
An Extension of Distributed Dynamic
Description Logics for the Representation of

Heterogeneous Mappings

Zhuxiao Wang
School of Control and Computer Engineering, State Key Laboratory of Alternate Electrical Power System with

Renewable Energy Sources, North China Electric Power University, 102206 Beijing, China
Email: wangzx@ncepu.edu.cn

Jing Guo

National Computer Network Emergency Response Technical Team/Coordination Center of China, 100029 Beijing,
China

Email: guojing.research@gmail.com

Fei Chen and Kehe Wu
School of Control and Computer Engineering, North China Electric Power University, 102206 Beijing, China

Email: {chenfei, wkh}@ncepu.edu.cn

Peng Wang
Institute of Information Engineering, Chinese Academy of Sciences, 100195 Beijing, China

Email: wangpeng@iie.ac.cn

Abstract—As a family of dynamic description logics, DDL(X)
is constructed by embracing actions into the description
logic X, where X represents well-studied description logics
ranging from the ALC to the SHOIQ. To efficiently support
automated interoperability between ontology-based
information systems in distributed environments, we have to
design an expressive mapping language to semantically
understand resources from remote and heterogeneous
systems. Distributed Dynamic Description Logics D3L(X) is
a natural generalization of the DDL(X) framework, which is
designed to model the distributed dynamically-changing
knowledge repositories interconnected by semantic
mappings and to accomplish reasoning in distributed,
heterogeneous environments. In this paper, we propose an
extension of Distributed Dynamic Description Logics D3L(X)
and investigate the reasoning mechanisms in D3L(X).

Index Terms—distributed reasoning, dynamic description
logics, distributed dynamic description logics, tableau
algorithms, semantic mappings

I. INTRODUCTION

Description Logics (DLs) are a family of formal
knowledge representation languages which structure the
knowledge about an application domain in terms of
concepts (subsets of individuals in the domain) and roles

(binary relations over the domain). Description Logics
are playing a central role in knowledge representation,
acting as the basis of the well known traditions of Frame-
based systems, Semantic Networks and KL-ONE-like
languages, Object-Oriented representations, Semantic
data models, and Type systems [1-7].

By introducing a dynamic dimension into the
description logics, Shi et al [8][9] propose a family of
Dynamic Description Logics named DDL(X) for
uniformly representing and reasoning about dynamic
application domains [10][11], where X represents well-
studied description logics ranging from the ALC to the
SHOIQ.

To efficiently support automated interoperability
between ontology-based information systems in
distributed environments, the problem of establishing
semantic relations between heterogeneous components
has to be dealt with. In many real cases[12], there is a
compelling need for expressing mappings between the
components of heterogeneous ontologies. For example to
map a concept into an action or vice versa. Thereby, in
this paper, we propose an extension of Distributed
Dynamic Description Logics D3L(X) capable of
capturing the dynamic behavior of the overall system.
D3L(X) is a natural generalization of the DDL(X)
framework [8][9], which is designed to model the
distributed dynamically-changing knowledge repositories
interconnected by semantic mappings and to accomplish
reasoning in distributed, heterogeneous environments.
Afterwards, we study the realizability, executability, and

Manuscript received May 31, 2012; revised June 25, 2012; accepted
XX X, 2012.

Copyright credit, project number, corresponding author: Zhuxiao
Wang.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 243

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.1.243-250

projection problems on D3L(X)-actions. It is
demonstrated that the three primary reasoning tasks on
actions can be reduced to the satisfiability problem on
formulas.

Our contributions in this paper are as follows: (i) we
define the semantics and syntax of D3L(X) to formally
capture the dynamic behavior of the overall system; (ii)
use actions as modal operators in the construction of
formulas, so that many reasoning tasks on actions can be
reduced to the satisfiability problem of formulas and
therefore are still decidable; and finally, (iii) analyze
semantical mechanisms allowing for propagating the
dynamic knowledge, i.e. how dynamic knowledge
propagates through local reasoning engines.

In the following sections, we firstly present the syntax
and semantics of Distributed Dynamic Description
Logics D3L(X) in Section 2 and Section 3 respectively.
We recall the basic definitions of D3L(X), and we
provide an extension of D3L(X) to represent
heterogeneous mappings. In Section 4, it is demonstrated
that three primary reasoning tasks on actions can be
reduced to the satisfiability problem on formulas.
Furthermore, in Section 4 we study the main properties of
the proposed D3L(X). Finally, we summarize the paper in
Section 5.

