
Design and Optimization of Cloud-Oriented
Workflow System

Lei Mao

School of Computer Science and Technology
School of Mineral Resource and Earth Science

China University of Mining and Technology, Xuzhou, China
Email: ml@cumt.edu.cn

Yongguo Yang

School of Mineral Resource and Earth Science
China University of Mining &Technology, Xuzhou, China

Email: ygyang88@cumt.edu.cn

Hui Xu
School of Computer science and Technology

School of Mineral Resource and Earth Science
China University of Mining & Technology, Xuzhou, China

Email: xuhui@cumt.edu.cn

Abstract—The paper firstly analyzes the characteristic of
existing workflow applications and proposes cloud workflow
layered model and design method based on the current
major cloud computing trends. Considering the features on
the cloud workflow system in distributed heterogeneous
environment, the paper proposes a brief introduction to
approach to cloud workflow system. Next, three deployment
models of the cloud workflow applications are presented.
Finally, the paper presents a new dynamic scheduling
algorithm –Improved Dynamic Cloud Scheduling
Algorithm(IDCSA) which takes consideration of the
characteristics of cloud workflow and cloud resources.

Index Terms—cloud workflow; layered model; style;
distributed heterogeneous environment; deployment models;
IDCSA

I. INTRODUCTION

Workflow systems originated from office automation
which started in 1970s to support the office information
management for accomplishing simple business tasks . A
workflow models a process as consisting of a series of
steps, which simplifies the complexity of execution and
management of applications. Today more companies are
moving their workflow systems to online environments in
order to streamline data hand-over and eliminate
miscommunications that hinder flows at each step. This,
in turn, leads to work optimization and better internal
control. Moreover, more workflow systems support
complex flows such as process splits, which offers
alternate flows according to work data, and concurrent
processing, which simultaneously sends the flow to
multiple people.

Traditionally, a workflow management system is
designed as an enterprise application which is deployed
on company intranet, and its capability to support
Internet-level mass usage is limited. These workflow
systems are not suitable for open Internet environment.
There are various workflow systems exist, but few of
them provides public workflow service to users on the
Internet.

Cloud services vary in the levels of abstraction and
hence the type of service they present to application users.
Infrastructure virtualization enables providers such as
Amazon to offer virtual hardware for use in compute- and
data-intensive workflow applications[1]. Platform-as-a-
Service (PaaS) clouds expose a higher-level development
and runtime environment for building and deploying
workflow applications on cloud infrastructures. Such
services may also expose domain-specific concepts for
rapid-application development. Further up in the cloud
stack are Software-as-a-Service providers who offer end
users with standardized software solutions that could be
integrated into existing workflows.

Cloud computing represents the future of the
calculation of the development direction. Thus, it is
possible to utilize cloud computing to address the
problems of resource scalability and elasticity for
managing large scale workflow applications. Therefore,
the investigation of workflow systems based on cloud
computing, namely cloud workflow systems is a timely
issue and worthwhile for increasing efforts.

In this paper, we present a summary design of cloud
workflow. We start by discussing five layers of cloud
workflow system, compared to traditional workflow
environments. Next, we give a brief introduction to

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 251

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.1.251-258

approach to cloud workflow system in order to highlight
emphasis of change from workflow engines to clouds.
Next, we present a study on three cloud workflow
deployment models and the key challenges to realize
them. Finally, we present Improved Dynamic Cloud
Scheduling Algorithm (IDCSA). Simulative experiments
show its performance improvement compared with other
algorithm. Part V is the paper key content.

II.LAYER MODEL OF CLOUD WORKFLOW SYSTEM

Different from traditional workflow environments, we
split cloud workflow systems up into five layers:
applications, software environments, software
infrastructure, software kernel, and hardware (see figure
1). Obviously, at the bottom of the cloud stack is the
hardware layer which is the actual physical components
of the system. Many cloud computing offerings have built
their system on subleasing the hardware in this layer as a
service. At the top of the stack is the cloud workflow
application layer, which is the interface of the cloud to
the common computer users through web browsers and
thin computing terminals.

Figure 1. Layer model of of cloud workflow system.

