
C2-Style Architecture Testing and Metrics Using
Dependency Analysis

Lijun Lun

College of Computer Science and Information Engineering, Harbin Normal University, Harbin, China
Email: lunlijun@yahoo.cn

Xin Chi

College of Computer Science and Information Engineering, Harbin Normal University, Harbin, China
Email: chixin9010@yahoo.cn

Xuemei Ding

Faculty of Software, Fujian Normal University, Fuzhou, China
Email: dxmgw@yahoo.com.cn

Abstract—Software architecture has already become one of
the primary research areas in software engineering recently
and how to test software architecture automatically,
effectively and adequately is a difficulty in issues about
software architecture. Currently, many people are doing the
research of software architecture analyze, evaluation,
testing and verification techniques, and some representative
testing strategies are proposed to test software architecture.
But, traditional software testing methods can not be used
directly to solve the test issues of software architecture,
either some techniques are needed to improve the
traditional methods or new software architecture testing
techniques are developed to solve the test issues related to
software architecture. Dependency analysis is an important
method to test, analyze, understand, and maintain programs.
A new kind of dependency analysis method for C2-style
architecture is developed. A set of dependency relationships
is defined corresponding to the relationships among C2-style
architecture elements. The C2-style element dependency
graph (C2-EDG) of C2-style architecture can de constructed
from these dependency relationships. Based on the C2-EDG,
both architecture dependency coverage testing and metrics
are further given as its two applications, and discusses the
equivalence of existing methods.

Index Terms—software architecture testing; software
metrics; C2-style; dependency analysis; coverage criteria

I. INTRODUCTION

Software architecture is the highest abstract description
of a software design, which is defined at the initial stages
of the software development. Software architectures are
commonly described in terms of three basic abstractions:
components, connectors, and configurations. Components
represent a wide range of different elements, from a
single client to a database, and have an interface (made
up of ports) used to communicate the component with the
external environment. Connectors represent
communication elements between components.

Configuration describes how components and connectors
are wired.

The complexity of software architecture embodies
dependency relationships between component and
connector, architecture dependency describes the
dependency relationships between component and
connector that are implicitly determined by the control
and data flows in the software architecture. Architecture
dependency analysis [1,2] is a technique to identify and
determine various dependency relationships in the
architecture specification and to represent them in some
explicit forms convenient for many applications. So a
component or connector change will affect the other
component or connector. It also makes testing and
metrics more complex architecture. The dependency
analysis method is used to help in reducing the number of
experiments necessary to cover the architecture interface.

In this paper, a new method to analyze dependencies
for C2-style architecture is proposed. Dependency
represents the relationships between component and
connector that exist in C2-style architecture specification.
Firstly, set of dependency relationships is defined
corresponding to the relationship between component and
connector. Then the C2-style element dependency graph
of C2-style architecture is constructed on the basis of
these dependency relationships. Based on the model
introduced, dependency edge coverage testing and
dependency edge coverage metrics applications are given.
And finally, discusses the equivalence between our
methods and existing methods.

II. C2-STYLE ARCHITECTURE

We have selected the C2-style architecture as a vehicle
for exploring our ideas because it provides a number of
useful rules for high-level system composition,
demonstrated in numerous applications across several
domains [3]; at the same time, the rules of the C2-style
are broad enough to render it widely applicable.

276 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.2.276-285

A C2-style architecture consists of components,
connectors, and their constraints. Each component has
two connection points, a “top” and a “bottom”. The top
(bottom) of a component can only be attached to the
bottom (top) of one connector. It is not possible for
components to be attached directly to each other. Each
connector always has to act as intermediaries between
them. Furthermore, a component cannot be attached to
itself. However, connector can be attached together. In
this case, each connector considers the other as a
component with regard to the publication and forwarding
of events. Component communicates by exchanging two
types of events: service requests to components above
and notifications of completed services to components
below.

Definition 2.1 A C2-style architecture can be defined
as C2 = (Comp, Conn), where:

• Comp = {Comp1, Comp2, …, Compm} is a finite
set of components, where Compi = {Compi.Ipt_i,
Compi.Ipt_o, Compi.Ipb_i, Compi.Ipb_o}.

• Conn = {Conn1, Conn2, …, Connn} is a finite set
of connectors, where Conni = {Conni.Int_i1, Conni.
Int_i2, …, Conni.Int_in, Conni.Int_o1, Conni.Int_
o2, …, Conni.Int_on, Conni.Inb_i1, Conni.Inb_i2, …,
Conni.Inb_im, Conni.Inb_o1, Conni.Inb_o2, …,
Conni.Inb_om}.

• Ipb_i or Inb_i is the set of requests received at the
bottom side of component or connector. Ipb_o or
Inb_o is the set of notifications that component or
connector emits from its bottom side.

• Ipt_i or Int_i is the set of notifications received on
the top side of component or connector. Ipt_o or
Int_o is the set of requests sent from its top side.

Fig. 1 represents the external view of a component
Compi. Compi.Ipt_i and Compi.Ipt_o are defined by the
component′s dialog. They are the requests it will be
submitting and notifications it will be handling.
Compi.Ipb_o is the notifications the component will be
making, reflecting changes to its internal object.
Compi.Ipb_i is the requests the component accepts.

Fig. 2 represents the external view of a connector

iConn , with the components (1, ...,)
j

j n
tComp = and

(1, ...,)
k

k m
cComp = attached to its top and bottom

respectively. A connector's top and bottom domains of
discourse are completely specified in terms of these
components' interfaces. Therefore, a C2-style connector's
interface is defined by the unions of the interfaces of the
components above and below it, along with any filtering
that the connector does to those interfaces. The interface
will evolve dynamically as components are added,
removed, and/or replaced. A connector′s top and bottom

domain is completely specified in terms of these
components.