II. DISTRIBUTED DYNAMIC DESCRIPTION LOGICS: THE
SYNTAX

In this section, we present the basic definitions of the
Distributed Dynamic Description Logics D3L(X)
formalism. From a theoretical perspective, the D3L(X) is
based on the long tradition of logics for distributed
systems, and based on extensions to Dynamic Description
Logics introduced in [8][9]. If we do not consider the
dynamic dimension of D3L(X), D3L(X) can be reduced
to Distributed Description Logics [13][14]. Let I be a
nonempty set of indexes, and DDLi be dynamic
description logics for every i∈I. A sequence D3L =
{DDLi}i∈I is then called a distributed dynamic description
logic. We label each description C in DDLi with its index
i (written as i:C) to indicate that some description C
belongs to the language of the dynamic description logic
DDLi. Collections of bridge rules are used to express
relations between the components of a Distributed
Dynamic Description logic. In the following we use C
and G as placeholders for concepts and α and β as
placeholders for actions.

Definition 1. A bridge rule from i to j is an expression
defined as follows:

i:C ⊆⎯⎯→ j:G concept-into-concept bridge rule (1)

i:C ⊇⎯⎯→ j:G concept-onto-concept bridge rule (2)

i:α ⊆⎯⎯→ j:β action-into-action bridge rule (3)

i:α ⊇⎯⎯→ j:β action-onto-action bridge rule (4)

i:C ⊆⎯⎯→ j:α concept-into-action bridge rule (5)

i:C ⊇⎯⎯→ j:α concept-onto-action bridge rule (6)

i:α ⊆⎯⎯→ j:C action-into-concept bridge rule (7)

i:α ⊇⎯⎯→ j:C action-onto-concept bridge rule. (8)

where C and G are concepts of DDLi and DDLj
respectively, and α and β are actions of DDLi and
DDLj respectively. Bridge rules (1)–(4) are called
homogeneous bridge rules, and bridge rules (5)–(8) are
called heterogeneous bridge rules.

Let p be an individual of DDLi and q individuals of
DDLj. An individual correspondence is an expression of
the form

i:p ⎯⎯→ j:q individual correspondence. (9)

Formulas of D3L(X) are formed according to the
following syntax rule:

ϕ, ϕ’ ::= C(p) | R(p, q) | <π> ϕ | [π] ϕ | ¬ϕ
 | ϕ ∨ ϕ’ | ϕ ∧ ϕ’

where p, q ∈ NI (the set of individual names), C is a
concept, R is a role, and π is an action. Formulas of the
form C(p), R(p, q), <π> ϕ, [π] ϕ, ¬ϕ, ϕ∨ϕ’ and ϕ∧ϕ’
are respectively called concept assertion, role assertion,
diamond assertion, box assertion, negation formula,
disjunction formula, and conjunction formula.

Actions of D3L(X) are formed according to the
following syntax rule:

π, π＇::= α | ϕ? | π⋃π’ | π⋂π’ | π;π’ |π*

where α∈ NA, and ϕ is a formula. Actions of the form α,
ϕ?, π⋃π’, π⋂π’, π;π’ and π* are respectively
called atomic action, test action, choice action,
conjunction action, sequence action and iteration actions.

A distributed TBox (DTBox) DT = <{Ti}i ∈ I , P >
consists of a collection of T-boxes {Ti}i∈I and a set P =
{P ij}i≠j∈I of concept bridge rules. A distributed ABox
(DABox) DA = <{Ai}i∈I, C> consists of a collection of A-
boxes {Ai}i ∈ I together with a set C = {Cij}i ≠ j ∈ I of
individual correspondences. A distributed ActBox
(DActBox) DAct = <{Acti}i∈I, H> consists of a collection
of ActBoxes {Acti}i∈I and a set H= {Hij}i≠j∈I of action
bridge rules or heterogeneous bridge rules. A distributed
dynamic knowledge base is a triple K = (DT, DA, DAct).

