
A Combinatorial K-View Based Algorithm for
Texture Classification

Yihua Lan, Yong Zhang, Haozheng Ren
School of Computer Engineering, Huaihai Institute of Technology, Lianyungang, China

lanhua_2000@sina.com, zhyhglyg@126.com, renhaozheng666@163.com

Abstract—Image texture classification is widely used in
many applications and received considerable attention
during the past decades. Several efforts have been made for
developing image texture classification algorithms,
including the Gray Level Co-Occurrence Matrix (GLCM),
Local Binary Patterns and several K-View based algorithms.
These K-View based algorithms included are K-View-
Template algorithm (K-View-T), K-View-Datagram
algorithm (K-View-D), Fast Weighted K-View-Voting
algorithm (K-View-V), K-View Using Rotation-Invariant
Feature algorithm (K-View-R) and K-View Using Gray
Level Co-Occurrence Matrix (K-View-G). There are some
discussions about a part of these algorithms in the
literatures; however, no complete experimental comparisons
are made so far. In this paper, by analyzing those K-View
based algorithms, an attempt to utilize the advantages of the
K-View-R and K-View-V is made. The new approach which
we call combinatorial K-View based method was presented.
In addition, we review those K-View based algorithms and
perform a comparative study based on the experiments
using artificial texture images taken from the Brodatz, the
evaluation method of performance between the proposed
method and five different K-View algorithms are
implemented by using classification accuracy, efficiency and
stability.

Index Terms—Texture classification, Voting, K-View
algorithms

I. INTRODUCTION

Image texture classification plays an essential role in
the analysis of many types of images, from the aerial
photos which are obtained from aircrafts or satellite
platforms to microscopic images of cell cultures or tissue
samples, from the medical images such as mammography
or magnetic resonance imaging (MRI) to the outdoor
natural scenes, to name a few. Therefore, it has been
received considerable attention during the past decades.
Despite its importance and ubiquity in image, there is not
a formal approach or precise definition of texture. Image
texture classification is still a hotspot and a challenge in
the fields of machine vision and image analysis until now.

How to divide a texture image into regions of
homogeneous textural pixels which form a set of texture
classes? Extracting texture features is one of the most
popular techniques to be used. Many methods have been
developed to extract features, including statistics and

structure methods, such as Gray Level Co-Occurrence
Matrix (GLCM) [1-3] or local neighborhood statistics[4];
frequency or spectrum analysis methods, such as multiple
components’ frequency estimates[5], texture spectrum[6]
and so on.

As stated in [7], to characterize texture, we must
characterize the gray level primitive properties as well as
the spatial relationship between them. Hung et al [8-9]
presented that the texture features called characteristic
views are formed with K views, and these views are
capable of characterizing the gray level primitive
properties as well as the relationship between them, and
then they proposed K-View-Template algorithm (K-
View-T) and K-View-Datagram algorithm (K-View-D)
based on characteristic views [8-10] for image texture
classification. In those two algorithms, characteristic
views selection is the training process, in which the
characteristic views can be selected by using k-means
algorithm from the view set of each sample sub-image. In
the classification process of K-View-T, the view being
classified in the original image is compared with all the
views in characteristic views of all sample sub-images. If
there is one characteristic view which belongs to texture
class M best matches with this view, then class all the
pixels in the view being classified to class M (if the view
is regarded as a neighborhood of one pixel, classify the
pixel to class M). However, K-View-T takes a
neighborhood of a classified pixel as a view
corresponding to this pixel and decides whether this view
is more similar to those characteristic views of the texture
classes, K-View-D based on the histogram distribution of
the characteristic views. In our experiments, K-View-T
always classes pixels which lie in either interior regions
or near the boundaries of error class, whereas the K-
View-D always has good performance in classifying
those pixels in interior regions, but the pixels near
boundary areas still cannot be correctly classified.
Therefore, Hong Liu et al proposed K-View Using
Rotation-Invariant Feature algorithm (K-View-R) [11]
and Fast Weighted K-View-Voting algorithm (K-View-V)
[12] to improve the original two K-View algorithms by
using different approaches and made some progress.
GLCM is one of the popular techniques used in
describing texture features. In this paper, we proposed a
new combinatorial algorithm which incorporates those

218 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.1.218-227

advantages of K-View-R and K-View-V into utilizing the
K-View-V and K-View-R respective advantages in better
measure.

