
Anything is Service: Using LIR-OSGi and R2-
OSGi to Construct Ubiquitous Service Network

Jinzhao Liu
 College of Computer Science, Beijing University of Technology, Beijing, China

Email: innomentats@gmail.com

Dan Wang
College of Computer Science, Beijing University of Technology, Beijing, China

Email: wangdan@bjut.edu.cn

Yu Chen
Department of Computer Science & Technology, Tsinghua University, China

Research Institute of Information Technology, Key Laboratory of Pervasive Computing,Ministry of Education,
Tsinghua University, China
Email: chyyuu@gmail.com

Yongqiang Lv

Department of Computer Science & Technology, Tsinghua University, China
Research Institute of Information Technology, Key Laboratory of Pervasive Computing,Ministry of Education,

Tsinghua University, China
Email: luyq@tsinghua.edu.cn

Abstract—As an emerging portable service platform, OSGi
is now taking a more and more important role in
constructing a ubiquitous computing system. Since
ubiquitous computing system is always a distributed system,
people may face many challenges such as heterogeneous
devices communication and vulnerable wireless network.
This paper proposes a solution for constructing such a
system based on LIR-OSGi and R2-OSGi. With the help of
both frameworks, the system can treat any devices as
service as well as cope with network exceptions
automatically and transparently. This paper also introduces
a demo system of smart house to prove our solution for the
ease of use. Through this solution, any type of network
devices can be connected to the network while the
communication between devices remain robust.

Index Terms—Ubiquitous Computing, OSGi, Middleware,
LIR-OSGi, R2-OSGi

I. INTRODUCTION

With the growth in the number and types of network
devices, people are increasingly concerning about the
interconnection between them. Mobile devices, such as
laptops, PDAs, smart phones and Tablet PCs, which
provide people with ubiquitous information services like
Internet, Email, Social Network and LBS (Location
Based Service), are most currently used among network
devices. At the same time, these devices provide
different functions as well. For example, notebooks
provide powerful computing capability and input capacity
with the help of keyboard; smart phones provide mobile
network access, GPS and a large number of sensors [1],
which screen are so small to enter words; Tablet PCs

provide touch screen with considerable size which makes
them suitable for applications with more touch. Through
the interconnection among these devices, one can utilize
the functions of others to make better use of different
devices. For example, computers can control the smart
phone to send messages or obtain location information;
smart phones can take advantage of the computing power
of notebook computers to complete complex calculations;
people are able to edit emails on a Tablet PC (Tablet PCs
screen size is usually far bigger than the smart phones,
therefore it is more suitable for text editing), and then
sent them through mobile network.

However, the interconnection and communication of
devices becomes complicated due to the heterogeneity of
the devices in ubiquitous computing network, such as the
different hardware architectures, operation systems and
programming languages [2]. Notebook is usually the X-
86 architecture, but smart phone and Tablet PC are often
based on the ARM architecture. Moreover, operation
systems are often different such like Windows, Android
and IOS, so developers have to write a lot of additional
code to handle the communication between different
platforms, which leading to increase application burden.
Web-Service based Service-Oriented Architecture (SOA)
is a good solution to solve the problem[3-4]. By
encapsulating capabilities of device into service,
applications with this feature can use any functions of
other devices conveniently by accessing to the
corresponding service.

SOA provides Interface definition specifications which
are independent of hardware platform, operation system
as well as programming language, so it can distributed

236 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.1.236-242

deploy, composite and apply loose coupled coarse
granularity components through network based on
demand. Different device functions can be encapsulated
into services by language independent interface
specifications. Meanwhile, complex functions can be
completed by compositing diverse services.

Although SOA technology based on Web-Service has a
good performance, it is still insufficient for ubiquitous
computing environment [5]. In a ubiquitous computing
environment, the devices are often resource-constrained;
CPU performance and memory capacity are still inferior
to PC. Therefore, we need a SOA framework which is
more suitable for ubiquitous computing environments,
which should take up less system resources and can
provide better performance. Meanwhile, a well-designed
SOA framework should hide network communication
details to the upper layer and provide a transparent
remote service invocation mechanism for the upper layer
so that the upper layer application can transparently get
access to remote services.