A. Cloud Workflow Application Layer
The cloud workflow application layer is the most

visible layer to the end-users of the cloud workflow. And
in general, the users access the services provided by this
layer through web-portals which are sometimes required
to pay fees to use. This model has recently proven to be
attractive to most users, as it alleviates the burden of
software maintenance and the ongoing operation and
support costs. Furthermore, it exports the computational
work from the users’ terminal to data centers where the
cloud workflow applications are deployed. This in turn
lessens the restrictions on the hardware requirements
needed at the users’ end, and allows them to obtain
superb performance to some of their cpu-intensive and
memory-intensive workloads without necessitating huge
capital investments in their local machines.

B. Cloud Workflow Software Environment Layer
The second layer in the architecture is the cloud

workflow software environment layer (also dubbed the
software platform layer). The users of this layer are cloud
workflow applications’ developers, implementing their

applications for and deploying them on the cloud. The
providers of the cloud workflow software environments
supply the developers with a programming-language-
level environment with a set of well-defined APIs to
facilitate the interaction between the environments and
the cloud workflow applications, as well as to accelerate
the deployment and support the scalability needed of
those cloud workflow applications. The service provided
by cloud systems in this layer is commonly referred to as
Platform as a Service (PaaS). One example of systems in
this category is Google’s App Engine, which provides a
python runtime environment and APIs for applications to
interact with Google’s cloud runtime environment[2].
Another example is Sales Force Apex language that
allows the developers of the cloud applications to design,
along with their applications’ logic, their page layout,
sequence of operations, and customer reports. [3]

C. Cloud Workflow Software Infrastructure Layer
The cloud workflow software infrastructure layer

provides fundamental resources to other higher-level
layers, which in turn can be used to construct new cloud
workflow software environments or cloud workflow
applications. The architecture reflects the fact that the two
highest levels in the cloud stack can bypass the cloud
workflow infrastructure layer in building their system.
Although this bypass can enhance the efficiency of the
system, it comes at the cost of simplicity and
development efforts.

D. Software Kernel
This cloud workflow layer provides the basic software

management for the physical servers that compose the
cloud. Software kernels at this level can be implemented
as an OS kernel, hypervisor, virtual machine monitor
and/or clustering middleware. Customarily, grid
computing applications were deployed and run on this
layer on several interconnected clusters of machines.
However, due to the absence of a virtualization
abstraction in grid computing, jobs were closely tied to
the actual hardware infrastructure and providing
migration, check pointing and load balancing to the
applications at this level was always a complicated task.

E. Hardware and Firmware
The bottom layer of the cloud stack in the architecture

is the actual physical hardware and switches that form the
backbone of the cloud workflow. In this regard, users of
this layer of the cloud workflow are normally big
enterprises with huge IT requirements in need of
subleasing Hardware as a Service (HaaS). For that, the
HaaS provider operates, manages and upgrades the
hardware on behalf of its consumers, for the life-time of
the sublease. This model is advantageous to the enterprise
users, since they do not need to invest in building and
managing data centers. Meanwhile, HaaS providers have
the technical expertise as well as the cost-effective
infrastructure to host the systems. One of the early
examples HaaS is Morgan Stanley’s sublease contract
with IBM in 2004[4]. SLAs in this model are more strict,
since enterprise users have predefined business

252 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

workloads whose characteristics impose strict
performance requirements. The margin benefit for HaaS
providers materialize from the economy of scale of
building huge data centers infrastructures with gigantic
floor space, power, cooling costs as well as operation and
management expertise.

