
A Survey of Delegation from an RBAC Perspective
Sylvia L. Osborn, He Wang

Department of Computer Science, The University of Western Ontario, London, ON, N6A 5B7, Canada

Email: sylvia@csd.uwo.ca

Abstract—Delegation in access control takes place in the presence
of an access control model, when a user is unable to perform their
administratively assigned permissions. In this paper, we discuss
the meanings of the word “delegation” found in the literature,
focusing on its use in access control. In the context of a role-
based access control model, we survey many possible ways in
which delegation can be specified.

Index Terms—authorization, delegation, groups, roles, access
control

I. INTRODUCTION

Delegation of access rights is a very important function in

the business world and in health care. As software systems

attempt to support the activities of people doing their every-

day tasks, so have systems, particularly access control sys-

tems, provided support for delegation. This paper provides an

overview of the structural aspects of delegation, using concepts

from role-based access control (RBAC) as a framework for

the discussion. It complements another survey of delegation

by Pham et al. [1], which is less focused on RBAC and which

includes implementation concepts.

Access control is that part of a system which controls

what users or processes can execute what operations on

what objects. In computer security terminology, processes

representing users, or sometimes users themselves, are referred

to as subjects. Access control gives subject s the permission

to execute access mode m on object o. Also important to the

overall control of access to objects is user authentication,

which, as the term implies, is some mechanism by which

users log on to a system and are identified. Once users are

authenticated and have been given some permissions to access

objects, some way of verifying these accesses is required;

we will call the process that verifies individual accesses to

objects a reference monitor. The focus of this paper will

be on delegation in access control models, and not on user

authentication or reference monitors. Delegation, in turn, takes

place when a more permanent access control design proves to

be inadequate in some unanticipated situation.

There is a broad spectrum of paradigms in access control.

On the one hand we have discretionary access control (DAC),

as commonly found in relational database systems and oper-

ating systems like Unix, in which objects or data are owned

by a user and permission to act on them is given at the

discretion of the owner. The other well-known paradigm is

mandatory access control (MAC), in which access is based on

labels assigned to the subject and object. Basic definitions for

DAC and MAC can be found in the glossary of the orange

book [2]. Role-based access control (RBAC) provides another

way to view access control, and has been shown to be able

to simulate both discretionary and mandatory access control

models [3]. In role-based access control, users are assigned to

roles, which in turn make available a set of permissions.

As well as the different ways of organizing access control

just discussed, there is an administrative dimension to access

control. Administration can be centralized, as is implied by

basic RBAC models [4], [5], or decentralized, as implied

by the ownership concept in discretionary access control

models. Also, in most systems, one can talk about design

time, when requirements of different users are accounted for

in the design of the system, and the time when the model

is deployed and being used, which we will refer to as run

time. In both of these phases of a system’s life, there is a

need to make available the permissions required by users to

perform their tasks, or to adjust these permissions, in other

words to perform administration. In the case of discretionary

access control, these commands are issued by the owner of

the object or by someone who has been given administrative

permissions by the owner. In a security model, it may be

that administrators cannot themselves perform the actions for

which they are assigning permissions to others. For example,

in a large company, a complex access control model could be

designed so that the administrator assigning new employees

to roles is someone from the human resources department,

whereas the design of the permission sets of the role is

performed by a security expert. Assigning a user to a role

is an administrative permission; the administrator holding this

administrative permission may not themselves be able to carry

out the permissions made available to users assigned to the

role.

It may be necessary to alter the design of the access control

system after it has been deployed, as the focus of the enterprise

changes over time. Thus, administration can take place also at

run time.

Delegation, as the term is used in this paper, is motivated by

a situation in which one user is temporarily unable to perform

one or more of their tasks, because they are too busy, or

away from their job due to illness or vacation. The user who

normally has certain permissions, called the delegator, grants

one or more of these permissions (or a role) to a delegatee. It

is characterized by being temporary, and can be accompanied

by a time limit. There are many variations to how many

permissions, which permissions are delegatable, etc. which

will be surveyed in this paper. Delegation is reversed by a

revocation.

The following points succinctly summarize the main differ-

ences between administration of access control and delegation

of access control:

• The assigning of permissions through administration can

266 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.2.266-275

take place at design time when the security system is

being designed, or at run time, when the security design

is being updated. Assigning of permissions through del-

egation takes place only at run time.

• The person delegating a permission also has the permis-

sion. Permissions being assigned by an administrative

action can be assigned by someone not having that

permission.

• With delegation, the responsibility for the task remains

with the delegator. With administration, the responsibility

is assumed by the user receiving the permission.

• Delegation is always temporary. Administratively as-

signed permissions remain permanently assigned until the

design is updated.

Many papers have been published describing delegation

models. Of course, when a system designer or user of a system

needs to specify a delegation, they will use the tools available

to them in whatever system they are using. The purpose of

this paper is to survey the many ideas that can be found

in the literature regarding delegation, and to put them into

a common framework so that a student or practitioner can

better understand the many variations and details of delegation.

The paper proceeds as follows. In Section II we discuss

several uses of the term “delegation” in the literature, and

arrive at the definition to be used in this paper. Section III

summarizes some basic concepts of access control models

which are relevant to the sections which follow it. This is

followed in Section IV by the main discussion of the paper.

First we list characteristics of delegation. This is followed by

a detailed discussion of delegation as it can be described in the

context of role-based access control. The use of constraints in

specifying delegation is then discussed. Other uses of the word

delegation in the literature are briefly mentioned in Section V.

A summary is given in Section VI.

II. DEFINING DELEGATION

The on-line Merriam-Webster dictionary defines delegation

as “the act of empowering to act for another” [6]. The term

delegation has had several uses in computing, all of which

relate to this definition. Experienced computer scientists will

have encountered the term delegation in object-oriented pro-

gramming (OOP). Normally, in OOP, inheritance of methods

is a compile-time concept. The term delegation is used to

describe a run-time phenomenon in which a message to one

object can be delegated to another object to execute on its

behalf [7]. There are some parallels here with the concept of

delegation as used in access control: it is a run-time concept

which involves a time-limited passing of control from the

delegator to the delegatee, both of which in this case are

objects in the execution space of a program.