III. DISTRIBUTED DYNAMIC DESCRIPTION LOGICS: THE
SEMANTICS

The semantics of a Distributed Dynamic Knowledge
Base (DDKB) is formally defined as follows.

Definition 2. A distributed model M of a DDKB K =
(DT, DA, DAct) is a tuple < {Mi = (Wi, Ti, iIΔ , Ii) }i∈I,
{rij}i≠j∈I, {stateij}i≠j∈I, {scij}i≠j∈I, {csij}i≠j∈I >, where,

244 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

iI

iIΔ

Figure 1. Concept-Action relation.

Each Mi is a local model for the corresponding DDLi
on local domains iIΔ ;

Wi is a set of states;
Ti : NA→2W×W is a function mapping action names into

binary relations on Wi;
iIΔ is a non-empty domain;

Ii is a function which associates with each state w∈Wi a
description logic interpretation Ii(w) =< iIΔ , • i ()I w >,
where the mapping • i ()I w assigns each concept to a subset
of iIΔ , each role to a subset of iIΔ × iIΔ , and each
individual to an element of iIΔ .

A domain relation rij from iIΔ to jIΔ is defined as a
subset of ji IIΔ ×Δ . Given a point iId ∈Δ and a subset

iID ⊆ Δ , we set

() { ' | (, ') }jI
ij ijr d d d d r= ∈Δ ∈ , () ()ij ijd D

r D r d
∈

=U .

 (10)

A state relation stateij from Wi to Wj is defined as a
subset of Wi×Wj. Given a point w∈Wi and a subset Ti(α)
⊆ (Wi×Wi), we set

 () { ' | (, ') }ij j ijstate w w W w w state= ∈ ∈ , (11)

(, ') ()
(()) () (')

i
ij i ij ijw w T

state T state w state w
α

α
∈

= ×U . (12)

A concept-action relation csij from iIΔ to Wj is a subset
of iIΔ ×Wj×Wj. A action-concept relation scij from Wi to

jIΔ is a subset of Wi×Wi× jIΔ .
We use csij(d) to denote {< w, w’>∈Wj×Wj | <d, w,

w’>∈csij }; for any subset D of iIΔ , we use csij(D) to
denote ()ijd D

cs d
∈U . We use scij(<w, w’>) to denote

{ d∈ jIΔ |< w, w’, d>∈scij}; for any subset S of Wi×Wi,
we use scij(S) to denote

, '
(, ')ijw w S

sc w w
< >∈

< >U .
A concept-action relation csij represents a possible way

of mapping elements of iIΔ into pairs of states in Wj, seen
from j’s perspective. For instance, iIΔ and Wj are the
representation of a web service system in which

customers are able to buy/return books online with credit
cards (see Fig. 1). A concept-action relation csij could be
the function mapping bill numbers into the corresponding
buyBook actions. For instance, by setting
csij(BillNumberOfKingLear iI) = {(w, w’)∈Tj(buyBook)}
we can represent the fact that the bill number of KingLear
is associated with pairs of states (w, w’) such that the
execution of atomic action buyBook is interpreted as
binary relations on states. Vice-versa a action-concept
relation scij represents a possible way of mapping a pair
of Wi into the corresponding element in jIΔ .

With respect to any state w ∈ Wi, a distributed model
M is said to d-satisfy (written (M,w)⊨d) concept bridge
rules and individual correspondences according to the
following clauses:

(M,w)⊨di:C ⊆⎯⎯→j:G iff ()()iI w
ijr C ⊆⋂ (')

' ()
j

ij

I w
w state w G∈ ,

concept into-bridge rule

(M,w)⊨di:C ⊇⎯⎯→j:G iff ()()iI w
ijr C ⊇⋃ (')

' ()
j

ij

I w
w state w G∈ ,

 concept onto-bridge rule

(M,w)⊨di:p ⎯⎯→ j:q iff ⋃ (')
' ()

j

ij

I w
w state w q∈

()()iI w
ijr p⊆ . individual correspondence

Secondly, the satisfaction of an action bridge rule br in
M, written as M ⊨d br, is defined as follows:

M ⊨d i:α ⊆⎯⎯→ j:β iff (()) ()ij i jstate T Tα β⊆ ,
action into-bridge rule

M ⊨d i:α ⊇⎯⎯→ j:β iff (()) ()ij i jstate T Tα β⊇ .
action onto-bridge rule

Thirdly, the concept-action relation csij satisfies a
concept to action bridge rule w.r.t., Mi and Mj, in symbols
<Mi, csij, Mj> ⊨ br, according with the following

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 245

© 2013 ACADEMY PUBLISHER

definition:

<Mi, csij, Mj> ⊨d i:C ⊆⎯⎯→ j:α iff csij ()iIC ⊆ Tj(α)

<Mi, csij, Mj> ⊨d i:C ⊇⎯⎯→ j:α iff csij ()iIC ⊇ Tj(α)

where C is a concept expression of i and α an action
expression of j.

Fourthly, the action-concept relation scij satisfies a
action to concept bridge rule w.r.t., Mi and Mj, in symbols
<Mi, scij, Mj> ⊨ br, according with the following
definition:

<Mi, scij, Mj> ⊨d i:α ⊆⎯⎯→ j:C iff scij(Ti(α))⊆ iIC

<Mi, scij, Mj> ⊨d i:α ⊇⎯⎯→ j:C iff scij(Ti(α))⊇ iIC

where C is a concept expression of j and α an action
expression of i.

The M ⊨d is standard for formulas of the component
Dynamic Description Logics [9]. With respect to any
state w ∈ Wi, the truth-relation (Mi,w) ⊨ ϕ for a formula
i:ϕ is defined inductively as follows:

(Mi,w) ⊨i:C(p) iff p ()iI w ∈ C ()iI w ;
(Mi,w) ⊨i:R(p, q) iff (p ()iI w , q ()iI w) ∈ R ()iI w ;
(Mi,w) ⊨i:<π>ϕ iff ∃w'∈Wi.((w, w')∈Ti(π)

and (Mi,w’) ⊨ i:ϕ);
(Mi,w) ⊨i: [π]ϕ iff ∀w'∈Wi.((w, w')∈Ti(π)

implies (Mi,w’) ⊨ i:ϕ);
(Mi,w)⊨i:¬ϕ iff it is not the case that (Mi,w)⊨ i:ϕ;
(Mi,w)⊨i:ϕ∨ ψ iff (Mi,w) ⊨ i:ϕ or (Mi,w) ⊨ i:ψ;
(Mi,w)⊨i:ϕ∧ ψ iff (Mi,w) ⊨ i:ϕ and (Mi,w) ⊨ i:ψ;
Finally, each action i:π will be interpreted as a binary

relation Ti(π) ⊆ Wi×Wi according to the following
inductive definitions:

Ti(ϕ?) = {(w, w) | w ∈ Wi and (Mi, w) ⊨ i:ϕ };
Ti(π⋃π’) = Ti(π) ⋃Ti(π’);
Ti(π⋂π’) = Ti(π) ⋂Ti(π’);
Ti(π;π’) = {(w,w’) | ׌u.(w, u) ∈ Ti(π)
 and (u, w’) ∈Ti(π’) };
Ti(π*) = reflexive and transitive closure of Ti(π).
For i:α and i:β (possibly complex) actions, i:α⊑β

is called a general action inclusion, and a finite set of
general action inclusions is called a ActBoxes. An
interpretation Ti satisfies a general action inclusion i:α⊑
β if Ti(α) ⊆ Ti(β).

A distributed model M satisfies the elements of a
DTBox DT according to the following clauses:

1. M ⊨ d i: A⊑B, if Mi⊨ A⊑B
2. M ⊨ d Ti, if M ⊨ d i: A⊑B for all A⊑B in Ti

3. M ⊨ d P ij, if M satisfies all the homogeneous
concept bridge rules in P ij

4. M ⊨ d DT, if for every i, j ∈ I, M ⊨ d Ti and M ⊨ d
Pij

As usual, DT ⊨d i:C⊑D means that for every
distributed model M, M⊨dDT implies M⊨d i:C⊑D.

Concerning the assertional part, a distributed model M
is said to satisfy the elements of a distributed ABox DA if

1. Mi ⊨ ϕ for all formulas ϕ in Ai

2. M ⊨ d i:p ⎯⎯→ j:q, if

⋃ (') ()
' () ()j i

ij

I w I w
w state w ijq r p∈ ⊆

3. M ⊨ d DA, if for every i,j ∈ I, M ⊨ d Ai and M ⊨ d
Cij

As usual, DA ⊨d i:ϕ if for every M, M⊨ d DA implies
M ⊨d i:ϕ.