III. DEPENDENCY RELATIONSHIPS IN THE C2-STYLE

Dependency relationships at the architectural level
arise from the connections between component,
connector, and constraint on their interactions. These
relationships may involve some form of control or data
flow, but more generally involve source structure and
behavior. Source structure (or structure, for short) has to
do with static source specification dependencies, while
behavior has to do with dynamic interaction dependencies.

A. Dependency Relationship between Interface
Definition 2.2 Let Comp1 is a component in C2-style

architecture, Ipt is the top of the Comp1, Conn2 is a
connector in C2-style architecture, Inb is the bottom of the
Conn2. If the change of Comp1.Ipt_o affects Conn2.Inb_i,
then Conn2.Inb_i depends on Comp1.Ipt_o, denoted by
DEPpn(Comp1.Ipt_o, Conn2.Inb_i). Similar, DEPpn(Comp1.
Ipb_o, Conn2.Int_i) represents Conn2.Int_i depends on
Comp1.Ipb_o.

Definition 2.3 Let Comp1 is a component in C2-style
architecture, Ipb is the bottom of the Comp1, Conn2 is a
connector in C2-style architecture, Int is the top of the
Conn2. If the change of Conn2.Int_o affects Comp1.Ipb_i,
then Comp1.Ipb_i depends on Conn2.Int_o, denoted by
DEPnp(Comp1.Ipb_i, Conn2.Int_o). Similar, DEPnp(Comp1.
Ipt_i, Conn2.Inb_o) represents Comp1.Ipt_i depends on
Conn2.Inb_o.

Definition 2.4 Let Comp1 is a component in C2-style
architecture, Ip is the interface of the Comp1, Conn2 is a
connector in C2-style architecture, In is the interface of
the Conn2. If there are DEPpn(Comp1.Ipt_o, Conn2.Inb_i)
and DEPnp(Comp1.Ipt_i, Conn2.Inb_o), or DEPpn(Comp1.
Ipb_o, Conn2.Int_i) and DEPnp(Comp1.Ipb_i, Conn2.Int_o),
then Ip and In depend on each other, denoted by

(,)
pn b p nIDEP I I− .

According to the definition 2.2, 2.3, and 2.4, we have:

1

2 21

(,) (. ,

.) (. , .)

(,)
pn

p n pn p
b

n np p n

p n
I

DEPI I CompI I DEP I

CompConn ConnI DEP I I
−

⇒∀

∧

Property 1

Definition 2.5 Let Conn1 and Conn2 are two
connectors in C2-style architecture, Int is the top of the
Conn1, Inb is the bottom of the Conn2. If the change of
Conn1.Int_o affects Conn2.Inb_i, then Conn2.Inb_i depends
on Conn1.Int_o, denoted by DEPnn(Conn1.Int_o, Conn2.

Figure 2. C2 connector domains

Figure 1. C2 component domains

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 277

© 2013 ACADEMY PUBLISHER

Inb_i). Similar, DEPnn(Conn1.Inb_o, Conn2.Int_i) represents
Conn2.Int_i depends on Conn1.Inb_o.

Definition 2.6 Let Conn1 and Conn2 are two
connectors in C2-style architecture,

1nI is the interface

of the Conn1,
2nI is the interface of the Conn2. If there

are DEPnn(Conn1.
1

_t onI , Conn2.
2

_b inI) and DEPnn

(Conn2.
2

_b onI , Conn1.
1

_t inI), or DEPnn(Conn1.
1

_b onI ,

Conn2.
2

_t inI) and DEPnn(Conn2.
2

_t onI , Conn1.
1

_b inI),

then
1nI and

2nI depend on each other, denoted by

1 2
(,)

nn
b n nIDEP I I−

.
According to the definition 2.5 and 2.6, we have:

1 2 1 2

1 2

2 1

(,) (,)

(,)1 2

(,)2 1

. .

. .

n n
b

n n

n n

n n n nI

n n

n n

I I D E P I I
I ID E P C o n n C o n n

I ID E P C o n n C o n n

−
∀ ⇒

∧

P r o p e r t y 2

B. Dependency Relationship between Component and
Connector

Definition 2.7 Let Comp1 is a component in C2-style
architecture, Conn2 is a connector in C2-style architecture.
If there is DEPpn(Comp1.Ipt_o, Conn2.Inb_i) or DEPpn
(Comp1.Ipb_o, Conn2.Int_i), then Conn2 depends on
Comp1, denoted by DEPpn(Comp1, Conn2).

Definition 2.8 Let Comp1 is a component in C2-style
architecture, Conn2 is a connector in C2-style architecture.
If there is DEPnp(Comp1.Ipb_i, Conn2.Int_o) or DEPnp
(Comp1.Ipt_i, Conn2.Inb_o), then Comp1 depends on
Conn2, denoted by DEPnp(Comp1, Conn2).

Definition 2.9 Let Comp1 is a component in C2-style
architecture, Ip is the interface of the Comp1, Conn2 is a
connector in C2-style architecture, In is the interface of
the Conn2. If there is (,)

pn b p nIDEP I I− , then Comp1 and

Conn2 depend on each other, denoted by DEPpn-b(Comp1,
Conn2).