Moreover, in ubiquitous computing environment,
devices are often interconnected through wireless
network, which is unstable for weak wireless signal and
interference by external source. At the same time, there
are a large number of weak computing power devices
with limited resources, which makes them incapable of
handling excessively complex network exceptions [6].
For this reason, upper layer applications may crash and
then threaten the normal operation of the system. In
general, network-based applications deal with these
exception at the application layer, this means developers
need to consider not only software functionalities, but
also network exception, which undoubtedly brings an
additional work burden for the software development
work. So we can complete this part of work in
middleware, eliminating the need for the upper layer
application to care. Exception handling code in network
middleware is very easy to reuse, more stable and robust,
in contrast, the code in application layer software is
difficult to reuse.

We designed and implemented platform R2-OSGi [7]
and LIR-OSGi[8] which are Service-Oriented
middleware platform. In addition, a ubiquitous computing
network oriented device interconnect platform, is
completed, which is able to get transparently access and
use service between diverse devices through
encapsulating different functions into platform-
independent and language-independent services. Our
platform also provides automatic network anomalies
handling capabilities which make the middleware system
automatically handle the anomalies without application
layers help when anomalies occur.

R2-OSGi is an improved platform for R-OSGi [9] by
increasing the functions of network anomalies handling.
It increases the detection of network anomalies, data
backup on the network outages and data retransmission
function on network recovery, thus can automatically
complete the network exception handling without the
need for user intervention.

R2-OSGi implemented a network anomaly detection

module based on the heartbeat mechanism. By sending
the heartbeat packet continuously, R2-OSGi can timely
detect abnormal situation of the network layer. By
loading the appropriate strategy, R2-OSGi can complete
temporary processing on the anomaly data and actively
try to restore the network connection. R2-OSGi takes
good use of the dynamic and modular features of OSGi
and describes the strategy as an OSGi Bundle, so that it
can dynamically load and unload policy module.

LIR-OSGi is a distributed cross-language expansion
based on OSGi, which remain s characteristics such as
dynamic, modular and good performance, with
distributed service invocation support and language-
independent service invocation support added. This
makes OSGi to be better used in the ubiquitous
computing environment [10].

We designed OIDL (OSGi Interface Definition
Language) which is defined for describing the service
interface through a language-independent way by LIR-
OSGi to implement service call in different programming
environments [11]. On the platform, all the devices
encapsulate their function into independent service,
describe these interfaces by OIDL and then make them
published [12]. These services are globally visible, any
device can obtain and use the services to get interconnect
and interoperate with each other, thus logically all
equipment will be integrated into an overall.

Meanwhile, ODEX (OSGi Data Exchange) is defined
by LIR-OSGi to complete data exchange between
different devices. ODEX is platform-independent and
programming language-independent data format based on
JSON[13] therefore it is easy for user to read, lightweight
and with highly efficient of parsing performance. JSON is
more lightweight, carries the same amount of information
by less space occupied and with better parsing
performance compared with XML [14]. When it comes to
the binary data, JSON is better to read, at the same time,
has a better cross-platform performance.

The rest of this paper organizes as follows: The second
section describes some relevant background including
OSGI and R-OSGI, the third section presents the system
architecture, the fourth section presents a real system
based on our implementation, and the last is a summary.

II．OSGI AND R-OSGI OVERVIEW

OSGi is a dynamic module management system for
java platform. It provides a complete and dynamic
component model. Module and component, which is
called Bundle in OSGi, can be installed, uninstalled,
started and stopped dynamically without a reboot of the
whole system. OSGi is a SOA-based platform which
means bundles can interact with each other through
services. It has a well-designed class-loading model. Each
bundle has its own class loader to isolate with others.
This ensures the independence and security when each
bundle runs in an uninterrupted and independent
environment.