Finally, a distributed model M satisfies the elements of
a distributed ActBox DAct according to the following
clauses:

1. M ⊨ d i:α⊑β, if Mi⊨α⊑β
2. M ⊨ d Acti, if M ⊨ d i:α⊑β for all α⊑β in Acti

3. M ⊨ d Hij, if
-M satisfies all the action bridge rules in Hij
-<Mi, csij, Mj> satisfies all the concept-to-action bridge

rules in Hij
-<Mi, scij, Mj> satisfies all the action-to-concept bridge

rules in Hij
4. M ⊨ d DAct, if for every i, j ∈ I, M ⊨ d Acti and M

⊨ d Hij
As usual, DAct ⊨d i:α⊑β means that for every

distributed model M, M⊨d DAct implies M⊨d i:α⊑β.

IV. REASONING TASKS FOR D3L(X)

Let K = (DT, DA, DAct) be a distributed dynamic
knowledge base of D3L(X), where DT, DA, and DAct is a
distributed TBox, a distributed ABox, and a distributed
ActBox respectively. Based on such a knowledge base we
investigate reasoning tasks for D3L(X).

The basic reasoning task for D3L(X) is to decide the
satisfiability of formulas.

Definition 3. A formula i:ϕ is satisfiable w.r.t. a
distributed TBox DT and a distributed ActBox DAct if
and only if there exists a model M = < {Mi = (Wi, Ti, iIΔ ,
Ii) }i∈I, {rij}i≠j∈I, {stateij}i≠j∈I, {scij}i≠j∈I, {csij}i≠j∈I > and
a state w ∈Wi such that M ⊨d DT, M ⊨d DAct, and (Mi, w)
⊨ i:ϕ.

What distinguishes D3L(X) is the power for reasoning
about actions. In this paper we study the realizability,
executability, and projection problems on D3L(X)-
actions.

Given an action i:π, we firstly want to known whether
it is realizable, i.e., whether it makes sense with respect to
the knowledge specified by a distributed TBox DT and a

246 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

Figure 2. Graphical intuition of action subsumption propagation in D3L(X).

distributed ActBox DAct. With D3L(X), the realizability
of actions is formally defined as follows:

Definition 4. An action i: π is realizable w.r.t. a
distributed TBox DT and a distributed ActBox DAct if
and only if there exists a model M = < {Mi = (Wi, Ti, iIΔ ,
Ii) }i∈I, {rij}i≠j∈I, {stateij}i≠j∈I, {scij}i≠j∈I, {csij}i≠j∈I > and
two states w, w’∈Wi such that M ⊨d DT, M ⊨d DAct, and
(w, w’) ∈ Ti(π).

According to the definition 4, the following theorem is
obvious:

Theorem 1. An action i: π is realizable w.r.t. a
distributed TBox DT and a distributed ActBox DAct if
and only if the formula i:<π> true is satisfiable w.r.t. DT
and DAct.

Secondly, if an action is realizable, we want to know
whether it is executable on the state described by a given
ABox [15][16], i.e., whether the action can be performed
successfully starting from a given state.

Letα1≡(P1,E1),..., αn≡(Pn,En) be the definitions of
all the atomic actions which are occurring in i:π and are
defined w.r.t. DAct. Let ∏ be the formula (Conj(P1) →<
α1> true) ∧…∧ (Conj(Pn) →<αn> true), where Conj(Pi)
represents the conjunction of all the elements of the set Pi.
Then the executability of actions can be checked
according to the following theorem:

Theorem 2. An action i:π is executable on states
described by an ABox Ai if and only if the following
formula is valid w.r.t. DT and DAct:

[(α1⋃…⋃αn)*]∏→(Conj(Ai)→ i:<π>true)

Thirdly, if an action is executable, we than want to
know whether applying it achieves the desired effect, i.e.,
whether a formula that we want to make true really holds
after executing the action. This kind of inference problem
is called projection problem [15][16].