The idea of delegation, as it is used in access control,

follows from practices in the business world. We begin this

section by looking at some delegation ideas from business,

and proceed to a definition of delegation as it is used in this

paper.

A. Delegation in the Business World

In the running of a large organization, managers are encour-

aged to delegate their tasks to their subordinates. Delegation is

distinguished from assignment. When a manager passes along

one of their own tasks to a subordinate, this is delegation.

The one having the responsibility for the given task is still

the manager. When a manager tells a subordinate to do a task

as part of the subordinate’s normal responsibilities, this is an

assignment; the responsibility for the given task is passed to

the subordinate [8].

The motivations for delegation in a business include one

employee being away either due to illness or vacation, or

just being overworked. Delegation can occur on different

management levels: the delegatee may be a subordinate, a

peer in the management hierarchy of the company, or even

someone at a higher level [9].

The following are requirements for delegation in the busi-

ness world [8]:

CAREFUL DESIGN: The task to be delegated should be care-

fully explained, including outlining the expected result, how

performance will be measured, etc. Both parties have to agree

on these.

RESOURCES: The delegating manager should provide the

resources needed for the task, such as personnel, equipment

and the required access rights to data and information.

ACCOUNTABILITY: The delegatee incurs an obligation after

accepting the delegation. He or she is accountable for the

proper use of the authority given and the performance of the

delegated task. However, from the point of view of manage-

ment above the delegator, the obligation has not changed. The

delegator still is fully obligated to complete the task.

To quote Wikipedia [10], “Delegation, if properly done, is

not abdication.”

B. Defining Delegation

Delegation in access control occurs in a complex environ-

ment where there are potentially many users with complex

interactions among them, some of which (e.g. accountability)

may be difficult to represent with an automated mechanism.

For the remainder of this paper, we will assume the following

definition of delegation:

Definition 1: Delegation is the act of one user, the delega-

tor, giving some or all of their assigned permissions to another

user, the delegatee, such that the following properties hold:

1) the delegation takes place at run time, not design time,

2) the delegator has the permission(s) at the time of the

delegation

3) permissions only are delegated, not user authentication

information

4) the delegation is temporary

Note that some aspects of delegation can be part of the

security system design, such as specifying policies or con-

straints, or designing delegatable roles, as we will see below.

The giving of permissions through delegation takes place only

at run time, whereas administration of more permanent rights

can take place at run time if the security design is being

updated, and also (normally) takes place at design time.

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 267

© 2013 ACADEMY PUBLISHER

III. ACCESS CONTROL MODELS

The basic components of delegation in access control have

their origins in the first access control models intended for a

business environment. In the earliest models, however, delega-

tion was slightly confused with normal administration of ac-

cess rights. We thus first consider two traditional access control

models, namely the Access Matrix Model and Discretionary

Access Control (as it is found in standard relational database

packages), before discussing role-based access control, which

is used in the rest of the paper.

A. Access Matrix Model

The most basic form of discretionary access control is

represented by the access matrix model [11]. Subjects are rep-

resented by the rows of a matrix, and objects by the columns.

Each matrix entry shows what access rights the subject has on

the object, e.g. read, write, execute, etc. One of these rights

can be the ownership right, which is also called control. The

subject with ownership right on object o can alter the entries

in the column for object o, i.e. can grant other subjects access

to object o. The owner can also assign a copy flag to a specific

access right in a matrix entry, which gives the corresponding

subject the ability to further grant this access mode on this

object to another subject. The basic access matrix model thus

has a very decentralized administrative model, since various

objects’ accesses are managed by different subjects, and also a

subset of the rights can be managed by other subjects if these

subjects possess the copy flag.

Since the access matrix can be very sparse, it is common

to store only the rows, which are then called capability lists,

or the columns, which are access control lists or ACLs.

B. Discretionary Access Control in Relational Databases

Discretionary access control in relational databases is em-

bodied in the GRANT and REVOKE statements, which are

part of the SQL standard [12]. The GRANT statement allows

a user with control (usually the owner of the table) to grant

some or all of the access modes on some or all of the

columns of a table to other users. These permissions can be

accompanied by the grant option, which allows the grantee to

further pass on the permission (similar to the copy flag above).

In the original paper describing access control for relational

databases, Griffiths and Wade [13] discuss the problem which

occurs when a user has been granted a permission in more than

one way. Each such grant is at the end of a sequence of grants

from the original owner, and these sequences may or may

not overlap. When a permission is revoked, each permission

whose existence is based on the revoked permission should

also be revoked. This concept is called cascading revoke. To

do this correctly, timestamps must be kept for each of possibly

multiple granting actions [14].

In relational databases, there is only one command, the

GRANT statement, for assigning permissions to users. If the

database administrator initially designs the database, and is

the de facto owner of all the tables, then he or she can

assign permissions to various users with grant option. These

users can then perform a delegation as defined in Definition

1 by using the GRANT statement at run time. On the other

hand, a relational database could be designed and created by a

collection of users, who retain ownership during the life of the

database. If these users grant permission to others, but never do

so “with grant option”, and never at run time, then the system

exhibits administration of permissions but no delegation. Thus

it is difficult to distinguish delegation from administration

in relational databases because the set of commands for

controlling access is so limited. The same confusion exists

in all systems exhibiting discretionary access control, where

a small number of commands are available to confer access

to another user, making it difficult to distinguish between

administration and delegation. Role-based access control, as

we shall see in the next section, offers a richer model within

which to distinguish all the nuances possible in delegation.

C. Role-Based Access Control

Role-based access control models have been discussed since

the mid 1990’s [4], [15]–[17]. In RBAC, a role has a unique

name, and has a set of permissions assigned to it. Users are

assigned to roles, thus assigning them to a set of permissions

in one operation, rather than having to assign the permissions

individually. A big advantage to security administrators is that

when someone changes their job or leaves the company, they

can be removed from roles in one operation, thus having all the

corresponding permissions revoked in one operation. RBAC is

considered to be “policy neutral”, in that it can be configured

to mimic DAC, MAC [3] or just to satisfy the requirements

of the enterprise, however strict or complex they may be.

Ferraiolo et al. [18] contains an extensive discussion of RBAC

and its applications. The ANSI standard [19] has grown out

of the Sandhu and NIST models.