According to the definition 2.7, 2.8, and 2.9, we have:
21 1

2 21

21

(,) (,

) (,)

(,)

p n b

p n

n p

C o m p C o m pC o n n D E P
C o m pC o n n C o n nD E P

C o m p C o n nD E P

−
∀

⇒ ∧

P r o p e r t y 3

C. Dependency Relationship between Connector
Definition 2.10 Let Conn1 and Conn2 are two

connectors in C2-style architecture, Int is the interface of
the Conn1, Inb is the interface of the Conn2. If there are
DEPnn(Conn1.Int_o, Conn2.Inb_i) and DEPnn(Conn2.Inb_o,
Conn1.Int_i), then Conn2 depends on Conn1, denoted by
DEPnn(Conn1, Conn2).

Definition 2.11 Let Conn1 and Conn2 are two
connectors in C2-style architecture. If there are DEPnn
(Conn1, Conn2) and DEPnn(Conn2, Conn1), then Conn1
and Conn2 depend on each other, denoted by DEPnn-

b(Conn1, Conn2).
According to the definition 2.10 and 2.11, we have:

1 2 1

2 1 2

2 1

(,) (,

) (,)

(,)

n n b

n n

n n

C o n n C o n n C o n nD E P
C o n n C o n n C o n nD E P

C o n n C o n nD E P

−
∀

⇒ ∧

P r o p e r t y 4

D. Dependency Relationship in Component and
Connector

Definition 2.12 Let Comp1 is a component in C2-style
architecture. If there is a bottom of Comp1 depends on a
top of Comp1, or a top of Comp1 depends on a bottom of
Comp1, denoted by DEPp(Comp1).

Definition 2.13 Let Conn1 is a connector in C2-style
architecture. If there is a bottom of Conn1 depends on a
top of Conn1, or a top of Conn1 depends on a bottom of
Conn1, denoted by DEPn(Conn1).

IV. C2-STYLE ELEMENT DEPENDENCY GRAPH

The C2-style element dependency graph is a digraph
whose node represents component or connector, and edge
represents possible information flows between
component and connector in the C2-ADL architecture
specification.

Definition 2.14 Let C2 = (Comp, Conn) is an C2-style
architecture, the C2-style element dependency graph for
the C2-style architecture denoted by C2-EDG = <V, E>,
where:

• V = <Comp, Conn, Ipt, Ipb, Int, Inb>.
• Comp represents the set of components in C2-

style.
• Conn represents the set of connectors in C2-style.
• Ipt represents the set of top interfaces of

component in C2-style. Compi.Ipt_o represents
the set of requests sent from its top side of a
component Compi. Compi.Ipt_i represents the set
of notifications received on the top side of a
component Compi.

• Ipb represents the set of bottom interfaces of
component in C2-style. Compi.Ipb_o represents
the set of requests sent from its bottom side of a
component Compi. Compi.Ipb_i represents the set
of notifications received on the bottom side of a
component Compi.

• Int represents the set of top interfaces of connector
in C2-style. Connj.Int_o represents the set of
requests sent from its top side of a connector
Connj. Connj.Int_i represents the set of
notifications received on the top side of a
connector Connj.

• Inb represents the set of bottom interfaces of
connector in C2-style. Connj.Inb_o represents the
set of requests sent from its bottom side of a
connector Connj. Connj.Inb_i represents the set of
notifications received on the bottom side of a
connector Connj.

• E = {<Comp1.Ipt_o, Conn2.Inb_i> ∨ <Conn1.Ipt_o,
Comp2.Inb_i> ∨ <Comp1.Ipb_o, Conn2.Ino_i> ∨
<Conn1.Ipb_o, Comp2.Int_i> ∨ < '

1
. _nt oConn I ,

'

2
. _nb iConn I > ∨ < '

1
. _nb oConn I , '

2
. _nt iConn I >

∨ <Comp1.Ipt_o, Comp1.Ipb_i> ∨ <Comp1.Ipb_o,
Comp1.Ipt_i> ∨ <Conn2.Ipt_o, Conn2.Ipb_i> ∨
<Conn2.Ipb_o, Conn2.Ipt_i> | (Comp1, Comp2 ∈
Comp ∧ Conn1, Conn2, '

1Conn , '

2Conn ∈ Conn)

278 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

∨ ((DEPpn(Comp1, Conn2) ∨ DEPnp(Comp1,
Conn2) ∨ DEPnn('

1Conn , '

2Conn) ∨ DEPp

(Comp1) ∨ DEPn(Conn2))} represents the set of
edges.

The C2-EDG of C2-style architecture can be
constructed using the following steps:

• The architecture of each component and
connector, an increase in the corresponding node.

• If the interface nI of connector Conn2 depends
on the interface pI of component Comp1, then
there is a dependency edge from pI to nI .

• If the interface pI of component Comp1 depends
on the interface nI of connector Conn2, then
there is a dependency edge from nI to pI .

• If the interface
2nI of connector Conn2 depends

on the interface
1nI of connector Conn1, then

there is a dependency edge from
1nI to

2nI .

• If
1pI and

2pI are two interfaces of component

Comp1,
2pI depends on

1pI , then there is a

additional dependency edge from
1pI to

2pI in

Comp1.
• If

1nI and
2nI are two interfaces of connector

Conn2,
1nI depends on

2nI , then there is a

additional dependency edge from
2nI to

1nI in

Conn2.
Fig. 3 shows KLAX system [4] architecture

representation. It contains sixteen components which are
connected by six connectors.

Fig. 4 shows the C2-EDG of the Fig. 3. Where

component expressed with large rectangle, connector
expressed with circular bead rectangle, and the interface
of component or connector expressed with small solid
rectangle. Thick solid edge represents dependency edge

from component to connector that connected an interface
of a component to an interface of a corresponding
connector. Thick dashed edge represents dependency
edge from connector to component that connected an
interface of a connector and an interface of a
corresponding component. Thick dotted edges represent
dependency edges from connectors to connectors that
connect an interface of a connector and an interface of a
corresponding connector. Thin dotted edges represent
additional dependency edges that connect two interface or
interface within a component or connector.