Initially, OSGi is designed for embedded environment.
Because the embedded environment is always a resource
constrained environment, for instance, lacking of

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 237

© 2013 ACADEMY PUBLISHER

computing power and little RAM storage, OSGi is
implemented into a light weight framework. Therefore,
OSGi has high performance and efficiency. But OSGi is a
centralized framework and does not support distributed
environment, which means all bundle should run in a
single peer. Obviously this does not meet the
requirements of pervasive computing.

R-OSGi is a distributed middleware platform that
extends OSGi which is a centralized module management
platform to interconnect modules and applications
deployed in different devices. Through service agents,
local modules can simply use remote services with the
help of R-OSGi. The invocation to local service agent is
converted into R-OSGi defined data form and then
transferred to the peer where the service really locates.

After receiving the invocation data, R-OSGi will do the
real service invocation and send the result to the caller.
Whole procedure is completely transparent to the
application.

Although R-OSGi extends OSGi to support distributed
environment, R-OSGi itself is still an OSGi bundle,
which means R-OSGi can only work on Java platform. In
a ubiquitous computing environment, devices are always
heterogeneous and not all devices can run JVM. So R-
OSGi cannot solve the problem of transparent service
invocation between heterogeneous devices.

Besides, ubiquitous computing environment is always
connected through wireless netAnything is service: Using
LIR-OSGi and R2-OSGi to construct ubiquitous service
network work, for example,Wi-Fi, Bluetooth and Ad-Hoc.
But an inevitable problem is the wireless network is
unstable in many cases. The instability of network, such
as network congestion, delay and disconnection, is an
unavoidable problem. The R-OSGi based applications
have to handle all the network exceptions by themselves
because R-OSGi does not cope with any network
problems automatically. This will bring much difficulty
for application developers.

III. LIR-OSGI AND R2-OSGI DESIGN

A. LIR-OSGi
Our implementation LIR-OSGi is an extension of

OSGi framework, which adds the distribution supporting
as well as language-independence supporting. Thus with
the help of LIR-OSGi, we can contribute a ubiquitous
computing environment which mostly is a distributed
system and all ubiquitous devices can be joint together by
LIR-OSGi.

LIR-OSGi provides stable model for distributed
service-oriented systems for developers to cope with
heterogeneity and communications between two devices.
It can transparently provide a RPC (Remote Procedure
Call) and without increasing the programmer’s workload
by generating service broker locally and automatically.

LIR-OSGi defines a platform and programming
language independent IDL (Interface Definition
Language). Applications can describe a service interface
via this IDL and compile it into a service implementation,
then different applications written in different

programming languages can use the same service.
In a ubiquitous computing environment, when two

peers are connected, each peer will send the local service
interface to the remote side. After dynamic compilation,
the service proxy is generated and local applications can
invoke remote services through local service proxy. This
procedure is transparent to upper application. It is shown
as Figure 1.

Network Network

Service

Service

Service

Service

Service Service

Figure 1. Service-Oriented interconnection of devices

The architecture of LIR-OSGi is shown as Figure 2.

Execution Environment
(JVM, DotNet Framework, etc.)

Service Registry

Dynamic
Compiler OIDL

ODEXParser

Proxy
Generator

Service Proxy

App/Bundle
Service Consumer

App/Bundle
Service Provider

R
egister Service

R
egister Service

LIR‐OSGi

Figure 2. Architecture of LIR-OSGi

B. R2-OSGi
Our implementation R2-OSGi is an extension of OSGi

to support automatic network exception handling. R2-
OSGi can automatically handle network failures for all
kinds of applications based on R-OSGi without changing
their source code. The handling of network failure is
completely transparent to OSGi application and easy to
use and deploy.

R2-OSGi mainly consists of three parts: network
exception detection module, network exception
interception module and strategies. Network exception
detection module can actively watch the status of network
and detect the possible failures. When network exception
occurs, it will inform network exception interception
module to intercept the following operations of R-OSGi
and inject the strategies to do some recovery work. The
architecture of R2-OSGi is shown as Figure 3.