As well as having permissions and users assigned to them,

roles (in hierarchical RBAC [19]) can be arranged in a partial

order or role hierarchy, which can be represented as a directed

acyclic graph. An example role hierarchy for a wholesale

business is given in Figure 1.

The basic components of an RBAC model are users, roles

and permissions. In the role graph model [5], each of these

three components is potentially represented by a hierarchy or

graph. Concerning users, groups of users, which are simply

sets of users, are also allowed, so that a set of users can be

assigned or removed from a role in one operation. Membership

in a group can be decided by a security administrator or

derived from user attributes, such as being a qualified ac-

countant [20]. There is also a hierarchy of groups determined

by set containment, as shown in Figure 2. Individual users

are modeled as groups of cardinality 1. In the example group

graph, the AccountantsGr group is a subgroup of Everybody,

so if Everybody is assigned to role r, all the members of

the AccountantsGr set, as well as all the users, are implicitly

assigned to r. Groups are not part of the ANSI model. The

security designer can use the AccountantsGr to assign them

together to a role, or, as we will see later, can use this group

to specify potential delegatees in a delegation.

Concerning permissions, implications among permissions

can be modeled by several hierarchies or graphs. If the object

268 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

SalesMgr

SAccnting SalesPers

PurchasingMgr

Staff

Director

SalesEast SalesWest

PAccounting Purchaser

Figure 1. Sample Role Hierarchy

Dave

Everyone

Ellen FongCarol DanAliceBob

AccountantsGr

Figure 2. Sample Group Graph

portion of the permission has a complex structure, then having,

say, a read permission on a complex object implies having

the read permission on all the parts of the object. The object

structure which determines how permissions propagate can be

shown in an Authorization Object Graph. Figure 3 shows a

portfolio of objects representing sales from our warehouse

business. The “Sales” object represents a set of objects, each

of which is a sale, which in turn contains a number of items.

Giving a user read permission on “Sales” would imply read

permission on all the contained objects. Implications can also

be made concerning the access mode part of a permission.

In some systems, having permission to update an object also

implies permission to read the same object. These implications

can be shown in an Authorization Type Graph. These ideas

were originally described for object-oriented databases [21]

and have been adapted for RBAC [22].

Concerning roles, we have role hierarchies or role graphs.

In such a graph or hierarchy, a directed edge from a junior

role to a more senior role represents the fact that the set of

permissions available in the junior role is a proper subset of the

permissions available in the senior role. Permissions assigned

to a junior role are inherited by its senior roles. Users assigned

to a senior role are implicitly assigned to its junior roles.

In the role graph model, algorithms are given for insertion

and deletion of edges, roles, and permissions. One difference

between the role graph model and the other models, especially

the ANSI model [19], is that in the role graph model, when the

Sales

Sale1 . . . Sale47 . . . Salen

Barbeque Lawn Chairs

Figure 3. Sample Object Graph

permissions of role r1 are a subset of those of r2, a path must

exist in the graph from r1 to r2 – an edge will be inserted if

there is no such path – whereas no such edge will be inserted

in the ANSI version.

As well as users, roles and permissions, other components of

RBAC models are user-role assignment, also called member-

ship in a role, and permission-role assignment. Figure 4 shows

permission-role and user-role assignments for our example.

Constraints can also be specified to express many additional

ideas, such as separation of duty, conditions under which roles

may be assigned to a user or under which a user may activate

a role, etc. We will not give details for a constraint language,

but will discuss later how constraints or rules may be used to

govern delegation.

It is customary to consider the role(s) to which a user is

assigned through user-role assignment (i.e. the roles the user

can perform) to be distinct from the role(s) currently activated.

In the Sandhu model [4], the concept of a session is introduced

to model the mapping from each user to the set of roles they

currently have activated.

Administration of role-based models was first mentioned

in Sandhu et al. [4], where separate administrative roles

have permissions in which the object being acted on is a

“regular” role in the role hierarchy. The purpose of these

administrative roles is to effect the design of the access control

for an application. Administrative models for RBAC have been

discussed also in [23]–[27].

The components of RBAC, which we will use in the next

section to describe different kinds of delegation are, then:

1) roles and the role hierarchy

2) users and user groups

3) permissions and object/access mode hierarchies

4) user-role assignments

5) permission-role assignments

6) sessions

and

7) administration

IV. DELEGATION IN ACCESS CONTROL

As we saw above for relational databases, it is possible to

have delegation in relational databases, or in a similar way to

do delegation in any discretionary access control system by

making permissions available at run time and then revoking

them a short time later. However, all of the dimensions of

delegation are best explored in terms of role-based access

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 269

© 2013 ACADEMY PUBLISHER

SAccnting

SalesMgr

PAccounting

Purchaser

SalesPers

PurchasingMgrFong

Everyone Staff

(a) Permission-Role Assignments

Role

Staff

SAccnting

SalesPers

Purchaser

PAccounting

(b) User-Role Assignments

Ellen

Permissions

read SupplierInfo, write SupplierInfo

read CustomerInfo, write CustomerInfo

write Sales

read Sales, write Sales

write BankAcct

write Purchases

read Purchases, write Purchases

write Cheques

User Role

Alice

Bob

Carol

Dave

Figure 4. Permission-Role and User-Role Assignments for the example

control, because it is a richer model in terms of describing

all the components of an access control configuration.

This section begins by enumerating characteristics of dele-

gation which have been observed by various authors. We then

proceed to use the components of RBAC to classify variations

on delegation which are possible, with examples. Following

this is a discussion of how constraints or rules can enhance

delegation.

A. Characteristics of Delegation

In [28], Barka and Sandhu list the following characteristics

of delegation:

PERMANENCE: According to Barka and Sandhu [28], perma-

nent delegation describes the situation where a user in a role

permanently delegates this role to another user. Temporary

delegation is limited by time. According to Definition 1, what

they call permanent delegation we are calling administration

of access rights; in this paper we only consider temporary

delegation.

MONOTONICITY: Monotonic delegation means that the dele-

gator still holds their rights after delegation and can perform

this task regularly. Non-monotonic delegation means that,

after the delegator transfers the rights to the delegatee, they

no longer have these rights. However this delegation is not

permanent; the delegator can revoke the delegation and get

back the rights.