In the Fig. 4, there are three types of dependency edge,
which are (LayoutManager.Ipt_o, LTConn.Inb_i)
represents the dependency edge from component
LayoutManager to connector LTConn, (ALAConn.Inb_o,
PaletteADT.Ipt_i) represents the dependency edge from
connector ALAConn to component PaletteADT, and
(LTConn.Int_o, TAConn.Inb_i) represents the dependency
edge from connector LTConn to connector TAConn.

For example, the C2-EDG depicted in the Fig. 4 has:
Comp = {GraphicsBinding, LayoutManager, TileArtist,

StatusArtist, …}
Conn = {GLConn, LTConn, TAConn, ALAConn,

LAConn, LLConn}.
Ipt = {GraphicsBinding.Ipt_o, GraphicsBinding.Ipt_i,

LayoutManager.Ipt_o, LayoutManager.Ipt_i, TileArtist.Ipt_
o, TileArtist.Ipt_i, StatusArtist.Ipt_o, StatusArtist.Ipt_
i, …}.

Ipb = {LayoutManager.Ipb_o, LayoutManager.Ipb_i,
TileArtist.Ipb_o, TileArtist.Ipb_i, StatusArtist.Ipb_o, Status
Artist.Ipb_i, ChuteArtist.Ipb_o, ChuteArtist. Ipb_ i, …}.

Int = {GLConn.Int_o, GLConn.Int_i, LTConn.Int_o,
LTConn.Int_i, TAConn.Int_o, TAConn.Int_i, ALAConn.
Int_o, ALAConn.Int_i, LAConn.Int_o, LAConn.Int_i,
LLConn.Int_o, LLConn.Int_i}.

Inb = {GLConn.Inb_o, GLConn.Inb_i, LTConn.Inb_o,
LTConn.Inb_i, TAConn.Inb_o, TAConn.Inb_i, ALAConn.
Inb_o, ALAConn.Inb_i, LAConn.Inb_o, LAConn.Inb_i,
LLConn.Inb_o, LLConn.Inb_i}.

E = {<GraphicsBinding.Ipt_o, GLConn.Inb_i>, <GL
Conn.Inb_o, GraphicsBinding.Ipt_i>, <GLConn.Int_o, Lay
outManager.Ipb_i>, …}.

V. APPLICATIONS

Dependency analysis has been widely used in software
engineering activities such as software testing
[5,6,7,8,9,10], software metrics[11], software
maintenance [12], reverse engineering, reengineering,
and software reuse. Dependencies among C2-style
architecture also can be applied to C2-style coverage
testing [13,14].

A. Dependency Edge Coverage Testing in the C2-Style
Software architecture with the traditional testing

different but linked. The purpose of the test software
architecture design is to identify system errors and
defects, resulting in guiding the test plan and test code,
test cases, which are very different from traditional
testing; and the test plan and test cases of software
architecture will pass layer of code testing to refine and

Figure 3. KLAX architecture in the C2-style

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 279

© 2013 ACADEMY PUBLISHER

inspection, which are closely related to the software architecture testing and the traditional testing.

Software architecture testing technique includes two

aspects, one is software architecture analysis, the other is
software architecture testing. Software architecture
testing have two main types, first test the software

Inb_i

Inb_o

Int_o

Int_i

GraphicsBinding
Ipt_o

Ipt_i
LayoutManager

Ipb_i

Ipb_o

Ipt_o

Ipt_i

Ipt_o

Ipt_i

Ipb_i

Ipb_o

Inb_i

Inb_o

Int_o

Int_i

Int_o Int_i

Inb_i

Inb_o

StatusArtist

Ipb_i Ipb_o

Ipt_o Ipt_i

ALAConn

Inb_i Inb_o

Int_o Int_i

Inb_i Inb_o

Int_o Int_i

ClockLogic
Ipb_i

Ipb_o

StatusADT
Ipb_i

Ipb_o

Ipb_i

Ipb_o

WellADT
Ipb_i

Ipb_o

PaletteADT
Ipb_i

Ipb_o

ChuteArtist

Ipb_i Ipb_o

Ipt_o Ipt_i

PaletteArtist

Ipb_i Ipb_o

Ipt_o Ipt_i

WellArtist

Ipb_i Ipb_o

Ipt_o Ipt_i

RelativePos
Logic

Ipb_i Ipb_o

Ipt_o Ipt_i

NextTile
PlacingLogic

Ipt_oIpt_i

LLConn

Inb_iInb_o

Int_oInt_i

Status
Logic

Ipt_oIpt_i

TileMatch
Logic

Ipb_iIpb_o

Ipt_oIpt_i

ChuteADT

LAConn

TAConn

TileArtist

LTConnGLConn

Figure 4. C2-EDG of Fig. 3

280 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

architecture, using simulation tools, test software
architecture of the interface behavior, or interaction
between components, or the communication relationship
between the components, analyze the behavior the
difference between the target system, the second is based
on software architecture object code generated for testing
guidance. Software architecture of these two types of
coverage testing generation is involved in this core
technology.

Testing coverage criteria can be used in one of two
ways, as a mechanism to help testers mechanically or
manually test generation, or to measure the quality of
coverage analysis. Let (), ()V i V je represents the dependency

edge of C2-EDG, where ()V i and ()V j are nodes of C2-
EDG, and

(), ()V i V jeTS represents a set of test cases created

to satisfy
(), ()V i V je .