Theorem 3. i:ψ is a consequence of applying i:π on
states described by Ai if and only if the formula Conj(Ai)
→ i:[π]ψ is valid w.r.t. DT and DAct.

Let us see now how action bridge rules affect the
forward propagation of knowledge in D3L. The basic
idea preceding that result is that combination of action
onto- and into-bridge rules allows for directional

propagating the action knowledge across knowledge
repositories in form of DDL(X) action subsumption
axioms [8][9].

Theorem 4 (Sequence action propagation). If Hij
contains i:α ⊆⎯⎯→ j:β and i:π ⊆⎯⎯→ j:ρ, then:

 DAct ⊨d i:α;π⇒DAct ⊨d j:β;ρ (13)

where α, π, β, and ρ are actions.
Theorem 5 (Simple action subsumption

propagation). Combination of action onto- and into-
bridge rules allows to propagate action subsumptions
across knowledge repositories (see Fig. 2). Formally, if
Hij contains i:α ⊇⎯⎯→ j:βand i:π ⊆⎯⎯→ j:ρ, then:

DAct ⊨d i: α⊑π ⇒ DAct ⊨d j: β⊑ρ . (14)

Example 1. Let

- DAct ⊨d i:collectData ⊇⎯⎯→ j:buyBook, and

- DAct ⊨d i:collectData ⊆⎯⎯→ j:shopping.
Theorem 2 allows to infer that a buyBook action is a

shopping action in Wj, namely DAct ⊨d j : buyBook ⊑
shopping, from the fact that DAct ⊨d i : collectData ⊑
collectData.

Theorem 6 (Generalized action subsumption
propagation). If Hij contains i:π ⊇⎯⎯→ j:ρ and i:α

k
⊆⎯⎯→ j:βk for i ≤ k ≤ n (n≥0), then:

DAct ⊨d i:π⊑⋃ 1
n
k= αk ⇒ DAct ⊨d j:ρ⊑⋃ 1

n
k= βk. (15)

Proof. Let’s show that, for any distributed model M
that satisfies Hij, if Ti(π)ك Ti(⋃ 1

n
k= αk), then Tj(ρ) ك

Tj(⋃ 1
n
k= β k). Indeed, Tj(ρ ك (stateij(Ti(π ك ((

stateij(Ti(⋃ 1
n
k= αk)) ൌ⋃ 1

n
k= stateij(Ti(αk)) ك⋃ 1

n
k= Tj(βk)ൌ

Tj(⋃ 1
n
k= βk).

Theorem 7 (Simple concept subsumption
propagation). Combination of concept onto- and into-
bridge rules allows to propagate subsumptions across
knowledge repositories. Formally, if Pij contains
i:A ⊆⎯⎯→ j:F and i:B ⊇⎯⎯→ j:G, then:

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 247

© 2013 ACADEMY PUBLISHER

DDLi DDLj
A

B β

α

isA isA

DT = Ti , T j , P ij

<DT, DAct>

j(α) csij(AI i) csij(BIi) j(β)

iIΔ Wj

DAct = Act i, Act j , H ij

Figure 3. Graphical intuition of heterogeneous action subsumption propagation.

 DT ⊨d i:B⊑A ⇒ DT ⊨d j: G⊑F . (16)

Theorem 8 (Generalized concept subsumption
propagation). If Pij contains i:B ⊇⎯⎯→ j:G and
i:Ak

⊆⎯⎯→ j:Fk for i ≤ k ≤ n (n≥0), then:

 DT ⊨d i:B⊑⊔ 1
n
k= Ak ⇒ DT ⊨d j:G⊑⊔ 1

n
k= Fk . (17)

Theorem 9 (Concept into/onto action subsumption
propagation). If Hij contains i:A ⊇⎯⎯→ j: α and

i:B ⊆⎯⎯→ j:β(see Fig. 3), then:

 M ⊨d i:A⊑B ⇒ M ⊨d j:α⊑β . (18)

Theorem 10 (Generalized concept into/onto action
subsumption propagation). If Hij contains i:A ⊇⎯⎯→ j:
α and i:Bk

⊆⎯⎯→ j:βk for i ≤ k ≤ n (n≥0), then:

 M⊨d i:A⊑⊔ 1
n
k= Bk ⇒ M ⊨d j:α⊑⋃ 1

n
k= βk . (19)

Theorem 11 (Action into/onto concept subsumption
propagation). If Hij contains i:α ⊇⎯⎯→ j:A and i:β

⊆⎯⎯→ j:Hk for i ≤ k ≤ n (n≥0), then:

 M ⊨d i:α⊑β ⇒ M ⊨d j: A ⊑⊔ 1
n
k= Hk (20)

 M ⊨d i:α⊑β ⇒ M ⊨d j: A ⊑⊓ 1
n
k= Hk . (21)

where α, and β are actions and A and Hk (1 ≤ k ≤ n) are
concepts.

The theorems 4-11 are important as they constitute the
main reasoning step of the tableau algorithm proposed for
D3L(X). Given the limited space available, in this article
I will not delve into the details of the proofs of the above
properties.

V. CONCLUSIONS

The last decade of basic research in the area of
Dynamic Description Logics DDL(X) has created a stable
theory, efficient inference procedures, and has
demonstrated a wide applicability of DDL(X) to dynamic

knowledge representation and reasoning. Distributed
Dynamic Description Logic D3L(X) is a natural
generalization of the DDL(X) framework designed to
formalize multiple ontologies interconnected by semantic
mappings. State of the art languages D3L(X) for ontology
mapping enable to express semantic relations between
homogeneous components of different ontology-based
information systems, namely they allow to map concepts
into concepts, individuals into individuals, and actions
into actions. In many real cases, however, we have to
design an expressive mapping language to semantically
understand resources from remote and heterogeneous
systems. The approach proposed in this paper is to
provide an extension of Distributed Dynamic Description
Logics D3L(X), which is composed of a set of stand
alone DDL(X) pairwise interrelated with each other via
collection of homogeneous/heterogeneous bridge rules.
Furthermore, we study the realizability, executability, and
projection problems on D3L(X)-actions. It is
demonstrated that the three primary reasoning tasks on
actions can be reduced to the satisfiability problem on
formulas.

The paper represents a work in progress. Thus it has
many open issues for the future research directions. In
recent years Shi et al. developed a tableau algorithm for
deciding the satisfiability of DDL(X)-formulas.
Furthermore, it is also a valuable and interesting work to
develop a tableau-based distributed reasoning procedure
for providing the capability of global reasoning in D3L(X)
and decomposing large reasoning tasks to sub-tasks that
could be concurrently processed by different local
reasoning engines. Based on this algorithm, reasoning
tasks on actions, such as the realizability problem, the
executability problem and the projection problem, can all
be effectively carried out.

ACKNOWLEDGMENT

This work is supported by the Fundamental Research
Funds for the Central Universities (No.11QG13 and
No.12ZP09) and the National Natural Science Foundation
of China (No.61105052 and No.71101048).

REFERENCES

248 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

[1] Bonatti, P., Lutz, C., Wolter, F.: Description logics with
circumscription. In: Proc of the 10th Int Conf on Principles
of Knowledge Representation and Reasoning, pp. 400--410.
AAAI Press, Menlo Park (2006).

[2] Jiang, Y., Wang, J., Tang, Y., Deng, P.: Semantics and
reasoning of description logic μALCQO. Journal of
Software, vol. 20, pp. 491--504. (2009)

[3] Baader, F., Calvanese, D., McGuinness, D., Nardi, D.,
Patel-Schneider, P.: The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge
University Press, Cambridge (2002).

[4] Horrocks, I.: DAML+OIL: A description logic for the
semantic web. Bull of the IEEE Computer Society
Technical Committee on Data Engineering, vol. 25, pp. 4--
9. (2002)

[5] Horrocks, I., Patel-Schneider, P.F., Harmelen, F.V.: From
SHIQ and RDF to OWL: the making of a web ontology
language. Journal of Web Semantics, vol. 1, pp. 7--26.
(2003)

[6] Ma Yue, Sui YueFei, Cao CunGen: The correspondence
between the concepts in description logics for contexts and
formal concept analysis. Science china-information
sciences, vol. 55, no. 5, pp. 1106--1122. (2012)

[7] Bobillo Fernando, Straccia Umberto: Generalized fuzzy
rough description logics. Information sciences, vol. 189, pp.
43--62. (2012)