This paper is organized as follows: in section 2, the
related concepts of view are introduced, then the different
K-View based algorithms are briefly reviewed in section
3; Experiments results and discussion and analysis are
carried out in section 4; the conclusion gets in section 5
in the end.

II．THE RELATED CONCEPTS OF VIEW

The K-View based algorithms include K-View-T, K-
View-D, K-View-R, K-View-V and K-View-G. Those K-
View based algorithms need to extract a set of
characteristic views from sample sub-images of the
texture class. Therefore, we will introduce the related
concepts of view at first.

A. The Concept of View and View Set
Since Texture is usually looked as a measurement of

relationship between the pixels in a local region, Hung et
al. presented a texture feature called view to represent a
texture class, and used it as a basic unit for image texture
classification[10].

Simply put, a view is an element image block in an
image. A view has a size of m by n and is a neighborhood
of a pixel. A binary image example is shown in Figure 1
(a) that contains two different pattern classes, and shown
in Figure1 (b) which are gray values of its pixels by
corresponding location. Select randomly in the area of the
texture class as a sample of sub-image for each texture
class from the original binary image. An example of
selected sample sub-images, kernel-1 and kernel-2, are
shown in Figure 1(c) (we called these sample image as

Kernel). And then we use a sliding window of size 1×2
and scan pixel by pixel on the kernel-1 and kernel-2
respectively. From kernel-1, we obtain nine image blocks
(i.e. views) of size 1×2 of (1 0) and (0 1), there are 6(0 1)
and 3(1 0) (see Figure 1 (d)), these nine views constitute
together a set of primitive views for this texture class, we
call this set as primitive view set. In the same way, there
are nine image blocks of size 1×2 of (1 0) and (0 1) in
kernel-2, and in this primitive view set we also may find
two types of views (i.e., (1 0) and (0 1)) in it. The size of
the sliding window here is called view size, of course, we
may use sliding window by other size such as 2×2 or 2×3
on the two sample images, and then different primitive
view sets will be produced in accordance with different
view sizes.

 (a) An image texture. (b) Corresponding pixel values.

(c) Kernels (samples) of two different classes taken from the image

texture.

(d) Characteristic views of two different classes extracted by 1×2 view

Figure 1. Characteristic views extracted from the kernels of two different classes.

B. The Concept and Extract Method of Characteristic
Views

Different views contain texture information from
different spatial locations in the kernel. Texture
appearances may be recurrent in different locations, and
the views will frequently be revealed the repetitions in
the same texture class of the image. Therefore, We can

certainly imagine that there are a lot of same or similar
views in the primitive view set of each texture class of
the kernel(here we suppose the size of kernel is big
enough).For an example, this circumstance appears in
the kernel which is shown in Figure 1(d), in kernel-1, and
there are nine views of size 1×2 of (1 0) and (0 1) to form
the primitive view set, and these views can be classified
into two types(i.e. (1 0) and (0 1)), the kernel-2 may be

Clustered to 2 centers by
k-means

Sliding with

1×2 view

Sliding with

1×2 view

10

01

011001

0110

01 10

01

01

10

10

10

01

01

010101
0101
0101

0101
1010
0101

01

10

10

01

Clustered to 2 centers by
k-means

01

Kernel-2

Kernel-1

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 219

© 2013 ACADEMY PUBLISHER

deduced by analogy. Therefore, we can use views just
like (1 0) and (0 1) which are included in these same or
similar views to represent the all primitive views of the
kernel-1, of course we also can use (1 0) and (0 1) to
represent the all primitive views of the kernel-2, in other
words, a set of characteristic views in a kernel will have a
few representative views which will be a small subset of
all primitive views of the kernel, then we used it for
image texture classification, it may save a lot of
calculation work and computation time but still achieve a
reasonable classification accuracy. These views which we
selected to describe the characteristic of a texture image
and used for image texture classification are called
characteristic views. All algorithms based on K-View
which will be introduced later used the characteristic
views as texture feature.

We can derive characteristic views set which includes
K views for each kernel using the K-means algorithm, K
may vary for each kernel, a larger K usually means it can
be extracted a more representative set of characteristic
views. Just like Figure 1 (d), we may obtain 2
characteristic views (i.e. (1 0) and (0 1), K=2) by k-
means from Kernel-1. There is a same set of
characteristic views (i.e. (1 0) and (0 1)) in kernel-1 and
kernel-2, therefore, characteristic views of each texture
class can not represent their class good enough to
discriminate these two types of texture class, and we don't
think this view size an optimum size in this example.

