
A Non-partitioning File Assignment Scheme
with Approximating Average Waiting Time in

Parallel I/O System

Nianmin Yao, Jinzhong Chen, Shaobin Cai
Department of Computer Science and Technology, Harbin Engineering University, P.R. China

Email: yaonianmin@hrbeu.edu.cn

Abstract—As storage system runs an increasing variety of
workload, there may be many file requests do not dispatch
for a long time. The web clients who wait a long time will
leave away. This paper presents a novel non-partitioning file
assignment strategy called Static Approximate Fairness
algorithm (SAF) in parallel I/O system. The SAF algorithm
aims at obtaining approximate mean waiting time for disk
file requests, as well as making load balancing in parallel
I/O system. The approximate mean waiting time provides
the same chance to serve different web clients. The
technique we applied is referred to as open queuing network
model. The SAF algorithm first selects files according to file
load. Next, it assigns files to different disks until reaching
their average load. The goal of fairness is obtained by
assigning files to disks in terms of file load. Comprehensive
experimental results indicated our new algorithm is
superior to Sort Partition (SP) in terms of fairness.

Index Terms—load balancing, SAF, mean waiting time,
fairness, parallel I/O system

I. INTRODUCTION

In the past decades, the performance of parallel I/O
systems had been extensively investigated due to the
growth and availability of RAID. File assignment to disks
in parallel I/O system had been extensively researched in
[1], [2], [12], [14], [15], and [19]. These file assignment
algorithms assign files to disks in a way that cost function
is minimized. In the general case, the cost function may
involve communication costs, update costs, storage costs
and queuing costs. However, finding the optimal
algorithm is an NP-complete problem [14]. An off-line
file assignment algorithm must assign files to disks using
all the information of files. By contrast, an on-line file
assignment algorithm allocates files to disks using the
only information of the current state of all disks and
previous assigned files. Generally, off-line mode is
corresponding to static file assignment, and on-line mode
is corresponding to dynamic file assignment scheme [19].
Most static file assignment algorithms assume that the
access statistics are immutable, and hence the file
assignment scheme needs to be computed only once and
can continuously work for a long period [6], [8], [13].
Dynamic file assignment algorithms [13] update the file
allocation scheme potentially upon every request. There
are two different file allocation camps which are

addressed as partitioning and non-partitioning. While
stripping-based file assignment schemes which belong to
partitioning scheme are common for file systems with
large size files [18], non-partitioning file assignment
algorithms are suitable for web and server applications
[10], [11], [21].

Least Storage Balanced (LSB) [22] placement
algorithm takes the least storage capacity as the cost
function. Other heuristic algorithms introduce mean
response time as an objective function to be minimized in
parallel I/O system. Web server applications that publish
significant amounts of data stored in a back-end database
must answer end-users’ requests instantly before they
lose patience [10]. More precisely, reducing mean
response time of parallel disk storage systems is a must
for these applications. There are a wide variety of ways to
reduce the mean response time or improve the system
throughput for parallel I/O systems [3], [4], [17]. The
well-known static file assignment algorithm called Sort
Partition (SP) was developed to reduce mean response
time in parallel I/O system [7]. SP calculates the
aggregate load of all files. It sorts all files in descending
order of their service time and assigns contiguous
segment of files to each disk until reaching the calculated
average load. The remainder files are assigned to the last
disk. SP renovates mean response time with minimal
variance of service time by separating large files from
small files. In order to overcome SP’s drawback of
assigning all remaining files to the last disk, Perfect
Balancing (PB) [9] allocates them to a subset of the disks.
Static Round Robin (SOR) algorithm was proposed in [16]
to overcome the workload characteristic assumptions by
SP and PB. These file allocation algorithms aimed at
minimizing response time. However, no attention has
been focused on fairness. In the most general case, the
web clients with large size file requests wait longer than
small size file requests in SP and SOR. The purpose of
this paper is to guarantee fairness and load balancing. The
basic idea of SAF is to assign all files to disks in terms of
file load. The SAF algorithm achieves fairness that each
file requestor has approximate mean waiting time. It
provides the same chance to serve different file requests.
The remainder of the article is organized as follows.
Section 2 formulates the fairness problem. In Section 3,
we show the proposed algorithm SAF. Experimental

302 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.2.302-309

results are shown in Section 4. Finally, conclusions and
future research are given in Section 5.