238 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

Endpoint Channel

R2-OSGi

Bundle Bundle

EndpointChannel

R2-OSGi

Socket

Reconnect
Helper

HeartBeat

Reconnect
Helper

HeartBeat

Strategy Strategy

Socket

Figure 3. Architecture of R2-OSGi

IV. A SERVICE-ORIENTED MIDDLEWARE PLATFORM BASED
ON LIROSGI AND R2-OSGI

A. Function Description
This paper designs a service-oriented middleware

platform based on LIR-OSGi and R2-OSGi. This
platform takes use of service model of OSGi and
describes service interfaces through IDL defined by LIR-
OSGi so that services can be invoked by programs
written in different programming languages and deployed
in different devices. Meanwhile, this platform takes
advantages of R2-OSGi to automatically handle network
exceptions, making applications can focus on their own
logic without the need for coping with network layer
issues. In this platform, all the functions of the devices
are registered as OSGi services and can invoke each other
with the help of LIR-OSGi. The architecture of this
platform is shown as Figure 4.

R2-OSGi &
LIR-OSGi

R2-OSGi & LIR-OSGi

JVM

Service

WiFi 3G 4G

.Net Framework

R2-OSGi &
LIR-OSGi

IOS

Service
Proxy

R2-OSGi &
LIR-OSGi

Android Dalvik

Service
Proxy

Device A
Service Provider

Device B
Service Provider Service

Consumer
Service

Consumer

Service
Registry

Proxy
Generator

Dynamic
Compiler

R2-OSGi &
LIR-OSGi

Service

Figure 4. Architecture of the platform

There is a service registry existing in our platform. It

retains all the service status information. When a device
needs to use a service, it first has to establish a
connection with the Service Registry to obtain status
information of all the services, and locate the service it

needs. Then it will start a connection to the service. After
the connection is established, LIR-OSGi will send the
service interface description information back to the
requester side, and then call the dynamic compiler to
generate the service proxy. Service proxy works at the
requester side, responsible for converting the service
invocation to the LIR-OSGi defined ODEX form, and
then LIR-OSGi will send the ODEX to the service
provider, make the real service invocation and send the
result back to the caller.

When network failure occurs, R2-OSGi will intercept
the data sent to the remote side and send it to the strategy
module, and then R2-OSGi tries to reestablish the
connection.

Once succeed, R2-OSGi will inform the strategy
module and the later one will try and process the data
which are intercepted by R2-OSGi. Some important
process is described as follows.

B.Service Binding
Because the caller does not know the services existing

in the network and their locations, so there must be a
node keeping all the information of services. This node is
called Service Registry, deployed in a specific device as a
service. Any service provider should summit the service
registration information to the Service Registry and notify
the Service Registry when service status changes such as
service updates, service stops, etc.

When an application requests a service, it first needs to
connect to the Service Registry and obtain the current
service status information. After find the required service,
it then will establish a connection to the service provider.
And the service provider will send the service interface
description information to the requester once the
connection is established.

LIR-OSGi generates the service proxy using the
service interface description information. Then the
application can use this service proxy to invoke the
remote service. The binding process is shown as Figure 5.

Figure 5. Process of Binding

C. OIDL
In OSGi, Services are specified by Java interfaces.

Bundle can register services to Service Registry by
implementing these interfaces. But interface definition
written in Java cannot work in other programming
languages. So it is impossible to generate a Service
Proxy in a specific language with an interface definition
written in different ones. We need a language-
independent interface definition for all the languages to

Service
Consumer

Service
Registry

Service
Provider

1 2

3

4

1. Service
Finding

2. Service
State

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 239

© 2013 ACADEMY PUBLISHER

define the service.
So we introduce OSGi Interface Definition Language

(OIDL) to describe an interface with which a service can
be implemented and registered. OIDL is syntactically like
JAVA and C++ and only has a little difference. An
example for interface definition written in OIDL is like:
interface oidl.example.IServicef
integer getStatus();

This definition specifies an interface named
oidl.example.IService. This interface supports one
operation called getStatus which takes no parameters and
returns an integer (in Java and C++, it is int). After
translated into Java or other programming language code,
it can be used as a normal interface (in C++ it is class).