III. THE K-VIEW ALGORITHMS

In this section, five different K-View based algorithms
will be briefly reviewed.

A. The K-View-Template Algorithm (K-View-T)

The K-View-T algorithm is briefly described in the
following parts.

Step 1: Select a sample sub-image for each texture
class randomly in the area of the corresponding texture
class from the original image. In other words, N sample
sub-images will be selected for N texture classes.

Step 2: Extract a primitive view set from each sample
sub-image and form a primitive view set S.

Step 3: Determine the value of K for each view set, and
derive a K-View of characteristic view set denoted by Cvs,
from each kernel use the K-means algorithm. The
parameter K may vary from each texture class.

Step 4: In the classification process, each view, says V,
of an image being classified will be compared to each
characteristic view in all the characteristic view sets of all
texture classes.

Step 5: If the best matched characteristic view belongs
to characteristic view set M, classify all pixels in the view,
V, from the original image to class M. (If the view is
regarded as a neighborhood of one pixel, classify that
pixel only into class M), M is from 1 to N.

Step 6: Repeat steps 4 and 5 for each pixel in the
original image being classified.

Steps 1-3 are used for training which establish a
prototype for each texture class. Steps 4-6 are used for

classification which will class each pixel in original
image into a certain type.

B. The K-View-Datagram Algorithm (K-View-D)

The K-View-D algorithm is described in the following
steps, similar to the K-View-T algorithm, steps 1-4 are
for training and steps 5-7 are for classification:

Step 1-3: Same as Step 1-3 in the K-View-T algorithm.
Step 4: Based on the characteristic view set Cvs, we

calculated a datagram (D) for each of the N sample sub-
images. According to Equation 1, normalize each
datagram D (DN). We call these N normalized datagrams
coming from sample sub-images the sample datagrams
(DS).

1 , 2 , 3 ,()kD d d d d= ⋅ ⋅ ⋅ (1)

1

k

i
i

T d
=

= ∑ (2)

1 2 3(/ , / , / /)N kD d T d T d T d T= ⋅⋅ ⋅ (3)

Step 5: Scan the entire image using a window of M×M
pixels, and obtain the normalized datagram for each
window. Calculate the differences between the
normalized datagram and each of the N sample datagrams
(Ds), and classify the central pixel of the windows to the
class, such that the difference between the sample
datagram of the class and the normalized datagram is the
minimum. The difference (Dif) between a normalized
datagram (DN) and a sample datagram (Ds) can be
obtained by the following equations.

1, 2, 3,()N N N N NkD d d d d= ⋅⋅⋅ (4)

1, 2, 3,()S S S S SkD d d d d= ⋅⋅⋅ (5)

1
| |

k

Si Ni
i

Dif d d
=

= −∑ (6)

Step 6: Same as Step 5 in the K-View-T algorithm.
Step 7: Repeat steps 5 and 6 for each pixel in the

original image being classified.

From the steps mentioned above in K-View-D, we may
find that unlike K-View-T algorithm, the decision is
made by a single view whose center is located at the
current pixel being classified, in K-View-D algorithm,
the decision is made by the distribution of all the views
contained in a large block in which the current pixel is
the center of the block.

C. The K-View Using Rotation-Invariant Feature
Algorithm (K-View-R)

The K-View-R algorithm consists of two processes
which are the training process and the classification
process similar to K-View-T and K-View-D algorithms.
The scheme of two processes is shown in Figure 2[11].

There are two enhancements to improve the original
K-View-T algorithm and K-View-D algorithms in K-
View-R algorithm.

220 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

1) The extract method of Characteristic Views Set.
In the original K-View-T and the K-View-D

algorithms, the characteristic views can be learned by
unsupervised clustering algorithms such as the k-means,
however, being different from the method above, the
characteristic views are randomly and directly selected
from the view set of kernel in each texture class in the K-
View-R algorithm.