[8] Shi, Z., Dong, M., Jiang, Y., Zhang, H.: A logical
foundation for the semantic web. Science in China, Ser. F,
vol. 48, pp. 161--178. (2005)

[9] Chang, L., Shi, Z., Gu, T., Zhao, L.: A Family of Dynamic
Description Logics for Representing and Reasoning About
Action. Journal of automated reasoning, vol. 49, no. 1, pp.
1--52. (2010)

[10] Wang, Z., Yang, K., Shi, Z.: Failure Diagnosis of
Internetware Systems Using Dynamic Description Logic. J.
Softw. China, vol. 21, pp. 248--260. (2010)

[11] Chen, L., Hu, H., Shi, Z.: Reasoning about Web Services
with Local Closed World Assumption. In: Proc of Int Conf
Web Intelligence, pp. 367--370. IEEE press, New York
(2009)

[12] Jung, JJ.: Reusing ontology mappings for query routing in
semantic peer-to-peer environment. Information Sciences,
vol. 180, no. 17, pp.3248--3257. (2010)

[13] Borgida, A., Serafini, L.: Distributed description logics:
assimilating information from peer sources. Journal of
Data Semantics, vol. 2800, pp. 153--184. (2003)

[14] Kutz, O., Lutz, C., Wolter, F.: Epsilon-connections of
abstract description systems. Artificial Intelligence, vol.
156, pp. 1--73. (2004)

[15] Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.:
Integrating description logics and action formalisms: first
results. In Proceedings of the 12th National Conference on
Artificial Intelligence (AAAI’2005), Pittsburgh, PA, USA.
(2005)

[16] Reiter, R.: Knowledge in action: logical foundations for
specifying and implementing dynamical systems. MIT
Press. (2001)

Zhuxiao Wang, born in Sichuan, China,
in 1981, is a faculty member in the
School of Control and Computer
Engineering, State Key Laboratory of
Alternate Electrical Power System with
Renewable Energy Sources, North
China Electric Power University, China.
He got his Ph.D. degree from the
Institute of Computing Technology, the
Chinese Academy of Sciences in 2010.

His current research interests include knowledge representation
and reasoning, self-healing systems, distributed computing. He
is a member of Chinese Society for Electrical Engineering. E-
mail: wangzx@ncepu.edu.cn.

Jing Guo, born in Tianjin, China, in
1983, is an engineer in National
Computer network Emergency Response
technical Team/Coordination Center of
China. She got her Ph.D. degree from
the Tsinghua University in 2011. Her
current research interests include
distributed computing, information and
network security. E-mail:
guojing.research@gmail.com.

Fei Chen, born in Beijing, China, in 1978,
and got the master degree of Engineering
from the North China Electric Power
University in 2003, majored in computer
science and technology.

She is a lecturer in the Department of
Computer Science of the School of Control
and Computer Engineering in the North
China Electric Power University, China.
Her current research interests include data

mining, decision support system. E-mail:
chenfei@ncepu.edu.cn.

Kehe Wu, born in Jiangsu, China, in
1962, received his Ph.D. from North
China Electric Power University. He is
now the director of Beijing Engineering
Research Center of Electric Information
Technology and the Deputy Dean of
Control and Computer Engineering
School. His current research interests
include electric power information
security, massive data processing, and

intelligent software technology.
He has worked in the electric power information systems

arena for over 20 years. His experience spans the full systems
life cycle. He is a coauthor of a paper entitled "Research and
Design of Runtime Software Monitoring and Control Model" in
the Proceedings of the 2nd International Conference on
Software Technology and Engineering in Puerto Rico, United
States of America, 2010. He holds several well recognized
professional security related certifications. E-mail:
wkh@ncepu.edu.cn.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 249

© 2013 ACADEMY PUBLISHER

Peng Wang, born in Shandong, China,
in 1980, is a faculty member in Institute
of Information Engineering, Chinese
Academy of Sciences, China. He got his
Ph.D. degree from the Institute of
Computing Technology, the Chinese
Academy of Sciences in 2011. His
current research interests include cloud
computing, massive data processing,
programming models, knowledge

representation and reasoning. E-mail: wangpeng@iie.ac.cn.

250 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