The most important feature of OIDL is language-
independence, which means OIDL should be a
declarative language, not a programming language. It
must be translated into the specific language when it is
used to implement and register a service. What’s more,
the data type in OIDL should be accepted by all potential
programming languages, so it cannot carry the data type
which is not supported by all languages or complicated.
After this interface is translated into Java, it seems like:
package oidl.example;
interface IServicef
int getStatus();

D. Generation of Service Proxy
Service Proxy is generated by Proxy Generator

automatically. Once LIR-OSGi receives the OIDL
information, Proxy Generator will call the Dynamic
Compiler to parse the OIDL, and generate the service
proxy according to the location. Service proxy is
basically an implementation of the service interface. It
takes charge for packaging the arguments of the service
invocation, starting a RPC and waiting for the result.
After the result is returned, service proxy will send it to
the service caller.

After generating service proxy, LIR-OSGi will
instantiate it. Then it will be registered with the local
OSGi framework, so the local application can use this
service proxy as a local service.

When local application calls the remote service
through service proxy, service proxy will convert the
invocation information into a language-independent
representation ODEX.

ODEX will be sent to the remote peer and used to do
the real service invocation. Then the result is transferred
to the caller in the same form of ODEX.

E. ODEX and RPC
In order to exchange data between different

programming languages, we introduce ODEX (OSGi
Data EXchange). ODEX is a data format to transport data
between two peers. It is based on JSON, which is a
lightweight data-interchange format and easy for users to
read and write as well as easy for machines to parse and
generate. The reason we choose JSON rather than XML
is that the performance of parsing and generating JSON is
better. And the reason we do not choose binary is that
JSON has a better readability and platform independence.

Two types of data ODEX need to carry. The first one is
service invoking data and return data. Service invoking
data contains the services name, invocation UID,
parameters,parameters types and return type, and the
return data includes invocation UID, return type and
return value. Here is an example for the ODEX data of
invocation of the service which will be illustrated next.

{”ServiceName”:” oidl.example.IService”,
”MethodName”: ”getStatus”,
”ParamType”: [],
”ParamValue”: [],
”ReturnType”: ”integer”
}

The second one is service registration information
including new services adding, service modifying and
service removing information. Normally, it contains the
OIDL speci fied interface and the location of the service.
Any services, who want to be recognized as a remote
service provider, should put a specific parameter in the
LDAP filter while registering to Service Registry. Once
two peers are connected, LIR-OSGi will automatically
build service proxies for these services by exchanging
service registration information.

After bound to the remote peer and created service
proxy, the local service now can invoke the remote
service by starting a RPC. The PRC is started by the
calling of local service consumers to the service proxy.

The services method which is implemented by out
compiler, marshals the request. Then the marshaled
request data is sent through prebuilt TCP connection.
When the remote peer receives this request, it restores the
request data and does the actual service invocation using
Reflection (in Java and C#). The result of invoking the
service is then marshaled in the same way. After that the
result is send back to the caller and the RPC is finished.

F. Network Exception Detecting
Heartbeat mechanism is one of the most common ways

to provide high available network.
It uses continuously sent package, which is known as

heartbeat package, to constantly test the network status.
The client continuously sends heartbeat package in order
to inform the server that the network is still available.

Within period of time has not received the palpitation
package, the server could deem that the network is
broken down, or the client is offline.

In R2-OSGi, we use two-way heartbeat package, that
both ends of any connection are sending and receiving the
heartbeat packets at the same time. A certain time interval
T0 is between two packages. When either end of the
connection has not received the heartbeat package for N
(N >1) cycles, the network can be considered to be
broken down.

In different network environment (LAN, Wi-Fi,
Bluetooth, etc.), T0 and N can be set differently
according to different network attribute values, for
example, delay, bandwidth, etc, so that R2-OSGi can be
adapted to different network environment. Furthermore,
T0 and N can be set to the most reasonable parameters
based on empirical data, which can make R2-OSGi to

240 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

detect the presence of network failures in the shortest
possible time.