2) The correlation-matching method between views.
The K-View-T compares the similarity between a view

and all characteristic views directly, while the K-View-D

computes the histogram distribution of the characteristic
views for each texture class and the comparison is
transformed into between the histogram of the view and
the histograms of each texture class. In the K-View-R
algorithm, in order to achieve high classification accuracy,
six significant rotation-invariant features named Mean,
Standard Deviation, Entropy, Skew, Kurtosis and
Histogram are extract, with all the characteristic views
used being transformed into rotation-invariant features in
this algorithm. Those features provide a good
discrimination of textures.

Texture Image

Select sample
sub-image for

each texture class

Randomly generate
a characteristic

view set

Extract the
rotation-invariant

features

Save rotation-invariant features
of each texture class in Database Database

Calculate the rotation-invariant
features for all the views
which consisting of the
pixel being classified

for each pixel in the image

Retrieve Database and
compare with the pre-
calculated features of

each texture class

Classified
result

Training
process

Classification process

Figure 2. Training process and classification process of K-View-R.

D. The Fast Weighted K-View-Voting Algorithm (K-
View-V)

The K-View-V algorithm is an innovative efficient
approach to improve K-View-T algorithm. Use a novel
voting method for texture classification and an
accelerating method based on the efficient Summed
Square Image (SSI) [13] scheme and Fast Fourier
Transform (FFT) for fast processing. The basic ideas of
these two different algorithms (i.e. K-View-V and K-
View-T) are alike. Therefore, we will be only discussing
the crucial differences between them detailed.

Before the introduction of the group decision method
made by weighted voting, we explain the concept of
neighborhood supporters firstly.

1) Neighborhood supporters
Take an example shown in Figure 3, one pixel of the

image may have many views which contain the current
pixel are all correlated to it. Therefore, these views which
are called neighborhood supporters (i.e. correlative views)
should be given an opportunity to decide which texture
class that this pixel belongs to. If the view size is m by n,
for each pixel there will be m× n different correlative
views consisting of the corresponding pixel.

m

n

m n×

m

n

...

...

...

...

Figure 3. The correlative views of a pixel.

2) Group decision strategy
In K-View-V, let d be the distance between a view and

a texture class which is equal to the minimum Euclidean
distance between the view and all views in characteristic
views corresponding to this texture class. Therefore, the
similarity s between a view and a texture class can be
defined as the formula:

2

1s
d

= (7)

To some extent, the view with more similarity to a
certain texture class should be given the more powerful
vote on this class. However, when a view spans the
boundary of different texture class images, it contains
mixed pixels from different classes, so the appearance of
the view looks like several texture classes. This brings
that the loyalty of the view to the multi-classes has
dispersed. K-View-V quantifies the loyalty for a view to
the jth class by uj defined as the formula:

2

2

1

1/

1/

j
j K

k
k

d
u

d
=

=

∑ (8)

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 221

© 2013 ACADEMY PUBLISHER

Here K is the number of the texture classes. In
summary, if the number of views in the neighborhood
supporters and texture class are respectively V and K, a
voting weight matrix W with the size V×K can be defined
as

, ,i j i jW u= (9)

Where ui,j is the loyalty for the ith view to the jth class,
and di,j is the distance between the ith view and the jth
class, both of them can be explained above. Then let each
view in the current pixel’s neighborhood supporters take
a vote on each texture class (i.e. the vote is the
corresponding weight factor) in matrix W. Therefore, the
best-matched texture class is supported by the most
weighted votes by taking the maximum among the
weights, that is the Pth class with the P which is
calculated as in Equation (16):

,1 ,2 ,
1 1 1

arg(max(, ,...,))
V V V

i i i K
i i i

P W W W
= = =

= ∑ ∑ ∑ (10)

3) Summed Square Image (SSI) and FFT method

In K-View-T, it needs to compare an incoming/being
classified view with each characteristic view of each
texture class directly. Take two views (i.e. V1 and V2)
with the same view size m×m for example, the Euclidian
distance between two views is d which can be obtained
by the following equation:

2
1 2|| ||d V V= − (11)

To calculate the Euclidian distance for views matching
is the most time-consuming process. K-View-V uses an
accelerating method based on the efficient Summed
Square Image (SSI) scheme as well as Fast Fourier
Transform (FFT) to enable overall faster processing. The
method is briefly described as following. Through
analysis we may find that the d can be calculated as:

2 2 2
1 2 1 2 1 2|| ||d V V V V V V= − = + − × (12)

Let V1 denote a view of the original image and V2 one
of characteristic views belonging to a texture class. Just
because we should calculate the Euclidian distance
between all views in the original image and each
characteristic view of each texture class, we may use SSI
to calculate the part of V1 and FFT to calculate the part
of 1 2V V× more quickly. The second square must be
calculated directly.