(1) Dependency edge coverage criteria for component
to connector (DEComp-ConnCC)

The dependency edge coverage criteria for component
to connector requires that every DEPpn(Comp1, Conn2) in
C2-EDG be covered by at least one test case.

Definition 3.1 For every dependency edge

21
,Comp Conne in C2-EDG, there is at least one test case

2 ,1 21
,

Comp ConnComp Conn et TS∈ such that there is a DEPpn

(Comp1, Conn2) induced by
21

,Comp Conne , that is a sub-

path of the execution trace of C2-EDG.
The result of dependency edge coverage for

component to connector by DEComp_ConnCC can be
formalized as follows:

< Compi.Ipt_o, Connj.Inb_i > ## or
< Compi.Ipb_o, Connj.Int_i > ##
(2) Dependency edge coverage criteria for connector to

component (DEConn-CompCC)
The dependency edge coverage criteria for connector

to component requires that every DEPnp(Comp1, Conn2)
in C2-EDG be covered by at least one test case.

Definition 3.2 For every dependency edge

2 1
,CompConne in C2-EDG, there is at least one test case

2 1 2, 1
,

Conn Comp
CompConn et TS∈ such that there is a DEPnp

(Comp1, Conn2) induced by
2 1
,CompConne , that is a sub-

path of the execution trace of C2-EDG.
The result of dependency edge coverage for connector

to component by DEConn_CompCC can be formalized as
follows:

< Conni.Inb_o, Compj.Ipt_i > ## or
< Conni.Int_o, Compj.Ipb_i > ##
(3) Dependency edge coverage criteria for connector to

connector (DEConn-ConnCC)
The dependency edge coverage criteria for connector

to connector requires that every DEPnn(Conn1, Conn2) in
C2-EDG be covered by at least one test case.

Definition 3.3 For every dependency edge

1 2
,Conn Conne in C2-EDG, there is at least one test case

1 2 ,1 2
,

Conn ConnConn Conn et TS∈ such that there is a DEPnn

(Conn1, Conn2) induced by
1 2
,Conn Conne , that is a sub-

path of the execution trace of C2-EDG.
The result of dependency edge coverage for connector

to connector by DEConn_ConnCC can be formalized as
follows:

< Conni.Int_o, Connj.Inb_i > ## or
< Conni.Inb_o, Connj.Int_i > ##
To verify the C2-style, we carry out experiment [14]

on the KLAX system. Tab. I show the number of
dependency edges for three dependency edge coverage
criteria. It can be discovered that coverage criteria
DEComp-ConnCC covers 24 edges from component to
connector according to KLAX system specification.
Similar, coverage criteria DEConn-CompCC covers 24
edges from connector to component.

The following theorem about the number of

dependency edges relationship between coverage criteria
DEComp-ConnCC and DEConn-CompCC for C2-style
architecture.

Theorem 1 For any C2-style architecture and any set
TS of test cases, the number of dependency edges for
coverage criteria DEComp-ConnCC is equal to the
number of dependency edges for coverage criteria
DEConn-CompCC.

Proof: If TS satisfies coverage criteria DEComp-
ConnCC, then each edge in C2-EDG of C2-style
architecture is include in the coverage criteria DEConn-
CompCC, while the same set of test cases TS satisfies
coverage criteria DEConn-CompCC, then each edge in
C2-EDG of C2-style architecture is include in the
coverage criteria DEComp-ConnCC.

Thus, this concludes the proof.

Tab. II gives the connection relationship of between

connector for KLAX system. Where symbol “Yes”
satisfy the DEConn_ConnCC relationship, “No” does not
satisfy the DEConn_ConnCC relationship.

TABLE II.

DEPENDENCY COVERAGE RESULT FOR EXPERIMENT

Connector Name
Connector Name

GL
Conn

LT
Conn

TA
Conn

ALA
Conn

LL
Conn

LA
Conn

GLConn No No No No No No

LTConn No No Yes No No No

TAConn No Yes No No No No

ALAConn No No No No No Yes

LLConn No No No No No Yes

LAConn No No No Yes Yes No

TABLE I.
NUMBER OF DEPENDENCY EDGES COVERAGE IN KLAX

Name of Coverage Criteria Number of Dependency Edges

DEComp_ConnCC 24

DEConn_CompCC 24

DEConn_ConnCC 6

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 281

© 2013 ACADEMY PUBLISHER

B. Dependency Edge Coverage Metrics in the C2-Style
Dependency edge coverage analysis is a structural

testing technique, which helps to eliminate gaps in a test
suite and determines when to stop testing. We use four
metrics standard to evaluate the effectiveness of
dependency edge coverage criteria.

Let || ||Comp is number of components of C2-style
architecture, || ||Conn is number of connectors of C2-
style architecture,

,
|| ||

Comp Conne is the number of
dependency edges from component to connector,

,
|| ||

Conn Compe is the number of dependency edges from
connector to component,

,
|| ||

Conn Conne is the number of
dependency edges from connector to connector.