II. SYSTEM MODEL

File assignment algorithms are used in parallel I/O
systems to allocate data properly and efficiently before
being accessed by users. Without restriction of generality,
we assume that each file is allocated entirely to one disk.
We will consider the problem of assigning n files

{ }1 2, ,...... nF f f f= among m disks in a parallel I/O

system { }1 2, ,..., mD D D D= . Each file if has request rate

iλ and service time iS .The aggregate load of parallel I/O
system is L , and the load of kth disk is ()kLoad D .
Thus, if load balancing, load of each disk can be
calculated as:

() ()/ 1kLoad D L m k m= ≤ ≤ (1)

Definition 1(Priority queue): Each disk associates with
a request queue. If disk resource is available when a
request comes, the request occupies it at once. If no disk
resource is available when a request comes, the higher
priority requests will preempt lower priority requests, i.e.,
they can take over and use a disk resource currently being
used by a lower priority request whenever no free disk
resources are available.

Definition 2(Fairness): kW denotes the mean waiting
time of the kth type of file requests in priority queue.
The parallel I/O system is said to be fair if and only if for
any requests set F , it is the case that

1 2k nW W W W≈ ≈ ≈ ≈ ≈ (2)
The objective of this paper is to find a file assignment

scheme X to satisfy (1) and (2). Table 1 summarizes the
notation used throughout this paper.

III. THE SAF ALGORITHM

This section describes Static Approximate Fairness
Algorithm (SAF) and its theoretical basis. The SAF
algorithm is based on open queuing model. An open
queuing model is more appropriate than a closed queuing
model for parallel I/O system with large number of
concurrent users [7]. The system model is based on
M/G/1 queue.

A. Achieve Fairness

Theorem 1. Assuming that file set is F and load set
is ρ . Let ()1/ 2,...,k kW W k nθ− = = , the load correlation is
obtained as follows:

()
2 11 1

2 1 11

1 1 1

1,2,... .
1

k k k k

k k

k
ρ ρ

θ θ θ

ρ ρ
θ

− −

− −

⎧ = − −⎪⎪ =⎨
⎪ =
⎪⎩

where 1θ → , the fairness is achieved.
To prove the theorem 1, we will use three lemmas. The

first lemma specifies the system utilization.

Lemma 1. In M/G/1 queue model, the system
utilization is { }1 lim 0s nn

P Qρ
→∞

= − = .

Proof: Let nQ be the number of requests in queue
when request nr finished and left away, and nY denotes
the number of requests arrived within nS . Let ()N t stand
for the number of requests arrived within t , and

()
1 , 0
0 , 0

x
x

x
ξ

>⎧
= ⎨ ≤⎩

Therefore, we have ()n nY N S=
Since the mathematical expectation of nY can be

computed as

() ()

() ()
1 1

0

+ +

∞

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦∫
n nE Y E N S

E N t dS t
 ()

0
λ ρ

∞
= =∫ s stdS t

 (3)

In M/G/1 queue model, the following holds for any n

 ()1 1, 1n n n nQ Q Q Y nξ+ += − + ≥
Let () ()lim nn

E Q E Q
→∞

= , therefore,

() ()1lim nn

E Q E Q+→∞
=

Since 1+nY and nQ are mutual independent, it
follows that

 () () ()() ()1 1n n n nE Q E Q E Q E Yξ+ += − + (4)

Using formula (3) and (4), we obtain

()() ()1n nE Q E Yξ +=

 ⇒ { } { } ()11 1 0 0n n np Q p Q E Y +× = + × = =

{ }1n sp Q ρ⇒ = =

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 303

© 2013 ACADEMY PUBLISHER

{ }1 lim 0s nn
p Qρ

→∞
⇒ = − =

The proof of Lemma1 is completed. ■

The second lemma calculates mean waiting time of 1f
in M/G/1 queue model.