TOTALITY: Total delegation occurs when the delegator dele-

gates all permissions of a role to the delegatee, whereas with

partial delegation, the delegator delegates a proper subset of

the permissions of the delegated role to the delegatee.

ADMINISTRATION: The delegation can be performed by the

user who is the delegator, in which case this is called self-

acted, or by an agent, which can be software or another user,

which is called agent acted. The latter might be necessary

if the delegator is unable to access the system on which the

delegation is to be performed.

LEVEL OF DELEGATION: Single step delegation does not per-

mit the delegatee to further delegate the permission received.

Two- or multi-step delegation does allow the delegatee to

further delegate. This is analogous to the “with grant option”

in relational databases, except that here we are dealing only

with delegation, and not with administration of rights.

MULTIPLE DELEGATION: Multiple delegation refers to the

number of delegatees who can receive the delegation at the

same time, i.e. either a single delegatee or multiple ones.

AGREEMENTS: Agreements are the protocols between dele-

gator and delegatee. A bilateral agreement is one that both

parties of a delegation agree to. Unilateral agreement is a one-

way decision made by the delegator. In this case, the delegatee

has no choice but to accept the delegation.

REVOCATION: Revocation is further classified two different

ways: Cascading revocation occurs when there is a delegation

chain, and the original delegation being revoked causes all

delegations along the dependent chain also to be revoked.

The other classification is whether or not revocation is grant

dependent or grant independent. The former means that only

the original delegator can revoke the delegation, whereas the

latter means that any user in a position to be a potential

delegator can revoke the delegation.

In addition to these characteristics given by Barka and

Sandhu, we can add the following:

STATIC VS. DYNAMIC DELEGATION: Static delegation is

delegation which can be designed in advance, at design time,

whereas dynamic delegation is constructed at run time when

an unanticipated need arises. The need for this distinction

has been independently discussed for Grids in [29], and for

role-based access control in [30], [31]. With static delegation,

referring back to our example, Alice could decide that, if

she is ever away, any member of the AccountantsGr could

perform the SAccnting role. If it occurs at run time that no

such person is available, and the role is essential, then someone

else could be delegated to the SAccnting role with dynamic

delegation. Having delegation designed ahead of time, with

static delegation, allows consistency checks to be performed

in advance [30], [31].

TRANSFER DELEGATION: After a transfer delegation, as de-

fined by [32], the delegator can no longer use the delegated

permissions. This property is contrary to the assumption

we made in Section I, that the responsibility remains with

the delegator. Thus, we will not consider transfer delegation

270 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

further in this paper.

With the exception of totality, all of these properties deal

with how the delegation is managed and carried out. Totality

can be described in terms of one of the basic building blocks

of RBAC, the role, and whether or not we delegate a whole

role or just part of a role.

B. Delegation in Role-Based Models

The basic components of RBAC systems can be used as a

framework or reference model to help explore the dimensions

of the variations in design of delegation. Recall from Section

III-C that these components are: users and user groups, roles

and role hierarchies, permissions and object/access mode

hierarchies, user-role assignment, permission-role assignment,

sessions, and administration. Delegation models using all of

these components are surveyed in this section, as well as

revocation of delegation. Constraints or rules will are discussed

in Section IV-C.

1) Roles and Role Hierarchies: As we saw in Section IV-

A, roles can be delegated in their entirety or only part of a role

can be delegated. The SAccnting role in our example could

be delegated in its entirety, which would be total delegation,

or the delegator might wish to delegate only two of the

three permissions, say (read Sales) and (write Sales). Total

delegation is found, for example, in RBDM0 [33]. If partial

delegation is desired, then these “sub-roles” have to be created

by the delegator or by an administrator. Let us call such roles

delegation roles. These delegation roles could form part of

the regular role graph or role hierarchy, or could form their

own separate hierarchy. In PBDM0 and PBDM1 (two of the

delegation models proposed in [34]), the roles to be delegated

are regarded as being separate from the role hierarchy, in

that the authors do not want any changes to a delegation

role to affect any regular roles, and therefore do not want

these delegation roles to be junior to any regular roles. In

the role graph model, such roles could be placed in the role

graph (as long as their permission set is distinct from all

the other roles), and the role graph algorithms would add

edges to show which roles offer a subset of these permissions

and which offer a superset. The restriction being asked for

by Zhang et al. [34] is that the designer of the delegation

roles not be allowed to add new edges to the role graph,

and that a change to a delegation role not affect any regular

roles. Partial role delegation is also found in [35] and [36].

An example of partially delegating the SAccnting role in our

example, say only including the (read Sales) and (write Sales)

permissions, is shown as role Del1 in Figure 5(a), which also

shows where the role graph algorithms would place it. In [37],

extra permissions are delegated to a role which is already

activated; this deals with existing roles, but alters the role at

run time to accommodate delegation. Figure 5(b) shows where

the SAccnting role with the (write Cheque) permission added,

resulting in role Del2, would appear in the role graph.

The role hierarchy is featured in RBDM1 [38] where the

can-delegate relation is analyzed in terms of the role hierarchy.

A member of role r1 is not allowed to delegate r1 or any role

junior to r1 to a user who is a member of a role senior to r1,

since this potential delegatee is already implicitly a member

of the junior role. In terms of our example, Ellen would not be

allowed to delegate SalesPers (to which Ellen is assigned), or

its juniors, to Bob because Bob is assigned to SalesMgr which

is senior to SalesPers, and thus Bob can already perform all

the permissions in SalesPers and its juniors. RBDM1 does

not create any delegation roles. In [36], a richer model of

role hierarchy involving inheritance-only and activation-only

hierarchies is used to further refine the choice and construction

of delegation roles.

The role structure also can be used in expressing revocation.

In PBDM0 [34], mention is made of partially revoking a

delegated role.

2) Users and User Groups: Users are a primary focus of

delegation. It is a user at run time who initiates a delegation,

usually to one or more other users. This is the user-to-user

delegation spoken of in the PBDMx models [34]. Users can be

classified as to whether or not they should ever be a delegatee

for a certain role or subrole delegation. This classification can

be based on some user attributes, such as qualifications, or

perhaps membership in a group or another role. A group can

be a dele gatee as in Example 4.1.