Definition 3.4 The dependency coverage of
component to connector is the total of dependency edge
from component to connector divided by the number of
components and connectors in C2-style architecture. It is
defined as follows:

|| || | ||

,
1 1

|| ||
100%

|| || 2 || ||
ji

Comp Conn

Conn i j
Comp

Comp Conn
Comp Conn

e
DEC = == ×

+

∑ ∑
 (1)

Definition 3.5 The dependency coverage of connector
to component is the total of dependency edge from
connector to component divided by the number of
components and connectors in C2-style architecture. It is
defined as follows:

|| |||| ||

,
1 1

|| ||
100%

|| || 2 || ||
i j

CompConn

Comp i j
Conn

CompConn
Comp Conn

e
DEC = == ×

+

∑ ∑
 (2)

Definition 3.6 The dependency coverage of connector
to connector is the total of dependency edge from
connector to connector divided by the number of
components and connectors in C2-style architecture. It is
defined as follows:

|| || || ||

,
1 1

|| ||
100%

|| || 2 || ||
i j

Conn Conn

Conn i j
Conn

Conn Conn
Comp Conn

e
DEC = == ×

+

∑ ∑
 (3)

Definition 3.7 The dependency coverage of C2-style
architecture is the average of the coverage of component
to connector, the coverage of connector to component,
and the coverage of connector to connector. It is defined
as follows:

 2

3

Conn Comp Conn
C Comp Conn ConnDEC DEC DECDEC

+ +
= (4)

Tab. III illustrates the computation of three
dependency edges test coverage using the Fig. 4.

According to (4), the dependency coverage result of
KLAX system is:

2 1 (85.7% 85.7% 21.4%) 64.3%
3

CDEC = + + =

VI. COMPARISON WITH THE EXISTING METHODS

In this section, we discuss the equivalence of our
methods and the existing software architecture testing
methods, as well as the conversion method between them.

A. Our Methods are Equivalent to Zhenyi′ Method
Zhenyi and Offutt defined six architecture relations [9]

among architecture units: Component(Connector)_
Internal_Transfer_Relation(N.interf1, N.interf2), Com-
ponent(Connector)_Internal_Sequencing_Relation(N.inte
rf1, N.interf2), Component(Connector)_Internal_Relation
(N1.interf1, N1.interf2), N_C_Relation(N.interf1, C.interf1)
or C_N_Relation(C.interf1, N.interf1), Direct_Compon-
ent_Relation(N1.interf1, C1.interf1, C1.interf2, N2.interf2),
and Indirect_Component_Relation(N1.interf1, C1.interf1,
C1.interf2, N2.interf2, C2.interf1, C2.interf2, N3.interf1). The
relations are used to define architecture testing paths,
which are then used to define architecture level testing
criteria. Through the above analysis, we can see that our
proposed technique is equivalent to some coverage
methods [9] by Zhenyi and Offutt. Assume Compi is
component, Connj is connector, and interfk is interface.
Where:

• DEPpn(Comp.Ipt_o, Conn.Inb_i) or DEPpn(Comp.
Ipb_o, Conn.Int_i) is equivalent to Comp_Conn_
Relation(Comp.interfi, Conn.interfj).

• DEPnp(Comp.Ipt_i, Conn.Inb_o) or DEPnp(Comp.
Ipb_i, Conn.Int_o) is equivalent to Conn_Comp_
Relation(Conn.interfi, Comp.interfj).

• DEPpn(Comp1, Conn2) and DEPnp(Comp3, Conn2)
is equivalent to Direct_Component_Relation
(Comp1.interfi, Conn2.interfj) and Conn_Comp_
Relation(Conn2.interfk, Comp3.Interfl).

B. Our Methods are Equivalent to Gao′ Method
Gao et al. proposed an adequate test model [15],

known as a CFAGs and D-CFAGs, and presented
possible component API-based function operation
sequences. And three types of component API-based test
coverage criteria can be defined for a given component
and its test models. They are: (1) node coverage criteria
for each accessible function in a component API interface,
(2) link coverage criteria for each link between two nodes,
and (3) path coverage criteria for component API-based
access sequences between any two nodes. Through the
analysis above, we can see that our proposed technique is

TABLE III.

DEPENDENCY TEST COVERAGE IN KLAX
Coverage Computation Result

Conn

CompDEC

Comp

ConnDEC

Conn

ConnDEC

8 1 8 2
16 2 6
× + ×

=
+ ×

2 2 5 4 3 8
16 2 6

× + + + +
=

+ ×

1 1 1 1 1 1
16 2 6

+ + + + +
=

+ ×

= 85.7 %

= 85.7 %

= 21.4 %

282 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

equivalent to some test coverage methods. Let Compi is
component and Connj is connector. Where:

• Node coverage criterion and all-node-coverage
criterion and is equivalent to <Comp.Ipt_o,
Conn.Inb_i> or <Comp.Ipb_o, Conn.Int_i> or
<Conn.Inb_i, Comp.Ipt_o> or <Conn.Int_i, Comp.
Ipb_o>.

• Link coverage criterion and all-link coverage
criterion is equivalent to the combination of
<Comp1.Ipt_o, Conn2.Inb_i>, <Conn2.Int_o, Conn3.
Inb_i>, …, <Conni.Int_o, Conni+1.Inb_i>, and
<Conni+1.Int_o, Comp3.Ipb_i> or <Comp1.Ipb_o,
Conn2.Int_i>, <Conn2.Inb_o, Conn3.Int_i>, …,
<Conni.Inb_o, Conni+1.Int_i>, and <Conni+1.Inb_o,
Comp3.Ipt_i>.

• If there are relations that connect Comp1, Comp2,
Comp3, Conn1, and Conn2 together, then the
result path Comp1 − Conn1 − Comp2 − Conn2 −
Comp3 of path coverage criterion is equivalent to
a number of combinations of <Comp1.Ipt_o,
Conn1.Inb_i>, <Conn1.Int_o, Comp2.Ipb_i>,
<Comp2.Ipt_o, Conn2.Inb_i>, and <Conn2.Int_o,
Comp3.Ipb_i> or <Comp1.Ipb_o, Conn1.Int_i>,
<Conn1.Inb_o, Comp2.Ipt_i>, <Comp2.Ipb_o,
Conn2.Int_i>, and <Conn2.Inb_o, Comp3.Ipt_i>.