1) SSI Calculations

Liu et al. proposed an image de-noising method [13]
using the SSI method which is based on the integral
image concept [14]. Rectangle features can be computed
very rapidly using an intermediate representation for an
image which is called an integral image. Liu et al.
extended the integral image to their SSI [13] method. In
SSI, the pixel value at location (xo, yo) contains the
squared value of each pixel in the original image above
and to the left of x, y, inclusively:

2

,
(,) (,) , , (1,)

O O

o o
x x y y

SSI x y I x y x y m
≤ ≤

= ∈∑ (13)

where I(x, y) is the pixel value in the original image.

Figure 4. An SSI (Summed Square Image) illustration.
For example, if we need to calculate the sum of squares

in region D (this region is denoted the corresponding
region in the original image) as it is shown in Figure 4, it
can be obtained as follows:

D A B C D A A C A BS S S S S= + − −U U U U U (14)

From the SSI shown in Figure 4 ,we can see that:

2, 2 1, 1

2, 1 1, 2

(); ();
(); ()

A B C D A

A C A B

S SSI x y S SSI x y
S SSI x y S SSI x y

= =

= =
U U U

U U

 (15)

Therefore, we may obtain an equation as follows:

2, 2 1, 1 2, 1 1, 2() () () ()DS SSI x y SSI x y SSI x y SSI x y= + − − (16)

Therefore, each pixel in the SSI can be calculated in
only one pass over the original image. The computational
complexity for computing SSI is O (P2) (P2 is the original
image size). The SSI can be obtained in linear time
proportional to the image size.

2) The Fast Fourier Transform (FFT) method

The last term of equation 12 1 2V V× can be calculated
quickly with multiplication using the FFT [15]. Assuming
that the view size is all m×m (m is odd in general), we
flip the characteristic view, V2, from right to left and up
to down, as shown in Figure 5. In this manner we may
derive a new view (flipped) which we denote it V3, then
compute two-dimensional convolution of views V1 and
V3. We can derive a (2×m-1)×(2×m-1) matrix denoted by
MAT. According to the Convolution Theorem, the
following equation can be easily obtained:

1 2(,) / 2MAT m m V V= × (17)

Figure 5. An original view and its flipped view.

Since we need to compare an incoming/being
classified view with each characteristic view of each
texture class, we can calculate the two-dimensional

222 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

convolution of V3 and the padded image which we call
PadI. The convolution is formulated below:

3 3(,)* (,) (((,)) ((,)))V x y PadI x y IFFT FFT V x y FFT PadI x y⇔ (18)

where “*” is convolution operation symbol,
IFFT(FFT(V3(x, y))FFT(PadI(x, y))) means to compute
the two-dimensional FFT of V3 and PadI, then multiply
them together, and take the inverse FFT.

E. The K-View Using Gray Level Co-Occurrence Matrix
(K-View-G)

The GLCM model is a second-order statistics which
calculates how often different combinations of pixel
brightness values (grey levels) occur in an image. GLCM
matrices are used to record the spatial relationship
between pixels and their properties [10], and then the
statistics of GLCM will be derived. These statistics
include uniformity of energy, entropy, maximum
probability, contrast, inverse difference moment,
correlation, probability of a run of length, homogeneity
and cluster tendency [10]. These features can be used in
the classification of texture images. The GLCM is
represented in a 2-Dimensional array (i.e. table). We take
an image with a size of M×N and let (,)P i j be an element
of the GLCM matrix. Hence, (,)P i j represents the
frequency of occurrences of pair pixels which are
separated by distance δ and angle α . Matrices with
different angles and distances can be described as:{e(m,n)
= i, e(m+ δ α ,n+ δ α) = j, m (1, 1)M∈ − ,
n (1, 1)N∈ − ,α ∈{0o, 45o, 90o, 135o},δ ∈R},where δ is a
real number and α is one of four directions (0o, 45o, 90o,
135o). In this paper, we used the GLCM method in the
K-View-G algorithm for our implementation in the
experiments, which is briefly described in the following
steps:

Step 1-3: Same as Step 1-3 in the K-View-T algorithm.
Step 4: In the classification process, each view (a small
image block), says V, of an image is classified. Firstly
compute the GLCM feature vector (i.e. the vector is
compose of Contrast, Correlation, Energy, Homogeneity
and Mean) values of K center view of each sub-image.
Then compute the GLCM feature vector values of the V.
If the best matched characteristic view belongs to

characteristic view set M, classify all pixels in the view,
V, from the original image to class M. (If the view is
regarded as a neighborhood of one pixel, classify that
pixel only to class M). We use Euclidean distance as the
comparison method.