Ⅲ.APPROACH TO CLOUD WORKFLOW SYSTEM

The primary benefit of moving to clouds is application
scalability. Unlike grids, scalability of cloud resources
allows real-time provisioning of resources to meet
application requirements at runtime or prior to execution.
The elastic nature of clouds facilitates changing of
resource quantities and characteristics to vary at runtime,
thus dynamically scaling up when there is a greater need
for additional resources and scaling down when the
demand is low. This enables workflow management
systems (WfMSs) to readily meet quality-of-service (QoS)
requirements of applications, as opposed to the traditional
approach that required advance reservation of resources
in global multi-user grid environments. With most cloud
computing services coming from large commercial
organizations, service-level agreements (SLAs) have
been an important concern to both the service providers
and consumers. Due to competitions within emerging
service providers, greater care is being taken in designing
SLAs that seek to offer better QoS guarantees to
customers and clear terms for compensation in the event
of violation. This allows workflow management systems
to provide better end-to-end guarantees when meeting the
service requirements of users by mapping them to service
providers based on characteristics of SLAs. Economically
motivated, commercial cloud providers strive to provide
better services guarantees compared to grid service
providers. Cloud providers also take advantage of
economies of scale, providing compute, storage, and
bandwidth resources at substantially lower costs. Thus
utilizing public cloud services could be economical and a
cheaper alternative (or add-on) to the more expensive
dedicated resources. One of the benefits of using
virtualized resources for workflow execution, as opposed
to having direct access to the physical machine, is the
educed need for securing the physical resource from
malicious code using techniques such as sandboxing[5].
However, the long-term effect of using virtualized
resources in clouds that effectively share a “slice” of the
physical machine, as opposed to using dedicated
resources for high-performance applications, is an
interesting research question.

Traditional WfMSs were designed with a centralized
architecture and were thus tied to a single computer. In
distributed heterogeneous environment, moving
workflow engines to clouds requires architectural
changes, method of scale activity node and integration of
cloud management tools.

A. Architectural Changes
Most components of a WfMS can be separated from

the core engine so that they can be executed on different
cloud services. Each separated component could

communicate with a centralized or replicated workflow
engine using events. The manager is responsible for
coordinating the distribution of load to its subcomponents,
such as the Web server, persistence, monitoring units, and
so forth.

In new WfMS, we should separate the components that
form the architecture into the following: user interface,
core, and plug-ins. The user interface can now be coupled
with a Web server running on a “large” instance of cloud
that can handle increasing number of users[6]. The Web
request from users accessing the WfMS via a portal is
thus offloaded to a different set of resources.

Similarly, the core and plug-in components can be
hosted on different types of instances separately.
Depending on the size of the workload from users, these
components could be migrated or replicated to other
resources, or reinforced with additional resources to
satisfy the increased load. Thus, employing distributed
modules of the WfMS on the basis of application
requirements helps scale the architecture.

B. Method of Scale Activity Node
Heavy workflow of traditional waterfall approaches

with smallest detail will slow down the use of cloud
computing. So it is necessary to separate main workflow
from details of mechanism required to scale any activity
node. Thus we must have efficient way of storing this

information

Figure 2. A example of workflow main and workflow shadow

In Figure 2, we see two “different” workflows,
workflow main that has the cloud structure with each web
service as an activity node, workflow shadow that has
sub-workflows for other options for each activity nodes.
Of course we can also divide it into workflow online and
offline. The former runs and executes at a particular time
and the latter is a kind of workflow in passive state
waiting for an event to trigger it.

The following table I gives a detailed description of the
node activities.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 253

© 2013 ACADEMY PUBLISHER

TABLE I.

DESCRIPTION OF THE NODE ACTIVITIES

C. Integration of Cloud Management Tools

As the WfMS is broken down into components to be
hosted across multiple cloud resources, we need a
mechanism to access, transfer, and store data and enable
and monitor executions that can utilize this approach of
scalable distribution of components.

The cloud service provider may provide APIs and tools
for discovering the VM instances that are associated to a
user’s account. Because various types of instances can be
dynamically created, their characteristics such as CPU
capacity and amount of available memory are a part of
the cloud service provider’s specifications. Similarly, for
data storage and access, a cloud may provide data sharing,
data movement, and access rights management
capabilities to user’s applications. Cloud measurement
tools may be in place to account for the amount of data
and computing power used, so that users are charged on
the pay-per-use basis. A WfMS now needs to access
these tools to discover and characterize the resources
available in the cloud. It also needs to interpret the access
rights (e.g., access control lists provided by Amazon), use
the data movement APIs, and share mechanisms between
VMs to fully utilize the benefits of moving to clouds. In
other words, traditional catalog services such as the
Globus Monitoring and Discovery Service (MDS)
Replica Location Services, Storage Resource Brokers,
Network Weather Service, and so on could be easily
replaced by more user-friendly and scalable tools and
APIs associated with a cloud service provider[7].

A WfMS implements scheduling policies to assign
tasks to resources based on applications’ objectives. This
task-resource mapping is dependent on several factors:
compute resource capacity, application requirements,
user’s QoS, and so forth. Based on these objectives, a
WfMS could also direct a VM provisioning system to
consolidate data center loads by migrating VMs so that it
could make scheduling decisions based on locality of data
and compute resources[8].