• Minimum-set path coverage criterion is
equivalent to the minimum of the length of path
obtained from component Comp1 to Comp2
(Comp1 ≠ Comp2) of the C2-EDG, that is
min(len(Pathk)), where Pathk is the kth PATH
from Comp1 to Comp2, len(Pathk) is length of
Pathk, len(Pathk) =

()ji k
C

C
Comp PathConn′∈ ∨

′
∧

∑ .

Through discussion above, it can be found that our
methods are the most simple, the effectiveness of the
method for C2-style software architecture testing and
metrics is verified by an application.

VII. RELATED WORK

Traditional dependence analysis has been primarily
studied in the context of conventional programming
languages. In this languages, it is typically performed
using program dependence graphs [16,17]. Traditional
dependence analysis though originally proposed for
compiler optimization, has also many applications in
software engineering activities such as program slicing,
testing, debugging, understanding, maintenance and
complexity metrics [18,19].

Stafford et al. introduced a software architecture
dependence analysis technique [20,21,22], called
chaining, to support software architecture development
such as debugging and testing. In chaining, links
represent the dependence relationships that exist in an
architectural specification. Links connect elements of the
specification that are directly related, producing a chain
of dependencies that can be followed during analysis.

Zhao introduced a new dependence analysis technique
[23], named architectural dependence analysis to support
software architecture development. In contrast to

traditional dependence analysis, architectural dependence
analysis is designed to operate on an architectural
description of a software system, rather than the source
code of a conventional program.

Gao et al. focuses on component test coverage issues,
and proposed test models (CFAGs and D-CFAGs) [15] to
represent a component′s API-based function access
patterns in static and dynamic views. A set of component
API-based test criteria is defined based on the test models,
and a dynamic test coverage analysis method is provided.

Hashim et al. presented Connector-based Integration
Testing for Component-based Systems (CITECB) with an
architectural test coverage criteria [24], and describes the
test models used that are based on probabilistic
deterministic finite automata which are used to represent
gate usage profiles at run-time and test execution. It also
provides a measuring mechanism of how well the
existing test suite are covering the component interactions
and provides a test suite coverage monitoring mechanism
to reveal the test elements that are not yet covered by the
test suites. The model extraction technique used to
generate the CITECB test models is a simple and less
time consuming process. In addition to that, these test
models are able to closely represent the component
interactions as they are extracted directly from the system.

Lun et al. presented an edge coverage method [25] for
software architecture. They described three type of edge,
named component to connector, connector to component,
and connector to connector. They use four metrics
standard to evaluate the effectiveness of edge coverage
criteria.

VIII CONCLUSIONS AND FUTURE WORK

The methods given in this paper shows that
dependencies can be grouped based on the identification
of components and connectors applicable to all
dependencies. From that set of dependencies, a
dependency type hierarchy can be produced that will
cover all dependencies found in the C2-style architecture.
Our initial research indicates that this method provide a
more general and unified method to dependency analysis.
We have also shown that C2-style element dependency
graph provides a powerful method to represent,
characterize, and analyze dependencies between the
entities in a model. Using C2-EDG, we can establish an
abstract model to describe the characteristics of dynamic
architecture, it covered all the testing component nodes
and reduced scale of testing coverage set, so that test the
architecture effectively. We also use dependency edge
coverage metrics to evaluate the effectiveness of
dependency edge coverage criteria. Therefore, the
methods can help successfully for assurance of software
quality.

Although our methods can only handle C2-style
architecture specifications, we are also considering the
use of this method to handle other ADL. We also plan to
perform some experiments to show the effectiveness of
our methods to support software architecture evolution.

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 283

© 2013 ACADEMY PUBLISHER

ACKNOWLEDGMENT

Part of this work is supported by the Natural Science
Foundation of Heilongjiang Province of China under
Grant No. F201036, the Scientific Research Foundation
of Heilongjiang Provincial Education Department of
China under Grant No. 11551127.

REFERENCES

[1] J. A. Stafford, J. D. McGregor, “Top-Down Analysis for
Bottom-Up Development”, in: Proc. of the 2004 Workshop
on Component-Oriented Programming (WCOP2004), Oslo,
Norway, June 2004.

[2] F. Kon, R. H. Campbell, “Dependence Management in
Component-Based Distributed Systems”, IEEE
Concurrency, vol. 8, pp. 26-36, January 2000.

[3] N. T. Richard, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, J. E. Robbins, “A Component- and Message-
Based Architecture Style for GUI Software”, IEEE Trans.
on Software Engi., vol. 22, pp. 390-406, June 1996.

[4] M. M. Gorlick, R. R. Razouk, “Using Weaves for Software
Construction and Analysis”, in: Proc. of 13th Int’1. Conf.
Software Engineering (ICSE1991), Austin, USA, pp. 23-34,
May 1991.

[5] H. Muccini, A. Bertolino, P. Inverardi, “Using Software
Architecture for Code Testing”, IEEE Trans. on Software
Engi., vol. 30, pp. 160-171, March 2004.

[6] H. Muccini, M. Dias, D. J. Richardson, “Towards Software
Architecture-based Regression Testing”, ACM SIGSOFT
Software Engineering Notes, vol. 30, pp. 1-7, April. 2005.

[7] L. J. Lun, H. Xu, “An Approach to Software Architecture
Testing”, in Proc. of the 9th International Conference for
Young Computer Scientists (ICYCS2008), Zhangjiajie,
China, pp. 1070-1075, November 2008.