Example 4.1: Alice is unable to perform SAccnting. She

delegates this role to the AccountantsGr Group, since these

users would have the necessary qualifications.

In [39], user attributes are used to decide on role member-

ship and on whether or not a user can be a delegatee; in the

latter case this allows the delegator to specify qualifications

for delegation, even if they do not know what users might

satisfy the qualifications.

The members of a role can be considered to be a group,

although only the role graph model includes groups. Member-

ship in one role, say PAccounting, can be used to indicate a

set of delegatees, as in Example 4.2.

Example 4.2: Alice delegates role SAccnting to the mem-

bers of PAccounting.

The delegation in Example 4.2 allows Carol to be delegated.

This is a different delegation from Example 4.1, because

although Dan is a member of the AccountantsGr group in the

group graph, the delegation in 4.2 does not allow Dan to be

delegated. This structure is found the role-to-role delegation in

[35]. Such a requirement is usually expressed with a constraint,

to be discussed below.

In [30], [31], a delegation model is presented based on an

administrative model for the role graph model [26]. It makes

extensive use of the user/group graph, to model delegators and

delegatees. A delegatee group can be set up, and the delegatee

can be made a member of this group. Also, delegation chains

can be represented by special edges from one delegatee group

to another.

3) Permissions and Object/Access Mode Hierarchies:

Permissions can be labeled as being delegatable or non-

delegatable. Permissions can be added one at a time to

delegation roles, as is allowed by PBDM0 and PBDM1 [34],

or can be delegated independently of roles [33]. In [37], extra

permissions are delegated to an active role, so the unit of

delegation in this case is a permission. The object of delegation

in [40], which deals with delegation for web-based information

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 271

© 2013 ACADEMY PUBLISHER

Director

SalesMgr

Staff

SAccnting SalesPers

Director

SalesMgr

Staff

SAccnting SalesPers

Del1

Del2

(a) Partial Role for Delegation (b) SAccnting with extra permission for Delegation

Figure 5. Placement of Delegation Roles in the Role Graph

systems, is any sub-part of a web page to which the delegator

has access; in other words the delegation uses the object

structure from the object part of the permission in expressing

the delegated permission. In our example, Ellen, who is

assigned to the SalesPers role, which has one permission,

(write Sales), could delegate only one subnode of the Sales

object, say Sale42, to someone else, and Sale42 and all its

subnodes would be writable by the delegatee.

4) User-Role Assignment: User-role assignment can be

used to decide if a user should be a delegatee. A basic

assumption made by Barka and Sandhu [33] is that one user u1
should not be allowed to delegate a role to another user u2 if

u2 is already a member of the role. This is a property based on

the user-role assignment relation. Another way of saying this

is to require that the original members and delegated members

of a role be disjoint sets. Also observe here that if a user is

assigned to a role r1, they are implicitly assigned to all roles

junior to r1, so there is no point delegating such a user to any

of these junior roles; this is another way of stating that a user

should not be a delegatee if they are already a member of a

role. It is feasible to delegate this user to a role senior to r1,

if they are not a member of this senior role.

In several papers, the term role-to-role delegation is used

to describe delegation of one role, say SAccnting, to all

members of another role, say PAccounting [33], [35], [41].

This concept is best categorized as a property based on user-

role assignment. The delegation has nothing to do directly with

role-role relationships, but rather with the membership list of

the role PAccounting being used to define possible delegatees.

A relationship based on R × R can be used to specify a can-

delegate relation, and the property can also be expressed as

a constraint. However, we stress that the fundamental concept

being used is the user-role assignment.

Two-step and multi-step delegation, where the original

delegatee further delegates to another user, either once (giving

two-step) or many times, is also based on user-role assignment;

in this case a user who is a member of a delegation role (having

been delegated to it) can further delegate the delegation role.

Grant-independent revocation can be defined so that any

member of the delegating role can revoke a delegation [33].

This also depends on the original user-role assignment. Of

course, grant-independent revocation could also be a permis-

sion given to a super-user or administrator, which is based on

being assigned to the appropriate administrative roles.

5) Permission-Role Assignment: A delegator could use the

permission-role assignment relation to decide which permis-

sions are delegatable, i.e. if the user is a member of a role then

the permissions of that role are ones they can delegate. This

property is included in PBDM0, and therefore in PBDM1 and

PBDM2 [34].

6) Sessions: Recall that a session involves a user and the

roles activated for a user at run time. In [37], a medical

example is used to motivate delegating extra permissions to a

user for a specific instance of an active role. The roles active in

a session can be used to decide which roles or permissions are

delegatable in either role-based delegation or permission-based

delegation. The use of active roles and permissions to specify

a delegation at run time is the basis for dynamic delegation as

described in [31]. Looking at the example in Figure 5(a), if

Alice has activated SAccnting in a session, she could create the

delegation role Del1 during this session. Given the user-role

assignments in Figure 4, no one is assigned to the Director

role, so it is unlikely any of the present users would have

a session containing all the permissions of Del2 in Figure

5(b); Del2 could be defined by an administrator using static

delegation.

7) Administration: With static delegation, many of the

above features of delegation could be designed by an admin-

istrator at design time rather than by a user at run time. An

administrator could decide on potential delegatees, delegators,

design delegation roles, decide on delegatable permissions,

etc., all at design time. An administrator can also define the

rules or constraints to be discussed below. The system needs

to be designed with the required flexibility in place. The most

flexibility will occur when delegation can be defined at run

time when a truly unanticipated situation occurs. An example

of this, in our running example, is if all the accountants

are sick, and the delegation has been designed so that only

272 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

members of the AccountantsGr group can be assigned to the

accountant roles. Without dynamic delegation, the business

would not be able to operate properly.

As noted in [30], [31], if the role hierarchy is modified by

regular administrative operations on the system, and a role

thus affected is a delegation role, then regular administration

of the system may affect delegations which are currently in

effect. Other examples of administrative operations that might

affect delegation are deleting a role, and altering user-role

assignments.