 Most cloud providers also offer services and APIs for
tracking resource usage and the costs incurred. This can
complement workflow systems that support budget-based
scheduling by utilizing real-time data on the resources
used[9], the duration, and the expenditure. This
information can be used both for making scheduling
decisions on subsequent jobs and for billing the user at
the completion of the workflow application.

Ⅳ. CLOUD WORKFLOW DEPLOYMENT MODELS

There are three main types of cloud workflow
deployment models - public, private and hybrid cloud
workflow.

A. Public Cloud Workflow
Public cloud workflow is the most common type of

cloud workflow. This is where multiple customers can
access web applications and services over the internet.
Each individual customer has their own resources which
are dynamically provisioned by a third party vendor. This
third party vendor hosts the cloud for multiple customers
from multiple data centers (see figure 3), manages all the
security and provides the hardware and infrastructure for
the cloud to operate. The customer has no control or
insight into how the cloud is managed or what
infrastructure is available.

Figure 3. Public cloud workflow deployment model.

B. Private Cloud Workflow
Private cloud workflow emulates the concept of cloud

computing on a private network. They allow users to
have the benefits of cloud workflow without some of the
pitfalls. Private cloud workflow grants complete control
over how data is managed and what security measures are
in place. This can lead to users having more confidence
and control. The major issue with this deployment model
is that the users have large expenditures as they have to
buy the infrastructure to run the cloud workflow and also
have to manage the cloud workflow themselves.

C. Hybrid Cloud Workflow
Hybrid cloud workflow incorporates both public and

private cloud (see figure 4) within the same network. It
allows the organizations to benefit from both deployment
models. For example, an organization could hold
sensitive information on their private cloud workflow and
use the public cloud workflow for handling large traffic
and demanding situations.

Figure 4. Hybrid cloud workflow deployment model.

254 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

Ⅴ.IMPROVED DYNAMIC CLOUD SCHEDULING
ALGORITHM

DAG(directed acyclic graph) is a common method to
describe the workflow. Many researchers used to use
linear program, genetic algorithm, simulate anneal
arithmetic, and hybrid algorithm based on PSO et al. to
solve the scheduling problem of the workflow described
by DAG. But when the problem is in large scale, the
algorithm of time is costly. Structural type heuristic
algorithm is used by many researchers to solve the
optimization of the time cost based on workflow
scheduling problem to ensure the acceptable solution in
reasonable operation time. Considering two quality
parameters(time and cost of the service resources), based
on deadline/cost constraint, R.Buyya put forward a task
scheduling heuristic algorithm of three optimization
strategy respectively according to time, cost and time
variants. And in the literature [10] he finally put forward
a basis for the optimization tactics of the time-cost. These
algorithm did not consider the workflow between tasks
control dependence and the task of the relationship of the
optional services for scheduling performance influence.
So they can only get the shortest time (and also the
highest cost) , the cost minimum algorithm (and also the
longest time) and several other simple scheduling scheme.
Although to some extent it solves the time cost
optimization problem of the existing cloud workflow, but
it is not universal.

Based on network diagram decomposition, the
literature [11] used the column generation technology to
provide a method to realize the bounds solving task
scheduling. Jia Yu[12] and Yuan[13] put forward
DTL(Deadline Top Level)algorithm and DBL(Deadline
Bottom Level) algorithm. According to the model of
workflow to hierarchical structure, they averagely
assigned deadline to each layer deadline and eventually
get global approximate optimal solution through the
layers of the activities of local cost optimization. The
literature [14] further put forward the concept of the
string protocol and realized the optimal time to collect
and use by a group of string protocol. The two types of
algorithm focus on the network diagram analysis of
workflow applications and don't take into consideration
specific node service pool. Because the width of the
layered and the cost of the interval optimization is tiny
and it does not consider the task of optional service the
link between algorithm, there is a large space of
improvement in the performance of algorithm.

According to priority algorithm and optimization
algorithm of deadline is insufficient, taking into account
each node of the pool service, the paper presents a new
dynamic scheduling algorithm–Improved Dynamic Cloud
Scheduling Algorithm (IDCSA) in which time and cost
will be bound together. Because of a variety of strategies
in dynamic support and relative protection for acquiring
resource and organization information relative protection,
based on the macro understanding about resources
situation involved with cloud workflow, IDCSA can
guarantee the execution of scheduling of whole cloud
workflow.

