
kiik

jiij
ij dd

dd
p

)((1)

Where ijp is the ratio that the shortest path length
between nodes i and j divided by the sum of the shortest

path length between node i and its all adjacent nodes,
while ijd is the shortest path length between
nodes i and j .

2

,,
)(∑

≠≠

+=
jkikk

kjikijij pppc (2)

 Where ijc is the constraint degree when

nodes i and j connect. When the only adjacent node

for i is j , ijc will take the maximum value 1;

while j can not get indirect contact with i through other

nodes, ijc will take the minimum value 2
ijp . k is the

adjacent node for nodes i and j .
 By formulas (1) and (2), the Network Constraint

Coefficient of node i can be calculated.

 ∑=
j

iji cC (3)

Structural holes are used to illustrate a node to other
nodes in the dependency degree in software networks.
Structural holes are fewer that show nodes to other nodes
have stronger dependence. Structural holes are quantified
by Network Constraint Coefficients. Through calculating
the Network Constraint Coefficients of nodes, we can
understand the extent of structural holes within software
networks and get the distribution of node structural holes.

B. Structural Holes and Degree
Degree of a node is defined as the number of neighbors

connecting with it. We research the correlation between
structural holes and degree at different levels of
granularity in this paper. Structural holes are quantified
by Network Constraint Coefficients, so correlation
analysis between degree and structural hole that is
correlation analysis between degree and Network
Constraint Coefficient. Network Constraint Coefficient
describes the close degree about a node with other nodes
directly or indirectly link to. The higher the coefficients
are, the higher network closure is, so the structural holes
are fewer; while the smaller the coefficients are, the less
connection among the network nodes is, so the structural
holes are more.

In the case of JBoss, our observations of Fig. 5 (partial
enlargement) shows that the software networks at all
levels of granularity appear similar distributions. Along
with the network node degree increasing, the Network
Constraint Coefficients reduce gradually. That is to say,
structural holes get more and more, and the
corresponding nodes rely on their surrounding nodes
relatively weak.

In addition, when some node degrees are small and
Network Constraint Coefficients are 1, the software
networks will appear “no hole"(see Fig. 4 (b)) structure.
In this case, there are direct connections among the nodes
and the corresponding software reuse is very obvious.
The Network Constraint Coefficient of isolated nodes

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 339

© 2013 ACADEMY PUBLISHER

(degree is 0) is 1, there also will be “no hole"(see Fig. 4
(b)) structure. Figure 5 shows that the Network Constraint
Coefficient of PN is 1 when the node degrees are 0 and 1;
the Network Constraint Coefficient of CN, FN are 1
when the node degrees are 0, 1and 3.

0 10 202 4 6 8 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Degree

N
et

w
or

k
C

on
st

ra
in

t I
nd

ex

(a) JBoss-function

0 10 20181614128642
0

0.2

0.4

0.6

0.8

1

Degree

N
et

w
or

k
C

on
st

ra
in

t I
nd

ex

(b) JBoss-class

0 10 20181614128642
0

0.2

0.4

0.6

0.8

1

Degree

N
et

w
or

k
C

on
st

ra
in

t I
nd

ex

(c) JBoss-package

Figure 5. The distribution of network Constraint Coefficient and degree
of JBoss in multi-granularity software networks

Isolated node does not affect the analysis of the whole

network characteristics, so we remove the isolated nodes
and research the relation curve fitting between degree and
Network Constraint Coefficient. The results are shown in

Fig. 6.We choose the power function approximation as
curve fitting, the equation as follows:

bY a X −= ∗ (4)
Where a is a constant, while b is the power index.

Goodness-of-fit can well reflect the quality of curve
fitting, and the Coefficient of Determination is usually
used to judge the quality of regression model fitting
degree. The correlation coefficient r is defined as
follows:

2222)()(∑∑∑ ∑
∑ ∑ ∑

−−

−
=

YYNXXN

YXXYN
r (5)

 Where X , Y are Degree and Network Constraint
Coefficient, N is the number of network nodes.