Lemma 2. In M/G/1 priority queue, the mean waiting
time of if is () ()2

1 1 1 1/ 1 , 1/ / 2.s sW T T Eρ λ μ= − = where sλ is

aggregate arrival rates and sμ is service rate.

Proof: Let rT stand for remaining service time, and

qW denotes the waiting time in priority queue. Then

(a) The remaining service time of current serving
request.

(b)The service time of previous requests in the priority
queue qW is obtained.

From Lemma1, (a) is denoted as
()1 0 1 ρ ρ ρ= × − + × =s r s s rT T T (5)

(b) is given by
2 1 / μ= ×s qT L (6)

According to Little formula q s qL Wλ= , it follows from

(6) that

2 1 / s s q s qT W Wμ λ ρ= × × =

From (5) and (6), the mean waiting time can be
computed as

1 2q s r s qW T T T Wρ ρ= + = +
()1q s s rW Tρ ρ⇒ × − = ×

()1 /ρ ρ⇒ = −r s q sT W (7)
In M/G/1 queue model, the average waiting time

() ()21/ / 2 1q s s sW Eλ μ ρ= − , then it follows from (7) that,

() ()
()

()

()

2

2

2

1 /
1 . /

2 1

1 /
2

1 /
2 /

s s
r s s

s

s s

s

s

s

E
T

E

E

λ μ
ρ ρ

ρ

λ μ

ρ

μ

μ

= −
−

=

=

Since the first type of file has the highest priority, the
mean waiting time of 1f can be computed as

1 1 1 1W T Wρ= + (8)
Using (8), we conclude that

1
1

11
TW
ρ

=
−

Thus, the lemma 2 is proved. ■
The third lemma provides mean waiting time of if in

file set F .

Lemma 3. The mean waiting time of kf is given as
1

1
1 1

/ 1 1
k k

k i i
i i

W T ρ ρ
−

= =

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ in M/G/1 queue model.

Proof: Let ilx stand for the number of requests for if ,

1 jθ is the busy period of jth file request for 1f , and ijS is
the service time of the jth file request for if .

For the second type of file requests, the waiting time is
()1 2

'
2 1 1 2 1

1 1 1

Gl l N Wx x

j j j
j j j

W T E S E S E θ
= = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + + ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ (9)

Where
1 2

1 1 2
1 1

l lx x

G j j
j j

W T S S
= =

= + +∑ ∑

The mathematical expectation of GW can be computed
as

()
1 2

1 1 2
1 1

1 1 1 2 2ρ ρ
= =

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
= + +

∑ ∑
l lx x

G j j
j j

E W E T S S

T W W (10)

Using the lemma 2, (10) can be simplified as
() 1 2 2GE W W Wρ= + (11)

Therefore, the mathematical of
()

1
1

GN W

j
j

θ
=
∑ can be

computed as

()

() ()

() ()
() ()

1 1 1
1

1 1 1

1 1

/

/ 1

GN W

j G j
j

G

G

E E W E

E W

E W

θ λ θ

λ μ λ

ρ ρ

=

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
= −

= −

∑

 (12)
Using (11) and (12), it follows from (9) that

()
()

() ()
() ()

()

2 1
1

1 2 2 1 1

1 2 2 1 1 2 2 1

1 1 2 2

/ 1

. / 1

GN W

G j
j

G

W E W E

W W E W

W W W W

W W

θ

ρ ρ ρ

ρ ρ ρ ρ

ρ ρ

=

⎛ ⎞
= + ⎜ ⎟⎜ ⎟

⎝ ⎠
= + + −

= + + + −

= + +

∑

Similarly, we obtain the mean waiting time of ()2kf k ≥

2

1
1 1

2

1
1 1

2

1
1 1

1

1- = 1

1 / 1-

k k

k k i i k
i i

k k

i k i k
i i

k k

k i k i
i i

W W W

W W

W W

ρ ρ

ρ ρ

ρ ρ

−

−
= =

−

−
= =

−

−
= =

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞⇒ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⇒ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑

∑ ∑

(13)

From (13), we obtain the following formula,

2

1
1

1

1

1

k

i
i

k kk

i
i

W W
ρ

ρ

−

=
−

=

−
=

−

∑

∑

304 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

() ()

3k-2

i
1 1i 1

1k 1
1 2 3 1 2

i
i 1 1

11-
1 1,...,

1 11- 1

k

i
i
k

i
i

W
ρρ

ρ
ρ ρ ρ ρ ρρ ρ

−

==
−

= =

−
−

= × × × ×
− + + − +−

∑∑

∑ ∑

 ()1 11

1 1

1 1
1 1

k k

i i
i i

Wρ
ρ ρ

−

= =

= × −
⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑

From Lemma 2, it follows that

1

1
1 1

/ 1 1
k k

k i i
i i

W T ρ ρ
−

= =

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑

Therefore, the Lemma 3 is proved. ■

We are now ready to prove Theorem 1.
Proof: The proof proceeds by induction on p , the

number of file types. We first show the induction basis
for p =1 and then the inductive step.

For p = 1, 1 1ρ ρ= and 2 11 1 / /ρ θ ρ θ= − − , is trivial.

Assume that the statement of the theorem is true for
p k= , we have

()
2 11 1

2 1 11

1 1 1

1,2,... .
1

k k k k

k k

k
ρ ρ

θ θ θ

ρ ρ
θ

− −

− −

⎧ = − −⎪⎪ =⎨
⎪ =
⎪⎩

Now consider the case 1p k= + , From Lemma 3,

2 1 2

2 2 1 2 1 2

1 1 1 1

/

1 1 / 1 1ρ ρ ρ ρ

+

− +

= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑
k k

k k k k

i i i i
i i i i

W W

2 1 2 1

1 1

1 / 1ρ ρ
− +

= =

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
k k

i i
i i

 (14)

Since 2 1 2/k kW W θ+ = , (14) can be simplified as

2 1 2 1

1 1

2 1 2 1

1 1

1 / 1

1 1

ρ ρ θ

ρ ρ θ

− +

= =

− +

= =

⎛ ⎞ ⎛ ⎞− − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞⇒ − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑

k k

i i
i i

k k

i i
i i

2 1 2 1

1 1

1 ρ θ θ ρ
− +

= =

⎛ ⎞
⇒ − = −⎜ ⎟

⎝ ⎠
∑ ∑
k k

i i
i i

2 1 2 1

1 1

1θ ρ ρ θ
+ −

= =

⇒ − = −∑ ∑
k k

i i
i i

() ()
2 1

2 2 1
1

1 1θ ρ θ ρ ρ θ
−

+
=

⇒ − + + = −∑
k

i k k
i

 (15)

By our inductive hypothesis above, it follows from (15)
that

() ()

()

2 1

2 2 1
1

2 1

1 2 11 1
1

1 1

1 1 11 1

k

i k k
i

k

i kk k k
i

θ ρ θ ρ ρ θ

θ ρ θ ρ ρ θ
θ θ θ

−

+
=

−

+− −
=

− + + = −

⎛ ⎞⇒ − + − − + = −⎜ ⎟
⎝ ⎠

∑

∑

()

()

()