G. Apply Various Strategies
Due to different network environments and

applications, the actions taken for handling network
exception are often different. For example, a client sends
several requests for the current time to the server before
the network breaks down. Unfortunately, only the last
request should be resent after the network recovers. But if
it is such a request as printing, the entire request sequence
should be restored and resent after the connection rebuilt.
So, R2-OSGi should be able to take different action for
different applications and network environments. In R2-
OSGi, the action taken to handle network exception is
called strategy.

A strategy must implement the interface Strategy. This
interface is defined as follows.

public interface Strategy
{
void onDisconnect();
void incomingMessage (RemoteOSGiMessage message);
void onReconnectSucceed();
void onReconnectFailed();

}

All the methods are invoked by Reconnect Helper.

When Network Exception Detector detects the network
exception, method onDisconnect will be called. After that,
when Endpoint tries to send Message via Channel, the
Massage is intercepted by Reconnect Helper, and sent to
Strategy Module through calling the method
incomingMessage. When the network is successfully
rebuilt, method onReconnectSucceed will be called, the
strategy which user defined previously will be applied.
On the contrary, Method onReconnectFailed will be
called.

Except the function describes above, another function
of Reconnect Helper is selecting an appropriate strategy.
User should prescribe the rules for R2-OSGi to choose
which strategy will be applied. When R2-OSGi detects
network exception, it will check the rules user provided,
and then choose the corresponding one to deal with
network failures. After that, all the Messages Endpoint
tries to send to the remote peer via Channel will be sent
to the selected Strategy.

V. EXAMPLE

In this section, we demonstrate our system through a
specific example. This system is a virtual smart house
prototype system including lights, TV, air conditioning
and other virtual devices as well as the location
information of users. In this system, all devices are
packaged as services, so that they can use each other’s
functions by service invocation. We also implemented a
reasoning module which controls status of each device
according to the location changes. All devices and their
status are displayed through a simulator. By using a
simulator, location of users can be simply changed and all

devices will respond. The interface of the simulator is
shown as Figure 6.

Figure 6. Interface of the simulator
This system is a real distributed system. The two lights

locate on a laptop, the air conditioning is an ARM board
and the two TVs are two laptops. Service Registry runs
on a laptop along with this simulator. All the devices are
connected via Wi-Fi. This system deploys as Figure 7.

Light Light TV TV Air
Condition

Middleware Middleware Middleware Middleware

Laptop Laptop Laptop ARM board

Service Registry Inference Module

Figure 7. Deployment of the demo system

When ones location changes, the reasoning module
will calculate the new status of the devices. Then it will
invoke the devices service to change the status. As a
feature of LIR-OSGi, reasoning module need not concern
about where the service locates and the programming
language used by the service provider. It just invokes the
service with the language-independent service interface.
It shows as Figure 8.

Figure 8. Service Invocation Process

For example, we can control the status of the lights
through reasoning module. In the reasoning logic, when
the user enters the living room, the light in the living
room should be turn on; when he or she leaves, the light
should be turn off. In this example, the reasoning module
presents as a virtual module, providing a service interface
for updating the location of the users. When ones location
changes, the locator sends the new location to the
reasoning module through the service interface. Then the
reasoning module controls the status of the light by
determining whether the user is in the living room.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 241

© 2013 ACADEMY PUBLISHER

Through this example, we can see that the interaction
between devices is done by service invocation through
language-independent service interface. The application
need not concern the platform the service runs on and the
programming language the service is written when
invoking the service.

VI. CONCLUSION

This paper introduces a solution for building a
ubiquitous computing system based on our
implementation LIR-OSGi and R2-OSGi, which are
extensions of OSGi framework to provide the distribution
supporting as well as language-independence supporting.
By taking advantage of LIR-OSGi, applications can make
service invocation while not have to concern the
hardware platform and programming language.
Heterogeneous devices can be joined together through
LIR-OSGi to construct a ubiquitous service network.
With the help of R2-OSGi, the system can automatically
cope with network exceptions, so that the exceptions of
network layer can be transparent to upper layer
applications. It make the system more flexible to handle
network exceptions can the whole system can be more
robust. Through this solution, any kind of devices can be
easily connected together to construct a service network.
Even for legacy system, devices can also be connected to
the network by packaging them into services.