The Coefficient of Determination R is defined as
follows:

2rR = (6)
Coefficient of Determination and model fitting degree

are positively correlated. We calculate the Coefficient of
Determination and count the results (See table 1).

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Degree

N
et

w
or

k
C

on
st

ra
in

t I
nd

ex

data
power

(a)JBoss-function

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Degree

N
et

w
or

k
C

on
st

ra
in

t I
nd

ex

data
power

(b) JBoss-class

340 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Degree

N
et

w
or

k
C

on
st

ra
in

t I
nd

ex

data
power

(c) JBoss-package

Figure 6. The fitness graph of relationship between network Constraint
Coefficient and degree in multi-granularity software networks

TABLE1.

FITTING PARAMETERS OF NETWORK CONSTRAINT COEFFICIENT AND
DEGREE

software R a b

JBoss-package 0.9598 0.999 0.8308

JBoss-class 0.9233 0.9113 0.9316

JBoss-function 0.9876 0.9998 0.9645

JDK-package 0.9794 0.9958 0.8146

JDK-class 0.9162 0.9965 0.8801

JDK-function 0.9817 0.9989 0.9356

Vuze-package 0.9659 0.995 0.8673

Vuze-class 0.915 0.9964 0.8765

Vuze-function 0.9843 0.9997 0.9507

From the Table 1, we can see that the Coefficients of
Determination of PN, CN and FN are in 0.91~ 0.99
ranges. It indicates that the goodness-of-fit of three
networks are all good, the node degree and Coefficient of
Determination are very accord with a power function
relation, which reflect the modular design concept of
object-oriented software. We then explain this
phenomenon in software networks. The complex modules
corresponding with low degree nodes are often broken
down into more simple modules, and these simple
modules cooperate to perform complicated work between
each other. So the Network Constraint Coefficients of
corresponding nodes are relatively high, the structural
holes will reduce. Some modules corresponding with
high degree nodes, whose internal logic and
polymerization degree often have been very complex. So
it should try to reduce the interactions between these
modules and other modules. Reflecting in the multi-
granularity software networks, the Network Constraint
Coefficients of corresponding nodes are relatively small,
the structural holes will increase accordingly.

According to the analysis of the above, researching the
correlation between degree and structural holes
contributes to exploring the collaborative relationship
among different types of software entities, even finding
the software entities with problems. On the other hand, it

is useful for researchers to analysis the system hierarchy
and modularity.

C. Closeness
Closeness is used to characterize the difficulty level

that the network nodes through the network to reach other
nodes in complex network. Closeness is defined as the
reciprocal of the total distance from a node to all other
nodes. Because the software is abstracted into a network,
so closeness can be applied to software networks to
measure the central degree of nodes.

1

1
)(

−

=
⎥
⎦

⎤
⎢
⎣

⎡
= ∑

n

y
xyc dxC (7)

Where xyd is the shortest path length between
nodes x and y , while n is the number of network
nodes. In the network with n nodes, the sum of the
distance from a node to all other nodes is not less
than 1n − , so the normalized closeness index is
defined as follows:

)()1()(xCnxC cC −= (8)
In software networks, node degree reflects a node to

other nodes of the direct influence, while closeness
reflects the ability of a node through the network exerting
an influence on the other nodes. Degree mainly considers
the reusability and complexity of nodes, while closeness
not only takes into account the reusability and complexity,
but also takes into account the nodes center level in the
whole network, so closeness can reflect the overall
structure of the network better.

D. Closeness and Degree
Compared to the degree, closeness considers more

about the nodes center level in the whole network.
According to the closeness size, nodes can be divided
into the center nodes and edge nodes. Owing to the
closeness is defined as the reciprocal of the total distance
from a node to all other nodes. So we calculate the total
distance, if a node has a small numerical value, its
closeness will be larger and tends to be in the center of
network. Instead, its closeness is very small, the node
tends to be at the edge of network.