8) Revocation: Revocation, as we saw in section IV-A, can

be grant dependent or grant independent. When it is grant

dependent, the delegator has to issue the revoke. This is also

called source dependent revocation in [30], [31]. With grant

independent revocation, the revoker can be any user in the

delegation role, if it is the same as a regular role, or some

administrator or superuser who has this authority. Since we

are not studying administrative models in this paper, we will

not say much about this except that the permission to revoke a

delegation should be part of the permissions given to someone,

or revocation will have to rely completely on timeout rules.

When there are delegation chains, authors discuss the ability

of some delegatee part way along the chain to be able

to revoke their delegation. In this case, the permission to

revoke has been given to some or all of the users on the

delegation chain. Cascading revocation is a variation of the

revocation permission, i.e. the permission is “revoke with

cascade” rather than just revoke. The algorithm to handle

cascading revocations of permissions, first given in the context

of relational databases by Griffiths and Wade [13] and Fagin

[14], mentioned in Section III-B, is applicable to cascading

revocation of delegation chains. Where there is a delegation

chain, and revocation is not cascading, the chain can be

shortened by one; for example if the original delegator revokes

the first delegation on a chain, this delegator then takes over the

position of the first delegatee on the chain [42]. Other forms

of revocation mentioned in Bacon et al. [43] are by resignation

(the delegatee terminates their session) or by a rule-based

system revocation (called constraint violation revocation in

[30]), which would occur if some prerequisite required to

activate the delegated role is revoked, triggering a revocation of

those role assignments based on the prerequisite. Revocation

of delegated permissions or roles can also occur at the end of

a session [44].

Wang and Osborn [30], [31] introduce a rich model for

revocation. If the delegation chain has unlimited depth, one

additional form of revocation is to convert it from unlimited

depth to limited depth. They also discuss partial revocation,

which can be partial revocation of the privileges, partial revo-

cation of the delegatees, or partial revocation of the delegation

chain or path, which can take place at the beginning, end or

middle of a delegation path.

C. Delegation with Rules

Rules or constraints can be specified for all aspects of

RBAC, and can be expressed using many languages and

mechanisms. The most common constraints mentioned in

terms of RBAC are separation of duty constraints (SOD),

which express the fact that one user should not be able to

have simultaneous access to certain pairs of roles, objects, etc.

because this would allow some fraud to be perpetrated. SOD

constraints are also a potential issue for delegation, although

other types of rules or constraints are more directly related to

the act of delegation.

In this section, we will briefly highlight some aspects of del-

egation that can be governed by rules, without going into detail

concerning syntax for them. Examples of rule specification

languages can be found in [43], [45]. Borrowing from Bacon et

al. [43], we can classify constraints as being environmental or

prerequisite. Environmental constraints deal with such things

as time, or the location of the users or services. Prerequisite

constraints deal with things such as membership in another

role or group being a prerequisite to being a delegator or

delegatee. SOD constraints involving delegation roles are the

negative form of prerequisite constraints: a user’s membership

in another role negates their ability to become a member of a

delegation role. Further examples of environmental constraints

from [30] are the Absence Constraint, which says that a user

can be a delegator only if they are absent from work, and the

Workload Constraint (also discussed in [46]) which allows the

delegation only when the workload of the delegator exceeds

some level.

Orthogonal to this classification, constraints can be based on

some value, or can be structural. We use the term structural

constraint to describe a constraint based on the characteristics

of the delegation mechanism itself, such as the depth of

a delegation chain, or the cardinality of the user set for a

delegation role. A value-based constraint is a constraint based

on a comparison with some value, which might be an attribute

of the user, like the age of the user, or the fact that a certain role

is in the delegator’s user-role assignment list. An example of

a value-based, prerequisite constraint was given in [39] where

comparing attributes of users and attributes of permissions is

used to decide on delegatees, in a situation where the delegator

may not know which delegatees might satisfy the condition.

Examples of structural constraints specifying the maximum

depth of a delegation chain can be found in [42], [47], [48]

and [30]. Other examples of structural, prerequisite constraints

from [30] are the Delegatee constraint, which specifies the

group to which the delegatee must belong, the Delegated

Role Constraint, which specifies a user-role assignment for

the delegatee, the Delegation role constraint, which controls

which roles can be delegated, and the Maximum Privilege Set

Constraint which gives a set of permissions which must not

be exceeded for the delegatee for a series of delegations (so

that the delegatee does not get too much power).

Rules involving time (which are environmental constraints)

can be used in many aspects of RBAC (see for example [49]).

As far as delegation is concerned, time constraints can be

used to specify the duration of a delegation, i.e. to provide

a timeout, or to constrain when delegation can take place,

say to limit the time when Alice can be a delegatee to those

hours when she is normally at work. Timeouts are mentioned

in RBDM0 [33], RBDM1 [38], and [41], [48] and [42]. [50]

mentions time predicates that constrain start and end times,

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 273

© 2013 ACADEMY PUBLISHER

with semantics of “not before” and “not after”. In the context

of workflow, Atluri and Warner [46] use a time interval to

constrain delegation of a task to, for example, the two hours

that a delegator is at a meeting.

V. OTHER USES OF THE TERM “DELEGATION”

In some parts of the literature on access control, it is

common to use the term delegation to refer to what we are

calling administration in this paper. In discretionary access

control, administration of access rights can become very

decentralized if the original owner of an object grants rights to

other users “with grant option”, to use the relational database

term. This does not mean that the further granting of rights

has anything to do with the motivations for delegation given

in Section I, nor with the finer points of our Definition 1.

There is no implication that the “delegation” being described is

temporary; it is the permanent delegation mentioned by Barka

and Sandhu [33] (which we prefer to call administration).

Often the word “administration” is used, but instead of saying

that the permissions are granted, the authors say the permission

is delegated. Some examples of this use of the word delegation

can be found in [51], [52]. In a distributed system, furthermore,

the whole point is that there is not a centralized authority but

that all aspects of the computing environment are decentralized

and have decentralized control. Here again is it is common to

use the term delegation to refer to granting of permissions,

which we would call administration. Examples of this can be

found in [53], [54].

On the other hand, in decentralized or distributed systems,

a great deal takes place at run time. There is not a concept

of design time, but rather users are requesting services from

systems they have not previously accessed, in a dynamic

environment. In this context, one can talk about the services

delegating their administrative functions to another system or

agent on the one hand, and, on the other hand, users delegating

their capability list in the form of credentials to another service

or agent [55]. In the latter case, the delegation that takes place

on the user side can deal with identity management as well

as capabilities, and is thus often done with the motivation of

maintaining the privacy of the user.