A. The Definition of IDCSA’s Parameters
Before IDCSA is used, its parameters, including

workflow critical path, key factor, dynamic factor,
priority factor, must be defined.

AA. Workflow critical path

According to static calculation of the cloud workflow
task instances, we can get the biggest completion time of
the whole workflow instance. Considering the workflow
instances in which there are some uncertain factors, such
as selecting, etc, we use TC={Tj} as the Migration set
composed of the critical path and TT as expected time. So
we give a key factor to key tasks on workflow critical
path. Considering the path of the choosing condition,
critical path may be changed in the implementation
process. Therefore if the condition path is the critical path,
the we need to find time critical path for backup.

AB. Key Factor(KF)

TT
TEKF i

i = (1)

where Ti∈TC;K is a constant value; Ei is the tuning
parameter which regards that the key factor of other
tasks is 0 and means the influence on running time of the
task TC may be changed during the implementation, so
the key factor of the tasks may be changed also. Thus we
can adjust the value of KF and give it to 10 levels.

AC. Dynamic Factor (DF)

DF means the start time of the task execution and the
expectant start time.

TT
TETBTDF iii

i
−−

= (2)

If the value of DF is positive, it shows that the time of
task is very rich. And if he value of DF is negative, it
shows that the task has been postponed. In order to
distinguishing different situation, we can give the value
of DF some levels

-10,-9,…,-2,-1,0,1,2, …,9,10

Through parameter K we can make some adjustment
and processing. For example, it can be defined as follows

 DFi>0.1:10
 0.09< DFi≤0.1:9

 ……
 0 < DFi≤0.01:1

LDFi = 0:0
(3)

-0.01< DFi≤0:-1
 ……

 -0.1< DFi≤-0.09:-9
 DFi≤-0.1:-10

AD. Priority Factor (PF)

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 255

© 2013 ACADEMY PUBLISHER

According to a given task priority(such as service
quality) ,we can define PF of the task. The priority
factor of task Ti is PF whose value depends on priority
level of workflow. We can give the value of PF ten
levels:0,1,2, …,9.

B. The Description of IDCSA
The search procedures of the proposed IDCSA are

detailed as follows.
Step1. Task selection: Initialize a cloud workflow

process; define the value of each parameter; finally
output real-time dynamic ready tasks queue of cloud
workflow (RTQ). In this step, ready tasks queue always
be changed over time and the change is related to
scheduling and resources.

Thus some of these factors need to be recount.
According to relationship to model of cloud workflow, it
should establish the corresponding dynamic ready
distribution queue to the grid workflow instance.

Step2. task scheduling: define
RTQ={T1,T2, … ,Tn},organization resources pooling
OR={OR1,OR2,…,ORm}.The question about organization
resources assigned to the task is actually looking for a
1:m mapping from RTQ to OR and then allocating the
appropriate to the appropriate. During allocation, the
main consideration is that does OR whether meet the
resource requirements, organization role needs and
Organization role needs and service quality.

Step3. Resource Selection: input task Tj and resources
pooling OR={OR1,OR2,…,ORm};output resources queue
ORT meeting task Tj in which the queue is classified.

Step4. Resource allocation: According to various
parameters of the mission and the quality of resources,
resources are allocated dynamically. The algorithm first
takes into consideration the requirements of the quality
because of parameters combination. A quality
requirement factor(RF) can be composed of three
factors(LDF,LKF and PF).

RF=PF*(11-LDF)(LKF+1). (4)

So the distribution thought is as follows: the more
value RFj of task Tj. , the better the quality resources is
allocated from resource queue ORTj.

Step5. Monitoring feedback: Owing to dynamic
characteristics of cloud Resources, in the implementation
process cloud resources organization may exit or join
dynamically in the implementation. So it maybe bring
some of the effects to scheduling. We use the feedback
mechanism to solve the missions which are not
implemented successfully or seriously overtime.

Step6. Check if the terminal condition is satisfied: If
the terminal condition has not been satisfied, go to Step2;
otherwise, the optimization process ends.