We examine the correlation between degree and
closeness and notice that the three levels of networks
have a similar distribution rule. From Fig. 7, we know
that, as the degree increases, the closeness of PN, CN and
FN grow slowly and tend to be stable, close to a
numerical. In the case of JBoss, the closeness of PN, CN
and FN are close to 0.1, 0.025 and 0.05, respectively.

We also observe that the closeness of nodes is very
small when its degree is relatively small, such kind of
nodes are at the edge of network. This phenomenon is
more obvious at the class level and method level .It
indicates that the three levels of granularity networks all
have edge nodes. The modules corresponding to these
nodes do not play a significant role in intermediary, but
only concern about their own internal logic within the
software structure. Another case, some nodes with larger
closeness are in the center of network, and eventually
become stable, close to a certain numerical. The modules

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 341

© 2013 ACADEMY PUBLISHER

corresponding to such kind of nodes often have an
obvious intermediary function within the software
structure.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

Degree

C
lo

se
ne

ss

(a) JBoss-function

0 10 20 30 40 50
0

0.05

0.1

0.15

Degree

C
lo

se
ne

ss

(b) JBoss-class

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

Degree

C
lo

se
ne

ss

(c) JBoss-package

Figure 7. The relationship between degree and closeness of JBoss in
multi-granularity software networks

For the software design, the edge node and central
node all have their own important roles. The modules
corresponding to the edge nodes should try to avoid being
centralized. Relatively, we should try to avoid making the
modules corresponding to the central nodes marginalize

excessively. Because, edge nodes that being centralized
too much will lead to module complexity substantially
increased, and this complexity is often repeated and
unnecessary. While central nodes that being marginalized
redundantly will cause the cohesion degree of modules
reduce greatly. Therefore, it is need to keep the mutual
cooperation between central nodes and edge nodes in
each granularity. Otherwise it will increase the
complexity of software, which enlarges the probability of
software error and may bring great loss to the company
undertaking this project.

 Further more, the closeness also needs to maintain
stable. In the process of software evolution, if the
closeness keeps stable, we can think that module
cooperation exist stability. If closeness changes a lot, it
will destroy the stable structure of software and reduce
the stability of software.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed an approach to study object-
oriented software from different levels of granularity
using the tools of complex network theory. We extracted
the package granularity, class granularity and method
granularity of three different levels of software networks.
We introduced structural holes and closeness the two new
parameters to software networks. Then we calculated and
analyzed the parameters in multi-granularity software
networks.The above results can provide valuable insights
and a different dimension to our understanding of
software topology properties and system structure. At the
same time, it has great practical significance in
controlling the complexity of software and researching
the software design ideas how to influence of software
architecture.

As a future work, we need more investigation on the
following aspects: (1) researching multi-granularity
software networks using other parameters so that we can
gain more knowledge about software structure;(2)
analyzing multi-granularity software networks
constructed from other large Java software projects in
order to obtain further evidence of software
characteristics;(3) exploring the software evolution or
weighted networks at different levels of granularity.

ACKNOWLEDGMENT

This work is supported by the National Natural
Science Foundation of China under grant No. 60973022,
the Cultivation Fund of the Key Scientific and Technical
Innovation Project ，Ministry of Education of China
under grant No.708026. Thanks for anonymous
reviewers’ valuable comments!

REFERENCES

[1] D. J. Watts and S. H. Strogatz, "Collective dynamics of
small-world networks", Nature, vo. 393, no. 6684, pp. 440-
442, 1998.

[2] M. Faloutsos, P. Faloutsos, and C. Faloutsos, "On power-
law relationships of the internet topology," ACM

342 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

SIGCOMM Computer Communication Review, vol. 29, no.
4, pp. 251-262, 1999.