Step 5: Repeat steps 4 for each pixel in the original
image being classified.

F. The Proposed Combinatorial Algorithm

In order to utilize the K-View-V and K-View-R
respective advantages in the best measure, we propose a
scheme to incorporate those two K-View based method.
The scheme of K-View-VR is shown in Fig. 7.

The steps of this new combinatorial method can be
described as follows:

Step 1: Selecting sample sub-image randomly for each
texture class from the originally classified image;

Step 2: Selecting characteristic views. In this step, two
types of characteristic view sets are produced for K-
View-R and K-View-V method respectively. This is to
say, the first type of characteristic view set will be
generated by K-means algorithm or fuzzy c-means
algorithm for K-View-V approach. On the other hand,
another type of characteristic view set is extracted
randomly from each sample sub-image for K-View-R
approach.

Step 3: Calculate the loyalty1 for each pixel being
classified by using K-View-V approach. Calculate the
loyalty2 for each pixel being classified by using K-View-
R approach.

Step 4: Voting. In this step, a simple fusion method
was used to yield a final loyalty for this pixel being
classified. The fusion method is shown in the following
equation.

Loyalty=max (loyalty1, loyalty2) (19)
Step 5: Classify the pixel to a class when getting the

max loyalty.
Step 6: Repeat steps 3, 4 and 5 for each pixel in the

original image being classified.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 223

© 2013 ACADEMY PUBLISHER

Texture Image
Generate a characteristic

view set by K-means

Randomly generate a
characteristic view set

Extract all views
in the

original image

Save
those

features Calculate the loyalty1
for each pixel being

classified by using SSI
and FFT

Calculate the rotation-
invariant features for all
the views being
classified for each pixel

Select sample sub-
image for each texture class

Extract
rotation-
invariant
features

 Calculate the loyalty2
for each pixel being

classified Database

Loyalty=max (loyalty1,
loyalty2)

Voting

Classified result

K-View-V K-View-R

K-View-VR

Figure 6. The entire training process and classification process of K-View-VR.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, experiments for a number of image
textures were performed with the characteristic views
texture features and different five K-View based
algorithms as stated in the previous sections. Those
algorithms were tested on a set of variety representative
texture images include coarse texture, irregular texture
and regular texture which were obtained randomly from
Brodatz Gallery [16]. The size of these artificial images is
150×150 pixels. In our experiments, all K-View based
algorithms were implemented with same number of
characteristic views (i.e. K) and view size, we choose
K=30, which means that there are 30 characteristic views
for each texture class. The view size was set to 7×7. The
features used in GLCM include contrast, correlation,
energy, homogeneity and mean. Other parameters were
set as follows: distanceδ = 1, α = {0 o,45 o,90 o,135o },
gray-level = 16, we ran experiments on GLCM model
with 0o, 45o, 90o and 135o four directions respectively,
and selected the optimum one as the final results.
Classified results of all texture images with different K-
View based algorithms are shown in Figure 6.

By comparing experimental results shown in Figure 6
and 7 ,we can see that the proposed combinatorial K-
View-VR algorithm performs better than those of K-

View-T, K-View-D, K-View-R, K-View-V and K-View-
G, and it can achieve overall better classification
accuracy. The average classified right ratio which is
obtained through the proposed method obtained is o.9810,
while the ratios of K-View-T, K-View-D, K-View-G, K-
View-R, K-View-V are 0.9217, 0.8932, 0.8608, 0.9377
and 0.9712 respectively. Classified results of K-View-T,
K-View-R and K-View-G are not very good in interior
regions as shown in Figure 6 a(2), a(4), a(5),d(2), d(4),
d(5) and so on, and many pixels were misclassified in the
interior regions. On the contrary, the K-View-D, K-View-
V and the K-View-VR gave higher classification
accuracy in interior regions; moreover, the pixels near
boundary areas classified by K-View-VR are more
correctly classified. But K-View-D makes the classified
boundaries distorted, such as c (3), h (3), with many
pixels misclassified which are all located near the
boundaries. From the Figure 7, we also can find that K-
View-V and K-View-VR are more robust than other four
algorithms. The reason is that K-View-V uses group
decisions made by weighted voting, and it makes the
decision more reasonable and has a better performance.
In addition, the proposed combinatorial K-View-VR can
take the advantages of K-View-R and K-View-V,
therefore, the proposed method achieves the better
performance compared with K-View-R and K-View-V
methods.