ACKNOWLEDGMENT

This research is supported in part by a grant from
Beijing Municipal Natural Science Foundation of China
(Grant No. 4122007).

REFERENCES

[1] JasonWiese, Patrick Gage Kelley, Lorrie Faith Cranor,
Laura Dabbish, Jason I. Hong, John Zimmerman. Are You
Close with Me? Are You Nearby? Investigating Social
Groups, Closeness, and Willingness to Share. Proceedings
of UbiCom’11. 2011:197-206

[2] An Architecture of Mobile Web 2.0 Context-aware
Applications in Ubiquitous Web. Journal of software.
Special Issue: Middleware and Network Applications. Vol
6, No 4.2011:705-715.

[3] Andr Bottaro, Anne Grodolle. Home SOA - Facing
Protocol Heterogeneity in Pervasive Application. ICPS’08,
Italy, 2008:73-80

[4] Mohamed Adel Serhani, Abdelghani Benharref .
Enforcing Quality of Service within Web Services
Communities.Journal of Software, Vol 6, No 4 .2011:554-
563.

[5] Hayyan R. Sheikh. Comparing CORBA and Web-
Services in view of a Service Oriented Architecture.
International Journal of Computer Applications. 2012,
39(6): 47-55

[6] Young-Woo Kwon, Eli Tilevich and
T.Apiwattanapong, ”DR-OSGi: Hardening Distributed
Components with Network Volatility Resiliency”,
Middleware 2009

[7] Jinzhao Liu, Yongqiang Lv, Dan Wang, etc. Flexible,
plug-and-play network middleware against network
instability with R2-OSGi. 5th International Conference on

Pervasive Computing and Applications (ICPCA), 2010:
244-249

[8] Jinzhao Liu, DanWang, Yu Chen, etc. LIR-OSGi: Extends
OSGi to support distributed and heterogeneous ubiquitous
computing system. 6th International Conference on
Pervasive Computing and Applications (ICPCA), 2011:
169-174

[9] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe,
R-OSGi: Distributed Applications Through Software
Modularization, Middleware 2007, LNCS 4834,2007

[10] Seung Keun Lee and Jeong Hyun Lee, ”OSGi based
service mobility management for pervasive computing
environments”, IASTED, 2006

[11] Jouve, W., Lancia, J., Palix, N., Consel, C., Lawall, J.
High-level Programming Support for Robust Pervasive
Computing Applications. Pervasive Computing and
Communications. 2008(4): 252-255.

[12] Q Limbourg, J Vanderdonckt, B Michotte. Usixml: A user
interface description language supporting multiple levels
of independence. Engineering Advanced. 2004(12): 241-
256.

[13] Introducing JSON. http://www.json.org/
[14] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds,

Clemente Izurieta, Comparison of JSON and XML Data
Interchange Formats: A Case Study, Computer
Applications in Industry and Engineering (CAINE), 2009:
157-162

Jizhao Liu was born in 1986. He
received the M.S. degree in Computer
science and technology from Beijing
University of Technology in 2012. His
research interests include pervasive
Computing and middleware.

Dan Wang was born in 1969. She
received the Ph.D degree in computer
software from Northeastern University
in 2002. She is a professor at Beijing
University of Technology. Her research
interests include trustworthy software,
distributed computing, etc.

Yu Chen was born in 1971. He
received the Ph.D. degree in Computer
Science and technology from National
Defense University in 2000. He is an
associate professor at Tsinghua
University. His research interests include
system software, pervasive computing,
etc.

Yongqing Lv was born in 1979. He
received the Ph.D. degree in Computer
Science and technology from Tsinghua
University in 2006. He is an assistant
professor at Tsinghua University. His
research interests include system
software, pervasive computing, etc

242 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