[8] L. J. Lun, X. M. Ding, “Analyzing Relation between
Software Architecture Testing Criteria on Test Sequences”,
in: Proc. of 2009 IEEE Secure Software Integration and
Reliability Improvement (SSIRI2009), Shanghai, China, pp.
181-186, July 2009.

[9] J. Zhenyi, J. Offutt, “Deriving Tests from Software
Architectures”, in Proc. of 12th IEEE International
Symposium on Software Reliability Engineering
(ISSRE2001), Hong Kong, China, pp. 308-313, November
2001.

[10] A. Bertolino, F. Corradini, P. Inverardi, H. Muccini,
“Deriving Test Plans from Architectural Descriptions”, in:
ACM Proceedings International Conference on Software
Engineering (ICSE2000), Limerick, Ireland, pp. 220-229,
June 2000.

[11] M. Shereshevsky, H. Ammari, N. Gradetsky, A. Mili, H. H.
Ammar, “Information Theoretic Metrics for Software
Architectures”, in: Proc. of the 25th International
Computer Software and Applications Conference on
Invigorating Software Development (COMPSAC2001),
Chicago, IL, USA, pp. 151-157, October 2001.

[12] J. Zhao, H. Yang, L. Xiang, B. Xu, “Change impact
analysis to support architectural evolution”, Journal of
Software Maintenance and Evolution: Research and
Practice, vol. 14, pp. 317-333, May 2002.

[13] H. Muccini, M. Dias, D. J. Richardson, “Systematic
Testing of Software Architectures in the C2 style”, Lecture
Notes in Computer Science, vol. 2984, pp. 295-309, 2004.

[14] L. J. Lun, X. Chi, “Software Architecture Testing in the C2
Style”, in: Proc. of 2010 3rd International Conference on
Advanced Computer Theory and Engineering

(ICACTE2010), Chengdu, China, vol. 1, pp. 123-127,
August 2010.

[15] J. Gao, R. Espinoza, J. He, “Testing Coverage Analysis for
Software Component Validation”, in: Proc. of the 29th
Annual International Computer Software and Applications
Conference (COMPSAC2005), Edinburgh, UK, vol. 1, pp.
463-470, July 2005.

[16] S. Horwitz, T. Reps, D. Binkley, “Interprocedural Slicing
Using Dependence Graphs”, ACM Transactions on
Programming Languages and Systems, vol. 12, pp. 26-60,
January 1990.

[17] A. Podgurski, L. A. Clarke, “A Formal Model of Program
Dependences and its Implication for Software Testing,
Debugging, and Maintenance”, IEEE Trans. on Software
Engi., vol. 16, pp. 965-979, September 1990.

[18] J. Zhao, “A Slicing-based Approach to Extracting
Reusable Software Architectures”, in: Proc. of the Fourth
European Conference on Software Maintenance and
Reengineering (CSMR2000), Zurich, Switzerland, pp. 215-
223, February 2000.

[19] J. Zhao, “On Assessing the Complexity of Software
Architectures”, in: Proc. of the third international
workshop on Software architecture (ISAW1998), Orlando,
USA, pp. 163-166, November 1998.

[20] J. A. Stafford, D. J. Richardson, A. L. Wolf, “Chaining: a
software architecture dependence analysis technique”,
Technical Report, CU 2CS2845297, Department of
Computer Science, University of Colorado, September
1997.

[21] J. A. Stafford, D. J. Richardson, A. L. Wolf,
“Architectural-Level Dependence Analysis for Software
Systems”, International Journal of Software Engineering
and Knowledge Engineering, vol. 1, pp. 431-451, August
2001.

[22] J. A. Stafford, A. L. Wolf, M. Caporuscio, “The
Application of Dependence Analysis to Software
Architecture Descriptions”, Lecture Notes in Computer
Science, vol. 2804, pp. 52-62, 2003.

[23] J. Zhao, “Using Dependence Analysis to Support Software
Architecture Understanding”, New Technologies on
Computer Software, pp. 135-142, September, 1997.

[24] N. L. Hashim, S. Ramakrishnan, H. W. Schmidt,
“Architectural Test Coverage for Component-based
Integration Testing”, in: Proc. of seventh International
Conference on Quality Software (QSIC2007), Portland,
USA, pp. 262-267, October 2007.

[25] L. J. Lun, X. Chi, X. M. Ding, “Edge Coverage Analysis
for Software Architecture Testing”, Journal of Software,
vol. 7, pp. 1121-1128, May 2012.

Lijun Lun was born in Harbin,
Heilongjiang Province, China, in 1963.
He received his B.S. degree and Master
degree in Computer Science and
Technology from Harbin Institute
Technology of Computer Science and
Technology, China, in 1986 and 2000
respectively.

Currently, he is a professor, and
teaches and conducts research in the areas of software
architecture, software testing, and software metrics, etc.

284 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

Xin Chi was born in Harbin,
Heilongjiang Province, China, in 1990.
She is a three year’s college student at
Harbin Normal University, China, since
2009. She has been engaged in software
architecture testing and software metrics
research for approximately three years.

Xuemei Ding was born in Harbin,
Heilongjiang Province, China, in 1972.
She received her B.S. degree and Master
degree in Computer Science and
Technology from Heilongjiang
University and Harbin Institute
Technology of Computer Science and
Technology, China, in 1996 and 2000
respectively. Currently, she is an

associate professor, and teaches and conducts research in the
areas of software engineering, neural network, and one-class
classification, etc.

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 285

© 2013 ACADEMY PUBLISHER