2 1

1 2 11 1
1

2 1

1 2 11 1
1

1 2 1 11 1 1 1

1 1 1 / 1 1

1 1 1 / 1 1

1 1 1 1 1/ 1

k

i kk k k
i

k

k ik k k
i

kk k k k k

ρ θ ρ ρ θ
θ θ θ

θ ρ ρ θ ρ
θ θ θ

θ ρ ρ θ ρ
θ θ θ θ θ

−

+− −
=

−

+− −
=

+− − − −

⎛ ⎞⇒ + − − + − =⎜ ⎟
⎝ ⎠

⎛ ⎞⇒ − − + − = −⎜ ⎟
⎝ ⎠
⎛ ⎞⇒ − − + − = −⎜ ⎟
⎝ ⎠

∑

∑

2 1 1
1ρ ρ
θ+⇒ =k k (16)

From Lemma 3,
2 2 2 1

2 1 2 2 2 2 1

1 1 1 1

/

1 1 / 1 1ρ ρ ρ ρ

+ +

+ + +

= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= − − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑
k k

k k k k

i i i i
i i i i

W W

2 2 2

1 1

1 / 1ρ ρ
+

= =

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
k k

i i
i i

 (17)

By our inductive hypothesis above, we have

 1 2 2,..., 1 1 / k

kρ ρ ρ θ+ + + = −

(18)

Using (16) and (18), it follows from (17) that,

()

2 2

1

2 1 2 2

1 2 2

1 2 2

2 2

1 / 1

1 1/

1 1 1/

1/ 1

1 1/

k

ik
i

k kk k

kk k k

k
k

k
k

ρ θ
θ

ρ ρ θ
θ θ

ρ ρ θ
θ θ θ

ρ θ ρ θ

ρ θ θ ρ

+

=

+ +

+

+

+

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
⎛ ⎞⇒ − − =⎜ ⎟
⎝ ⎠
⎛ ⎞⇒ − − =⎜ ⎟
⎝ ⎠

⇒ − − =

⇒ − − =

∑

Therefore, the following formula has been gained

 2 2 11

1 1 1
k k k kρ ρ

θ θ θ+ += − − (19)

It follows from (16) and (19) that

()
2 2 11

2 1 1

1 1 1

1, 2,...
1

k k k k

k k

k
ρ ρ

θ θ θ

ρ ρ
θ

+ +

+

⎧ = − −⎪⎪ =⎨
⎪ =
⎪⎩

Therefore, the proof of Theorem 1 is completed. ■
According to the theorem 1, fairness is achievable if

the condition 1θ → in priority queue model.
In the general case, the file requests wait in the usual

FCFS (first-come-first-served order). Although the
theorem 1 is based on priority queue model, we obtain the
following theorem in non-priority queue model.

Theorem 2. Given a file set { }1 2, ,...... nF f f f= and
load set { }1 2, ,..... nρ ρ ρ ρ= , the fair goal is achievable in
non-priority queue if the theorem 1 is established.

Proof: In priority queue model, ir is served before jr .
The mean waiting time set of file requests is defined as

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 305

© 2013 ACADEMY PUBLISHER

{ }1 2, ,..., ,..., ,...,old i j nW W W W W W= . In non-priority queue

model, jr is served before ir . The new mean waiting

time set is { }1 2, ,..., ,..., ,...,new j i nW W W W W W= .

From Theorem 1, in the oldW , we have

()
1

lim 1 , 1,2,...,i

j

W i j n
Wθ +→

= ∀ = (20)

We prove the following formula,

()
1

lim 1 , 1, 2,...,j

i

W
i j n

Wθ +→
= ∀ = (21)

Using lemma 3, we obtain
2 2 1

2
1 1

22 2 1

1 1

1 1

1 1

k k

p p k
p pi

mm m
j

p p
p p

W
W

ρ ρ
θ
θ

ρ ρ

−

= =

−

= =

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠= =
⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑
 (22)

From (20) and (22), we obtain

()
1

lim 1 , 1,2,...,j

i

W
i j n

Wθ +→
= ∀ =

In other words, the fairness is achievable in non-
priority queue model of parallel I/O system. ■

Figure 1. The Static Approximate Fairness Algorithm with detail description

B. SAF Algorithm Description
The SAF algorithm assigns files to disks according to

load. Fig. 1 outlines SAF algorithm with some detailed
descriptions. SAF calculates the average disk load in step
1. In step 2, SAF selects files with the closest optimal
load from file set F . Step 3 assigns files to different
disks until reaching their average load. Remainder files
will be assigned to the last disk. The load of remainder
files is almost equal to the load of files assigned to the
last disk. So it is very reasonable to assign remainder files

to the last disk. SAF achieves fairness that each request
has approximate mean waiting time according to the
theorem 1. In addition, SAF guarantees load balancing
where each disk load does not exceed average load.