VI. SUMMARY

We began this paper by distinguishing between design

time and run time, emphasizing that the transfer of access

rights through delegation takes place at run time. Several

interpretations of the word “delegation” in the computing

literature were examined, yielding the definition for the use of

the word in this paper. We highlighted the difference between

administration of access control and delegation of roles or

permissions. Properties of delegation discussed previously in

the literature were presented. Using the components of role-

based access control, we classified many forms of delegation

which have appeared in the literature. This classification is

very helpful in exposing the nuances possible in the design of

delegation. Various ways in which rules can be used were

summarized. Finally, we observed that sometimes, in the

literature, the word “delegation” is used to describe what we

would call administration of access rights.

VII. ACKNOWLEDGEMENTS

We thank the following people for thier comments on

previous versions of the paper: Neil Croft, Rod Locke, Cecilia

Ionita, Xin Jin and Candy Shum. The finanial support of the

Natural Sciences and Engineering Research Council of Canada

is gratefully acknowledged.

REFERENCES

[1] Q. Pham, J. Reid, A. McCullagh, and E. Dawson, “On a
taxonomy of delegation,” Computers & Security, vol. 29, no. 5,
pp. 565–579, 2010.

[2] DoD, “DOD trusted computer system evaluation
criteria,” 1985, doD 5200.28-STD, available from
http://csrc.nist.gov/publications/index.html.

[3] S. Osborn, R. Sandhu, and Q. Munawer, “Configuring role-
based access control to enforce mandatory and discretionary
access control policies,” ACM Trans. Inf. Syst. Secur., vol. 3,
no. 2, pp. 1–23, 2000.

[4] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based
access control models,” IEEE Computer, vol. 29, pp. 38–47,
Feb. 1996.

[5] M. Nyanchama and S. L. Osborn, “The role graph model and
conflict of interest,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 1,
pp. 3–33, 1999.

[6] m-w.com, “Merriam-webster online,” 2011, www.m-w.com, ac-
cessed on August 11.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Addison-Wesley, 1995.

[8] M. K. Badawy, “Your toughest tests as a manager - part 4:
Delegating without losing control,” Machine Design, vol. 56,
no. 10, pp. 69–73, May 1984.

[9] E. Raudsepp, “Delegate your way to success,” Computer Deci-
sions, vol. 13, no. 3, pp. 157–8, 163–4, March 1981.

[10] wikipedia.org, “Wikipedia, the free encyclopedia,”
http://en.wikipedia.org/wiki/Delegation, accessed on Aug
10, 2011.

[11] B. Lampson, “Protection,” in Proc. 5th Princton Symp. on
Information Sciences and Systems. Princeton University,
March 1971, pp. 437–443, reprinted in ACM Operating Systems
Review, Jan. 1974.

[12] ISO, Information technology - Database languages - SQL - Part
2: Foundation (SQL/Foundation). ISO/IEC 9075-2:2003: ISO,
2003.

[13] P. P. Griffiths and B. W. Wade, “An authorization mechanism for
a relational database system,” in ACM Trans. Database systems.
ACM, 1976, pp. 242–55.

[14] R. Fagin, “On an authorization mechanism,” in ACM Trans.
Database systems. ACM, 1978, pp. 310–19.

[15] D. Ferraiolo and R. Kuhn, “Role-based access control,” in
Proceedings of the NIST-NSA National Computer Security Con-
ference, 1992, pp. 554–563.

[16] M.-Y. Hu, S. A. Demurjian, and T. C. Ting, “User-role based se-
curity profiles for an object-oriented design model.” in Database
Security VI, Status and Prospects, B. M. Thuraisingham and
C. E. Landwehr, Eds. Amsterdam: North-Holland, 1993.

[17] M. Nyanchama and S. L. Osborn, “Access rights administration
in role-based security systems,” in Database Security, VIII,
Status and Prospects, J. Biskup, M. Morgenstern, and C. E.
Landwehr, Eds. North-Holland, 1994, pp. 37–56.

[18] D. Ferraiolo, R. Kuhn, and R. Chandramouli, Role-Based Access
Control. Boston: Artech House, 2003.

[19] American National Standards Institute, Inc., Role-Based Access
Control. ANSI INCITS 359-2004. Approved Feb. 3, 2004.

[20] S. Osborn and Y. Guo, “Modeling users in role-based access
control,” in Fifth ACM Workshop on Role-Based Access Control,
Berlin, Germany, July 2000, pp. 31–38.

274 JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013

© 2013 ACADEMY PUBLISHER

[21] F. Rabitti, E. Bertino, W. Kim, and D. Woelk, “A model of
authorization for next-generation database systems,” ACM Trans
Database Syst, vol. 16, no. 1, pp. 88–131, 1991.

[22] C. M. Ionita and S. L. Osborn, “Privilege administration for
the role graph model,” in Research Directions in Data and
Applications Security, Proc. IFIP WG11.3 Working Conference
on Database Security. Kluwer, 2003, pp. 15–25.

[23] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
model for role-based administration of roles,” ACM Trans. Inf.
Syst. Secur., vol. 2, no. 1, pp. 105–135, Feb. 1999.

[24] S. Oh and R. Sandhu, “A model of role administration using
organization structure,” in Proc. 7th ACM SACMAT, 2002, pp.
155–162.

[25] J. Crampton and G. Loizou, “Administrative scope and role
hierarchy operations,” in Proc. 7th ACM SACMAT, 2002, pp.
145–154.

[26] H. Wang and S. Osborn, “An administrative model for role
graphs,” in Data and Applications Security XVII: Status and
Prospects, IFIP TC-11 WG 11.3 Seventeenth Annual Working
Conference on Data and Application Security. Kluwer, 2003,
pp. 39–44.

[27] D. F. Ferraiolo, R. Chandramouli, G.-J. Ahn, and S. I. Gavrila,
“The role control center: features and case studies,” in Proceed-
ings of the 8th ACM SACMAT. ACM Press, 2003, pp. 12–20.