When the cloud workflow task is distributed to
implementation for some members within the
organization, according to their own resources scheduling
strategy, the organization begins to schedule processing.
The scheduling process of algorithm is detailed as
Figure 5.

Figure 5. Scheduling Process of Algorithm.

For circumstance of multiple workflow instance
scheduling, there are maybe the same cloud workflow
model of multiple instances or the different cloud
workflow model of multiple instances. Considering
scheduling, cloud workflow engine is multi-tasking. The
different instances are no related and the different tasks
are not linked. So the main consideration of algorithm is
the competition of the resources and the algorithm needs
to deal with different instances of priority in concern with
resource allocation and scheduling

C. Simulation and Performance Evaluation
In order to assess the performance of the algorithm, we

have simulation tests to different DAG workflow
application and compare IDCSA to DTL and DBL.
Simulation environments are as follows: operating system
is Windows 7.The program runs on PC of core 2 duo,
1.8GHZ, 2G RAM. The programming language of
algorithm is java. The DAG of Workflow instance is
automatically generated and the automatic generator of
DAG needs to set up |V| nodes. The service quantity of
each node service pool is a random number of 15 seeds.
The service operating time is a increasing random
number of 10 seeds. The cost is a diminishing random
number of 10 seeds. The expense is the time discrete
strictly decreasing function. All random numbers are
evenly distributed. In the test there are 10 application
nodes which set the values in
{10,20,30,40,50,60,70,80,90,100}. Each application set s
10 different instances of deadline. These instances of
deadline respectively promote an l rate of more than 30
percent increase in contrast to the minimum completion
time FT. Each experiment result of application is all it's
average of the instances. Figure 6 shows cost comparison
of different scheduling algorithms with different tasks
and deadlines.

256 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

(a) 10/30/50 Tasks

(b) 60/80/100 Tasks
Figure 6. Performance improvement of IDCSA under different

deadlines.

Ak is the cost of scheduling algorithm A of which
number of nodes is K. And .IDCSAk is the cost of
scheduling algorithm IDCSA of which number of nodes
is K.K∈{10,20,30,40,50,60,70,80,90,100}.

K

K KK
A A

)AA(
*

10
1I ∑ −

=
IDCS

 (5)

TABLE II.

 PERFORMANCE IMPROVEMENT OF IDCSA

 DTL DBL

1.3*FT 0.049 0.029

1.6*FT 0.063 0.044

1.9*FT 0.083 0.055

2.2*FT 0.114 0.087

2.5*FT 0.136 0.107

2.8*FT 0.149 0.124

3.1*FT 0.171 0.146

3.4*FT 0.192 0.165

3.7*FT 0.219 0.191

4*FT 0.238 0.212

Aiming at the cloud workflow scheduling with the

objective of time-cost optimization, the cloud tasks
scheduling phases and policy are analyzed. The cloud
workflow dynamic scheduling algorithm with multi-
policy is presented, which take consideration of the
characteristics of cloud workflow and grid resources. The
scheduling of cloud workflow tasks can be effectively
implemented by the Key Factor, Dynamic Factor and
Prior Factor.

Ⅵ.CONCLUSION

To summarize, we have presented five-layer model of
cloud workflow system. We discussed the limitations of
existing workflow management systems and proposed
changes that need to be incorporated when moving to
clouds. We also described three cloud workflow
deployment models. Finally, as the focus of this paper,
we present IDCSA which takes consideration of the
characteristics of cloud workflow and cloud resources.

Based on our experience in using cloud services, we
conclude that large applications can certainly benefit by
using cloud resources. The key benefits are in terms of
decreased runtime, on-demand resource provisioning, and
ease of resource management. In the near future,
workflow management matters because much of the
benefits of cloud computing comes from the speed and
ease with which IT resources can be created and put into
production.

ACKNOWLEDGE

This work was supported by the National Natural
Science Foundation of China (No. 40972207), the
National Science and Technology Major Projects (No.
2011ZX05034-005) and the PAPD of Jiangsu Higher
Education Institutions. These supports are gratefully
acknowledged.

REFERENCES

[1] R. Buyya, S. Pandey,and C. Vecchiola, Cloudbus toolkit
for market-oriented cloud computing, in Proceedings of the
1st International Conference on Cloud Computing
(CloudCom 2009,Springer,Germany),Beijing, China,
December 14,2011,pp. 78-84,.