a (1) a (2) a (3) a (4) a (5) a (6) a (7)

224 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

b (1) b (2) b (3) b (4) b (5) b (6) b (7)

c (1) c (2) c (3) c (4) c (5) c (6) c (7)

d (1) d (2) d (3) d (4) d (5) d (6) d (7)

e(1) e (2) e(3) e (4) e (5) e (6) e (7)

f (1) f (2) f (3) f (4) f (5) f (6) f (7)

g (1) g (2) g (3) g (4) g (5) g (6) g (7)

h (1) h (2) h (3) h (4) h (5) h (6) h (7)

Figure 6.The classified results of the texture images with different K-View algorithms. a(1) An original image, classified result with K-View-T, K-
View-D, K-View-G, K-View-R, K-View-V and the proposed K-View-VR are shown in a(2),a(3),a(4),a(5), a(7)and a(6) respectively, The classified

results of original image Figure 6 b(1)- Figure 6 h(1) may be shown in Figure 6 deduced by analogy. The white lines are drawn on the top of
classified results to show the actual boundary.

1 2 3 4 5 6 7 8 9
0.7

0.75

0.8

0.85

0.9

0.95

1

Image squence number(the 9th is average)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

K-View-T
K-View-D
K-View-G
K-View-R
K-View-V
K-View-VR

Figure 7. Classified right ratios of each texture image classification with different K-View algorithms

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 225

© 2013 ACADEMY PUBLISHER

TABLE I.

COMPUTATION TIME(S) OF EACH TEXTURE IMAGE CLASSIFICATION WITH DIFFERENT K-VIEW ALGORITHMS

Sequence
number K-View-T K-View-D K-View-G K-View-V K-View -R K-View -VR

1 37.67 1258.72 177.00 17.97 15.78 33.78

2 36.78 1224.26 151.43 17.93 11.84 28.98

3 38.34 1229.12 160.10 18.30 17.69 35.75

4 35.84 1176.76 150.43 17.65 12.28 29.58

5 36.41 1210.24 152.55 17.82 11.02 28.24

6 36.00 1178.20 160.40 17.98 12.22 29.52

7 35.95 1183.10 155.61 18.02 10.20 28.00

8 37.53 1181.59 147.22 17.56 11.98 29.22

Average 36.81 1205.24 156.84 17.9 12.88 30.38

As to the computation time, we know that K-View-V is
much faster by using the SSI and FFT methods. From the
Table 1, we can also see that K-View-D algorithm takes
more computation time which is from 10 to 100
magnitudes of time that is used in other K-View based
algorithms, because this algorithm needs to calculate the
datagram (DN) of original texture image. K-View-G
should calculate the GLCM and features of each views in
original images and characteristic views, so it is also
much slower than other algorithms. Due to the
combination of K-View-V and K-View-R in K-View-VR,
the K-View-VR achieves the best classification accuracy
at the cost of computation time.

V. CONCLUSIONS

In this paper, a combinatorial K-View based algorithm
which attempts to incorporate the advantages of the K-
View-R and K-View-V is presented. Experimental results
show that the K-View-VR algorithm achieves
encouraging classification accuracy compared with other
K-View based algorithms, which is more robust and
accurate.

From the image process of these algorithms, we may
also find that these algorithms have some weaknesses or
disadvantages in common. We concluded them and
provided the possible improvement of these algorithms as
following: firstly, these algorithms have a shortcoming by
refering to supervise classification method. Because
unsupervised method has more actually applied value, it
is the right time to research the method which can
determine the number of the texture class auto in future
work. Secondly, by increasing the view size and number
of characteristic views, the classification accuracy will be
increased at the expense of processing time, so we need
to explore an intelligent method which can determine
these parameters in the future.