C. SAF Algorithm Complexity
The algorithm complexity is divided space complexity

and time complexity. The input of SAF is file set and disk
set. Therefore, the space complexity of SAF is O ()m n+ .

The time complexity of Step 1 is O ()1 . The time of Step

306 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

2 is O ()1 . In Step 3, SAF algorithm includes “ for ” and
“ while ” operations. The time complexity of Step 3 is
O ()m n× . Therefore, the time complexity of SAF is

O ()m n× .

IV. PERFORMANCE EVALUATION

Here we compared the performance of the proposed
SAF against the well-known file assignment schemes
Greedy and SP. We considered fairness, load balancing,
and mean response time as the primary performance
metric in parallel I/O system.

A. Description of Test Data and Experiments
The experimental testbed is based on SimPy. SimPy is

a process-based discrete-event simulation language based
on standard Python and released under the GNU LGPL.
In the simulation, SimPy randomly generated 1000
requests of each if in file set { }1 2, ,...... nF f f f= , and
access rates ranged from 1 to 1000.

B. The Number of File Types
 We found SAF guaranteed fairness in contrast to SP.

SAF implements fairness for different parameter θ as
shown in Fig.2-4. For example, for 1.0002θ = , 10C =
and 4m = , SAF provides approximate mean waiting
time between file requests compared with SP.

1 2 3 4 5
0

10

20

30

40

50

60

file type

m
ea

n
w

ai
tin

g
tim

e(
m

s)

SP
SAF

Figure 2. Mean waiting time for 5C = , 1.0001θ = , and 1m =

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

file type

m
ea

n
w

ai
tin

g
tim

e(
m

s)

SP
SAF

Figure 3. Mean waiting time for 10C = , 1.0002θ = , and 4m =

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

file type

m
ea

n
w

ai
tin

g
tim

e(
m

s)

SP
SAF

Figure 4. Mean waiting time for 20C = , 1.0005θ = , and 5m =

C. Two Types of Access Rates Distributions
Uniform access rates distribution and non-uniform

access rates distribution with the same aggregate access
rate are shown in Fig. 5. As Figs. 6 and 7 show, the
variance of mean waiting time in SAF is smaller than SP,
which means SAF achieves better fairness than SP under
two types of access rates distributions.

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

file type

re
qu

es
t a

rr
iv

al
 ra

te
(1

/s)

uniform request arrival rate
fluctuate request arrival rate

Figure 5. Two types of access rates distributions with the same

aggregate access rate

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

file type

m
ea

n
w

ai
tin

g
tim

e(
m

s)

SP
SAF

Figure 6. Mean waiting time of SP and SAF for uniform access rates

distribution under 16C = , 1.008θ = , and 6m =

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 307

© 2013 ACADEMY PUBLISHER

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

file type

m
ea

n
w

ai
tin

g
tim

e(
m

s)

SP
SAF

Figure 7. Mean waiting time of SP and SAF for non-uniform

access rates distribution under 16C = , 1.008θ = , and 6m =

 D. Workload Characteristic Assumption
We found that SAF satisfied the fair goal on workload

characteristic assumption. As observed in real system
traces [5], [18], there exists a strong inverse correlation
between file access frequency and file size in the real-
world web applications requests. The most popular files
are typically small in size, while the large size files are
relatively unpopular. Fig. 8 shows the distribution of
access rates across 30 different types of files. There are
three types of small size files with small service time, and
access rates are 160,250 and 200. The mean waiting time
of SP and SAF are shown in Fig. 9. The mean waiting time
of SP starts with a steady decline because it assigns files to
the disks according to descending order of service time.
SAF guarantees approximate mean waiting time between
disk requests due to it assigns files to disks in terms of load.