[2] C. Hoffa et al., On the Use of Cloud Computing for
Scientific Workflows, 3rd International Workshop on
Scientific Workflows and Business Workflow Standards in
e-Science (SWBES '09), 2009，pp. 241-245

[3] S.Pandey, W.Voorsluys, M. Rahman, R.Buyya,J.
Dobson,and K. Chiu, “A grid workflow environment for
brain imaging analysis on distributed systems, Con-

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 257

© 2013 ACADEMY PUBLISHER

currency and Computation”: Practice and Experience , 21
(16), pp. 2118-2139 ,2009

[4] J. Yu et al., “A Taxonomy of Workflow Management
Systems for Grid Computing”, Journal of Grid Computing ,
vol. 3, pp. 121-125, 2011

[5] E. Deelman et al., “Pegasus: A framework for mapping
complex scientific workflows onto distributed systems”,
Scientific Programming , vol. 13, pp. 219-237, 2011

[6] J.Yu and R.Buyya, “Scheduling scientific workflow
applications with deadline and budget constraints using
genetic algorithms”, Scientific Programming Journal ,Vol.
14 ,pp.217-230 , 2006

[7] Google appEngine, http://code.google.com/appengine/,
November 2009.

[8] D. Nurmi et al., The Eucalyptus Open-source Cloud-
computing System, IEEE International Symposium on
Cluster Computing and the Grid (CCGrid '09) , Beijing,
China, April,2009,pp. 654-661,

[9] F. Chang,J. Dean,S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M.Burrows,T.Chandra, A.Fikes,and R.E.
Gruber,Bigtable, A distributed storage system for
structured data, Proceedings of the 7th USENIX
Symposium on Operating Systems Design and
Implementation, Berkeley, CA, USENIX Association,2006,
pp.15-17.

[10] S. Ghemawat, H. Gobioff,and S. T. Leung,”The google file
system”, SIGOPS Operating System Review ,
Vol.37 ,pp.29 -43,2007

[11] Akkan C, Drexl A, and Kimms A,”Network
decomposition-based benchmark results for the discrete
time-cost tradeoff problem”. European Journal of
Operational Research. 165(2).pp. 339-358,2009

[12] Jia Yu, Rajkumar Buyya, and Chen Khong Tham. Cost-
based scheduling of workflow applications on utility grids.
The 1st IEEE Int’l Conf on e-Science and Grid Computing,
Melbourne,Australia, IEEE Press. 2007,pp.140-147.

[13] Yuan Ying, Chun LI, and Qian Zhang, “Bottom Level
Based Heuristic for Workflow Scheduling in Grids”,
Chinese Journal of Computer. 31, (2),pp.282-290, 2011

[14] Yuan Ying, Li Xiaoping, and Wang Qian ， ”Cost
Optimization Heuristics for Grid Workflows Scheduling
Based on Serial Reduction”, Journal of Computer
Research and Development. 45 (2),pp.246-253, 2011

Lei Mao is currently a Ph.D candidate at
China University of Mining and Technology,
China. He received his MS degree in
Computer application Technology from
China University of Mining and Technology
in 2004, and his BS degree in Computer
Science from China University of Mining
and Technology in 2000. He is currently a
lecturer at School of Computer Science and

Technology, China University of Mining and Technology. His
research interests include cloud computing, workflow system
and parallel processing et al.

Yongguo Yang, born in 1962, Ph.D. He is a professor at
school of Mineral Resource and Earth Science and a director of
Geo-Information Science Institute in CUMT. His research
interests are mathematical geology and GIS applications. He has
published 3 books, and more than 40 research papers in journals
and international conferences. Now he preside the National
Natural Science Foundation of China (No. 40972207), the
National Science and Technology Major Projects (No.
2011ZX05034-005) and the PAPD of Jiangsu Higher Education
Institutions.

Hui Xu is current a Ph.D .candidate at China University of
Mining and Technology(CUMT), China. She received her MS
degree in Computer Application Technology from CUMT in
2005, and her BS degree in Computer Science from CUMT in
2002. She is currently a lecture at school of Computer Science
and Technology, CUMT. Her research interest is computation
intelligence and coalbed methane et al.

258 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