ACKNOWLEDGMENTS

This study was supported in part by the China
International Science and Technology Cooperation

Project (Grant No. 2009DFA12290), and by the Huaihai
Institute of Technology Natural Science Foundation
(grant No. Z2009013).

REFERENCES

[1] C Palm. Color texture classification by integrative Co-
occurrence matrices. Pattern Recognition, 2004,
37(2004):965-976.

[2] CaS-CA, R Rangel-Kuoppa, M Reyes-Ayala, et al. high-
order statistical texture analysis-font recognition applied.
Pattern Recognition Letters, 2005, 26(2005):135-145.

[3] M Partio, B Cramariuc, M Gabbouj, et al. Rock Texture
Retrieval Using Gray Level Co-occurrence Matrix. In Proc.
of 5th Nordic Signal Processing Symposium, 2002.

[4] Oriol Pujol. Texture segmentation by statistic deformable
models, International Journal of Image and Graphics. 4(3)
(2004) 433- 452.

[5] J.Havlicek, D.Harding, and A. Bovik. The multi-
component AM-FM image representation, IEEE
Transaction on image processing. 5(6)(1996)1094-1100.

[6] Chen D, Wang L.1991. Texture features based on texture
spectrum. Pattern Recognition, 24:391-399

[7] Haralick, R. M. and L. G. Shapiro, Computer and Robot
Vision, (Volume I and II), Addison Wesley, 1993.

[8] C. C. Hung, S. Yang, and C. Laymon, Use of
Characteristic Views in Image Classification. In
proceedings of the 16th International Conference on
Pattern Recognition, Quebec, Canada, August 11--15,
2002.

[9] Yang, S. and C.-c. Hung, Texture Classification in
Remotely Sensed Images. In proceedings IEEE Southeast
Con 2002, 2002: p. 62-66.

[10] Yang S., C.C. Hung, Image texture classification using
datagrams and characteristic Views. In proceedings of the
2003 ACM symposium on applied computing, 2003, pp.22-
26.

[11] H Liu, S Dai, E Song, et al., A New K-View Algorithm for
Texture Image Classification Using Rotation-Invariant
Feature. In proceedings of the 2009 ACM Symposium on
Applied Computing, 2009: 914-921.

[12] H. Liu, Y. Lan, Q. Wang, R. Jin, E. Song, and C. Hung,
"Fast weighted K-view-voting algorithm for image texture
classification", Opt. Eng. 51, 027004 (2012),
DOI:10.1117/1.OE.51.2.027004

226 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

[13] Y. L. Liu, J. Wang, X. Chen, Y. W. Guo, and Q. S. Peng.
A robust and fast non-local means algorithm for image
denoising. Journal of Computer Science and Technology,
vol. 23, pp. 270-279, 2008.

[14] P. Viola and M. Jones. Rapid Object Detection using a
Boosted Cascade of Simple. In proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition. Vol. 1, pp. I511-I518. 2001.

[15] J hne, B. Digital image processing: concepts, algorithms
and scientific applications. 1991: Springer-Verlag London,
UK.

[16] P. Brodatz, Textures: A Photographic Album for Artists
and Designers: New York: Dover Publications, 1966.

Yihua Lan received his Ph.D. degree in
Computer Science from the School of
Computer Science and Technology,
Huazhong University of Science and
Technology,Wuhan(HUST) in 2011,
now he held teaching and research
positions at School of Computer
Engineering, Huaihai Institute of
Technology (HHIT), Jiangsu, China. His

research areas are image processing and analysis. His research
interests include PDE methods for image processing, iterative
methods, Krylov subspace methods, optimization algorithms,
and artificial intelligence.

Yong Zhang received the M.S.degree in
in School of computer science, SuZhou
University in 2007, China. His M.S.
subject is digital image processing. He
held teaching and researching positions
at the School of Computer Engineering,
Huaihai Institute of Technology, where
he has been an instructor. His research
interests include image processing and
machine vision.

Haozheng Ren received the M.S.degree
in computer engineering, China, in 2006,
from the Lanzhou University of
Technology. She is currently a teacher of
the School of Computer Engineering,
Huaihai Institute of Technology, where
she has been an Instructor since 2008.
Her research interests include PDE
methods for image processing, iterative
methods, Krylov subspace methods, and

parallel algorithms.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 227

© 2013 ACADEMY PUBLISHER