0 5 10 15 20 25 30
0

50

100

150

200

250

file type

re
qu

es
t a

rr
iv

al
 ra

te
(1

/s)

Figure 8. The distribution of access rates across 30 types of files.

E. Load Balancing
The SAF algorithm guaranteed load balancing among

different disks. Fig. 10 shows a sample of coefficient of
variation of disk load under different number of disks. The
Greedy algorithm leads to the best load balance because
load balancing is its only goal. SAF and SP also guarantee
load balancing. These results confirm our expectation that
SAF leads to load balancing.

Figure 9. Mean waiting time of SAF and SP for 30C = , 1.0001θ = ,
and 6m = .

Figure 10. Disk load variance

F. Mean Response Time of SP,SAF and Greedy
Fig. 11 shows the mean response time of three

algorithms. SP provides 20% improvement in mean
response time compared with Greedy, and 10%
improvement in mean response time compared with SAF.
These results confirm our intuitive expectation that SP
leads to the best response time because reducing response
time is its main goal. On the other hand, Greedy leads to
the worst response time because it does not explicitly
attempt to reduce response time.

Figure 11. Mean response time of three algorithms

 ` V. CONCLUSION
In this article, we have presented a static non-

partitioning file allocation algorithm SAF where disk
accesses each file are modeled as a Poisson process. The

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

file type

m
ea

n
w

ai
tin

g
tim

e(
m

s)

SP
SAF

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

900

1000

aggregate access rate(1/s)

re
sp

on
se

 ti
m

e(
m

s)

SP
SAF
Greedy

308 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

SAF algorithm allocates files to disks based on load.
Therefore, the mean waiting time between file requests is
approximate. In addition, The SAF algorithm guarantees
load balancing. The SAF algorithm provides the same
chance to serve different file requests. Experimental results
show SAF achieves fairness compared with SP and reduces
the mean response time compared with Greedy in parallel
I/O system. In future work, we will investigate non-
partitioned dynamic file assignment scheme.

ACKNOWLEDGMENT

The authors thank the editor and the anonymous
reviewers for their helpful comments and suggestions. We
are grateful for financial support from the State Key
Laboratory of High-end Server and Storage Technology
and Fundamental Research Funds for the Central
Universities.

REFERENCES
[1] B.Wah, Jan. 1984. File Placement on Distributed

Computer Systems. Computer, vol. 17, no. 1, pp. 23-32.
[2] G. Copeland, W. Alexander, E. Bougher, and T.

Keller, 1988. Data Placement in Bubba, Proc. ACM
SIGMOD Int'l Conf. Management of Data, pp. 99-108.

[3] HUANG, H., HUNG, W., AND SHIN, K.G. 2005. FS2:
Dynamic Data Replication in Free Disk Space for
Improving Disk Perormance and Energy Consumption. In
Proceedings of the 12th ACM Symposium on Operating
Systems Principles. 263-276.

[4] Hsu, W. W., SMITH, A.J., and YOUNG, H.C.2005. The
AutoMatic Improvement of Locality in Storage Systems.
ACM Trans. Comput.Syst. 23,4,424-473.

[5] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M.
Kupfer, and J. Thompson, “A Trace-Driven Analysis of the
UNIX 4.2BSD File System” Technical Report CSD-85-
230, Univ. of California at Berkeley, 1985.

[6] Kangasharju, J., Roberts, J., AND Ross, K. 2002. Object
Replication Strategies in Content Distribution Networks.
Comput Comm. 25, 4,367-383.