[3] R. Albert, H. Jeong, A. L. Barabasi, "Diameter of the
world-wide web," Nature, vol. 401, pp. 130-131, 1999.

[4] G. Concas, M. Marchesi, S. Pinna, and N. Serra, "Power-
laws in a large object-oriented software system," IEEE
Transactions on Software Engineering, vol. 33, no. 10, pp.
687-708, 2007.

[5] Zhang HH, Zhao H, Cai W,et al. A metrics suite for static
structure of large-scale software based on complex
networks[C] ∥ Intelligent Information Hiding and
Multimedia Signal Processing. Washington D C: IEEE
Computer Society, 2008:512-515.

[6] Cai W, Zhao H, Zhang H H,et al. Static structural
complexity metrics for large-scale software[J].Special
Issue on Software Engineering and Complex Networks of
Dynamics of Continuous, Discrete and Impulsive Systems
Series B, 2007,14(S6):12-17.

[7] Zhang HH, Zhao H, Cai W, Zhao M, Luo GL.A qualitative
method for analysis the structure of software systems based
on k-core[J].Special Issue on Software Engineering and
Complex Networks of Dynamics of Continuous, Discrete
and Impulsive Systems Series B,2007,14(S6):18-24.

[8] Ronald S B. Structural Holes [J]. The social structure of
competition, 1992, 18(55):178-182.

[9] Li B, Pan WF, Lu JH. Multi-Granularity Dynamic
Analysis of Complex Software Networks[C], Circuits and
Systems (ISCAS), 2011 IEEE International Symposium on
Digital Object Identifier, 2011: 2119 - 2124

[10] He KQ, Ma YT, Liu J, et al. Software networks [M].
Beijing: Science Press, 2008:1-117.

[11] Doxygen [EB/OL], http://www.doxygen.org, 2006.
[12] LaBelle N, Wallingford E. Inter-Package Dependency

Networks in Open-Source Software, Submitted to Journal
of Theoretical Computer Science, 2004

[13] Valverde S, Ferrer Cancho R and Sole R V. Scale-free
networks from optimal design [J]. Europhysics Letters,
2002, 60(4):512-517.

[14] Valverde S, Sole R V. Hierarchical Small Worlds in
Software Architecture. Working paper of Santa Fe
Institute.2003, SFI/03-07-44.

[15] Valverde S, Sole R V. Universal properties of bipartite
software graphs[C].In Proceedings of 9th IEEL
International Conference on Engineering of Complex
Computer Systems (Workshop on Software and complex

systems), Italy, http://complex. Upf. Es/~sergi/valverdefir.
PDF, 2004

[16] Hyland-Wood D, Carrington D and Kaplan S. Scale-Free
Nature of Java Software Package, Class and Method
Collaboration Graphs[R].Technical Report of MIND
Laboratory (No. TR-MS1286), University of Maryland
College Park. 2006.

Hui Li is an Associate Professor at
college of Information Science and
Engineering, Shenyang University of
Technology, Shenyang, P.R. China. She
has received B.S. degree in Measurement
technology and instruments and M.S.
degree in Communication and
information system at Northeastern
University. Now, she is working for

PH.D degree in Navigation. Her main research interests are
sensor network, complex network and navigation system.

Hui Zhang is a student at college of Information Science and
Engineering, Shenyang University of Technology, Shenyang,
P.R. China. Now, she is working for M.S. degree in Signal and
information processing. She mainly researches software
networks.

Hai Zhao is a professor at college of Information Science and
Engineering, Northeastern University, Shenyang, P.R. China.
His current interests include complex network, real-time system,
and sensor network.

Wei Cai is a student at college of Information Science and
Engineering, Northeastern University, Shenyang, P.R. China.
Now, he is working for PH.D degree in Computer System
Architecture. His current interest is in Software engineering.

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 343

© 2013 ACADEMY PUBLISHER