[28] E. Barka and R. Sandhu, “Framework for role-based delega-
tion models,” in Proceedings 16th Annual Computer Security
Applications Conference (ACSAC’00), 2000, pp. 168–176.

[29] G. Geethakumari, A. Negi, and V. N. Sastry, “Dynamic dele-
gation approach for access control in grids,” e-science, vol. 0,
pp. 387–394, 2005.

[30] H. Wang and S. L. Osborn, “Delegation in the role graph
model,” in SACMAT ’06: Proceedings of the eleventh ACM
symposium on Access control models and technologies. New
York, NY, USA: ACM Press, 2006, pp. 91–100.

[31] ——, “Static and dynamic delegation in the role graph model,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 23, no. 10, 2011.

[32] J. Crampton and H. Khambhammettu, “Delegation in role-based
access control,” Int. J. Inf. Sec., vol. 7, no. 2, pp. 123–136, 2008.

[33] E. Barka and R. Sandhu, “A role-based delegation model
and some extensions,” in 23rd National Information Systems
Security Conference, October 2000, pp. 396–404.

[34] X. Zhang, S. Oh, and R. Sandhu, “PBDM: a flexible delegation
model in RBAC,” in Proc. 8th ACM SACMAT. ACM Press,
2003, pp. 149–157.

[35] H. Lee, Y. Lee, and B. Noh, “A new role-based delegation
model using sub-role hierarchies,” in Computer and Information
Sciences - ISCIS 2003, LNCS 2869. Springer-Verlag, 2003, pp.
811 – 818.

[36] J. Joshi and E. Bertino, “Fine-grained role=based delegation
in presence of the hybrid role hierarchy,” in Proc. 11th ACM
SACMAT, 2006, pp. 81–90.

[37] R. K. Thomas, “Team-based access control (TMAC): a prim-
itive for applying role-based access controls in collaborative
environments,” in Proceedings of the second ACM workshop
on Role-based access control. ACM Press, 1997, pp. 13–19.

[38] E. Barka and R. Sandhu, “Role-based delegation
model/hierarchical roles (RBDM1),” in Proceedings. 20th
Annual Computer Security Applications Conference, Tucson,
AZ, USA, 2004, pp. 396 – 404.

[39] C. Ye, Z. Wu, and Y. Fu, “An attribute-based delegation model
and its extension,” Journal of Research and Practice in Infor-
mation Technology, vol. 38, no. 1, pp. 3–17, 2006.

[40] S. Chou, E. Lu, and Y.-H. Chen, “X-RDR: a role-based delega-
tion processor for web-based information systems,” Operating
Systems Review, vol. 39, no. 1, pp. 4 – 21, 2005.

[41] L. Zhang, G.-J. Ahn, and B.-T. Chu, “A rule-based framework
for role based delegation,” in Proceedings of the sixth ACM
SACMAT. ACM Press, 2001, pp. 153–162.

[42] G.-J. Ahn, L. Zhang, D. Shin, and B. Chu, “Authorization
management for role-based collaboration,” in 2003 IEEE
International Conference on Systems, Man and Cybernetics, vol.
vol.5, Washington, DC, USA, 2003, pp. 4128 – 34. [Online].
Available: http: dx.doi.org/10.1109/ICSMC.2003.1245633

[43] J. Bacon, K. Moody, and W. Yao, “A model of OASIS role-
based access control and its support for active security,” ACM
Trans. Inf. Syst. Secur., vol. 5, no. 4, pp. 492–540, Nov. 2002.

[44] A. K. Mattas, I. Mavridis, and G. Pangalos, “Towards dy-
namically administered role-based access control,” in DEXA
Workshops, 2003, pp. 494–498.

[45] E. Bertino, E. Ferrari, and V. Atluri, “The specification and en-
forcement of authorization constraints in workflow management
systems,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 1, pp. 65–104,
1999.

[46] V. Atluri and J. Warner, “Supporting conditional delegation
in secure workflow management systems,” in SACMAT ’05:
Proceedings of the tenth ACM symposium on Access control
models and technologies. New York, NY, USA: ACM Press,
2005, pp. 49–58.

[47] O. Bandmann, M. Dam, and B. Firozabadi, “Constrained del-
egation,” in Proceedings IEEE Symposium on Security and
Privacy. IEEE, 12-15 May 2002, pp. 121 – 130.

[48] J. Wainer and A. Kumar, “A fine-grained, controllable, user-to-
user delegation method in rbac,” in Proc. 10th ACM SACMAT.
New York, NY, USA: ACM Press, 2005, pp. 59–66.

[49] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized
temporal role-based access control model,” IEEE Trans Knowl-
edge and Data Engineering, vol. 17, no. 1, pp. 4–23, Jan. 2005.

[50] J. Wang, D. Del Vecchio, and M. Humphrey, “Extending the
security assertions markup language to support delegation for
web services and grid services,” in Proceedings. 2005 IEEE
International Conference on Web Services, 2005, pp. 67–74.

[51] C. Ruan and V. Varadharajan, “A formal graph based framework
for supporting authorization delegations and conflict resolu-
tions.” Int. J. Inf. Sec., vol. 1, no. 4, pp. 211–222, 2003.

[52] L. Seitz, E. Rissanen, E. Sandholm, B. Firozbzki, and
O. Mulmo, “Policy administration control and delegation using
XACML and Delegent,” in Grid Computing 2005., 2005, pp.
49–54.

[53] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone,
“Modeling security requirements through ownership, permission
and delegation.” in 13th IEEE International Conference on
Requirements Engineering (RE 2005). IEEE Computer Society,
2005, pp. 167–176.

[54] A. Ravichandran and J. Yoon, “Trust management with delega-
tion in grouped peer-to-peer communities,” in Proc. 11th ACM
SACMAT, 2006, pp. 71–80.

[55] G. Yin, M. Teng, H. Wang, Y. Jia, and D. Shi, “An authorization
framework based on constrained delegation,” in Parallel and
Distributed Processing and Applications. Second International
Symposium, ISPA 2004. Proceedings (Lecture Notes in Com-
puter Science Vol.3358), 2004, pp. 845 – 57.

JOURNAL OF SOFTWARE, VOL. 8, NO. 2, FEBRUARY 2013 275

© 2013 ACADEMY PUBLISHER