[7] LEE, L.W., SCHEUERMANN, P., AND VINGRALEK, R
.2000.File Assignment in Parallel I/O Systems with
Minimal Variance of Service Time. IEEE
Trans.Comput.49, 2, 127–140.

[8] Loukopoulos, T. AND AHMAD, I.2000. Static and
Adaptive Data Replication Algorithms for Fast Information
Access in Large Distributed Systems. In Proceedings of the
20th International Conference on Distributed Computing
Systems. 385-392.

[9] Madathil, D.K. Thota, R.B. Paul, P. Tao Xie. 2008. A
Static Data Placement Startegy towards Perfect Load-
balancing for Distributed Storage Clusters. PROC. IEEE
International Symposium on Parallel and Distributed
Processing, 1-8.

[10] MERIDO, P., ATZENI, P., AND MECCA, G. 2003. Desig
n and Development of Data Intensive Web Sites: The Aran
eus approach. ACM Trans.Inter.Tech.3, 1, 49–92.

[11] NISHIKWA, N., HOSOKAWA, T., MORI,Y., YOSHIDA,
K., AND TSUJI, H.1998. Memory Based Architecture for
Distrbuted WWW Caching Proxy. In Proceedings of the
7th International Conference on World Wide Web. 205–
214.

[12] P. Scheuermann, G. Weikum, and P. Zabback, 1998. Data
Partitioning and Load Balancing in Parallel Disk Systems.
VLDB J., vol. 7, no. 1, pp. 48-66.

[13] QIU, L., PADMANABHAN, V.N., AND VOELKER, G.
M.2001.On the Placement of Web Server Repli-cas. In
Proceedings of the 21th Annual Joint Conference on Comp
uter and Communications. 1587–1596.

[14] R. Dewan and B. Gavish, July 1989. Models for the
Combined Logical and Physical Design of Databases.
IEEE Trans. Computers, vol. 38, no. 7, pp. 955-967.

[15] S. March and S. Rho, Mar. /Apr. 1995. Allocation Data
and Operations to Nodes in Distributed Database
Design. IEEE Trans. Knowledge and Data Eng., vol. 7, no.
2, pp. 305-317.

[16] Tao Xie and Yao Sun, 2009. A File Assignment Strategy
Independent of Workload Characteristic Assumptions.
ACM Transactions on Storage, vol.5, Issue 3.

[17] TEWARI, R, 1992. Distributed File Allocation with
Consistency Constraints. In Proceedings of the 12th
International Conference on Distributed Computing
Systems. 408-415.

[18] T. Kwan, R. Mcgrath, and D. Reed, “Ncsas World Wide
Web Server Design and Performance,” Computer, vol. 28,
no. 11, pp. 67-74, Nov. 1995.

[19] W. Dowdy and D. Foster, 1982. Comparative Models of
the File Assignment Problem. ACM Computing Surveys,
vol. 14, no. 2, pp. 287-313.

[20] XIE, T.2008. SEA: A Striping-Based Energy-Aware
Strategy for Data Placement in RAID Structured Storage
 Systems. IEEE Trans.Comput.57, 6, 748–761.

[21] Y. Azar, A. Broder, and A. Karlin, 1994.On-Line Load
Balancing.Theoretical Computer Science, vol. 130.

[22] Yung-Cheng Ma, Jih-Ching Chiu, Tien-Fu Chen, Chung-
Ping Chung, 15 May 2003. Variable-size Data Item
Placement for Load and Storage Balancing, Journal of
Systems and Software, v.66 n.2, p.157-166.

Nianmin Yao, born in 1974, a
Professor of Harbin Engineering
University of China. He Got the
Bachelor, Master and doctor degree
from Jilin University. His main
research interests include network
storage, system performance analysis,
theory of computation etc.

Jinzhong Chen, born in 1986, a doctor
of Harbin Engineering University of
China. The main research direction is
disk scheduling, parallel system,
quality of service (QoS), real-time task
scheduling and Solid State Drivers
(SSD).

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 309

© 2013 ACADEMY PUBLISHER

