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Abstract—Image texture classification is widely used in 
many applications and received considerable attention 
during the past decades. Several efforts have been made for 
developing image texture classification algorithms, 
including the Gray Level Co-Occurrence Matrix (GLCM), 
Local Binary Patterns and several K-View based algorithms. 
These K-View based algorithms included are K-View-
Template algorithm (K-View-T), K-View-Datagram 
algorithm (K-View-D), Fast Weighted K-View-Voting 
algorithm (K-View-V), K-View Using Rotation-Invariant 
Feature algorithm (K-View-R) and K-View Using Gray 
Level Co-Occurrence Matrix (K-View-G). There are some 
discussions about a part of these algorithms in the 
literatures; however, no complete experimental comparisons 
are made so far. In this paper, by analyzing those K-View 
based algorithms, an attempt to utilize the advantages of the 
K-View-R and K-View-V is made. The new approach which 
we call combinatorial K-View based method was presented. 
In addition, we review those K-View based algorithms and 
perform a comparative study based on the experiments 
using artificial texture images taken from the Brodatz, the 
evaluation method of performance between the proposed 
method and five different K-View algorithms are 
implemented by using classification accuracy, efficiency and 
stability.  
 
Index Terms—Texture classification, Voting, K-View 
algorithms 

I. INTRODUCTION 

Image texture classification plays an essential role in 
the analysis of many types of images, from the aerial 
photos which are obtained from aircrafts or satellite 
platforms to microscopic images of cell cultures or tissue 
samples, from the medical images such as mammography 
or magnetic resonance imaging (MRI) to the outdoor 
natural scenes, to name a few. Therefore, it has been 
received considerable attention during the past decades. 
Despite its importance and ubiquity in image, there is not 
a formal approach or precise definition of texture. Image 
texture classification is still a hotspot and a challenge in 
the fields of machine vision and image analysis until now. 

How to divide a texture image into regions of 
homogeneous textural pixels which form a set of texture 
classes? Extracting texture features is one of the most 
popular techniques to be used. Many methods have been 
developed to extract features, including statistics and 

structure methods, such as Gray Level Co-Occurrence 
Matrix (GLCM) [1-3] or local neighborhood statistics[4]; 
frequency or spectrum analysis methods, such as multiple 
components’ frequency estimates[5], texture spectrum[6] 
and so on. 

As stated in [7], to characterize texture, we must 
characterize the gray level primitive properties as well as 
the spatial relationship between them. Hung et al [8-9] 
presented that the texture features called characteristic 
views are formed with K views, and these views are 
capable of characterizing the gray level primitive 
properties as well as the relationship between them, and 
then they proposed K-View-Template algorithm (K-
View-T) and K-View-Datagram algorithm (K-View-D) 
based on characteristic views [8-10] for image texture 
classification. In those two algorithms, characteristic 
views selection is the training process, in which the 
characteristic views can be selected by using k-means 
algorithm from the view set of each sample sub-image. In 
the classification process of K-View-T, the view being 
classified in the original image is compared with all the 
views in characteristic views of all sample sub-images. If 
there is one characteristic view which belongs to texture 
class M best matches with this view, then class all the 
pixels in the view being classified to class M (if the view 
is regarded as a neighborhood of one pixel, classify the 
pixel to class M). However, K-View-T takes a 
neighborhood of a classified pixel as a view 
corresponding to this pixel and decides whether this view 
is more similar to those characteristic views of the texture 
classes, K-View-D based on the histogram distribution of 
the characteristic views. In our experiments, K-View-T 
always classes pixels which lie in either interior regions 
or near the boundaries of error class, whereas the K-
View-D always has good performance in classifying 
those pixels in interior regions, but the pixels near 
boundary areas still cannot be correctly classified. 
Therefore, Hong Liu et al proposed K-View Using 
Rotation-Invariant Feature algorithm (K-View-R) [11] 
and Fast Weighted K-View-Voting algorithm (K-View-V) 
[12] to improve the original two K-View algorithms by 
using different approaches and made some progress. 
GLCM is one of the popular techniques used in 
describing texture features. In this paper, we proposed a 
new combinatorial algorithm which incorporates those 
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advantages of K-View-R and K-View-V into utilizing the 
K-View-V and K-View-R respective advantages in better 
measure. 

This paper is organized as follows: in section 2, the 
related concepts of view are introduced, then the different 
K-View based algorithms are briefly reviewed in section 
3; Experiments results and discussion and analysis are 
carried out in section 4; the conclusion gets in section 5 
in the end. 

II．THE RELATED CONCEPTS OF VIEW 

The K-View based algorithms include K-View-T, K-
View-D, K-View-R, K-View-V and K-View-G. Those K-
View based algorithms need to extract a set of 
characteristic views from sample sub-images of the 
texture class. Therefore, we will introduce the related 
concepts of view at first. 

A. The Concept of View and View Set 
Since Texture is usually looked as a measurement of 

relationship between the pixels in a local region, Hung et 
al. presented a texture feature called view to represent a 
texture class, and used it as a basic unit for image texture 
classification[10].  

Simply put, a view is an element image block in an 
image. A view has a size of m by n and is a neighborhood 
of a pixel. A binary image example is shown in Figure 1 
(a) that contains two different pattern classes, and shown 
in Figure1 (b) which are gray values of its pixels by 
corresponding location. Select randomly in the area of the 
texture class as a sample of sub-image for each texture 
class from the original binary image. An example of 
selected sample sub-images, kernel-1 and kernel-2, are 
shown in Figure 1(c) (we called these sample image as 

Kernel). And then we use a sliding window of size 1×2 
and scan pixel by pixel on the kernel-1 and kernel-2 
respectively. From kernel-1, we obtain nine image blocks 
(i.e. views) of size 1×2 of (1 0) and (0 1), there are 6(0 1) 
and 3(1 0) (see Figure 1 (d)), these nine views constitute 
together a set of primitive views for this texture class, we 
call this set as primitive view set. In the same way, there 
are nine image blocks of size 1×2 of (1 0) and (0 1) in 
kernel-2, and in this primitive view set we also may find 
two types of views (i.e., (1 0) and (0 1)) in it. The size of 
the sliding window here is called view size, of course, we 
may use sliding window by other size such as 2×2 or 2×3 
on the two sample images, and then different primitive 
view sets will be produced in accordance with different 
view sizes. 

 
           (a) An image texture.   (b) Corresponding pixel values. 

 
(c) Kernels (samples) of two different classes taken from the image 

texture.  

(d) Characteristic views of two different classes extracted by 1×2 view 

Figure 1. Characteristic views extracted from the kernels of two different classes. 

B. The Concept and Extract Method of Characteristic 
Views 

Different views contain texture information from 
different spatial locations in the kernel. Texture 
appearances may be recurrent in different locations, and 
the views will frequently be revealed the repetitions in 
the same texture class of the image. Therefore, We can 

certainly imagine that there are a lot of same or similar 
views in the primitive view set of each texture class of 
the kernel(here we suppose the size of kernel is big 
enough ).For an example, this circumstance appears in 
the kernel which is shown in Figure 1(d), in kernel-1, and 
there are nine views of size 1×2 of (1 0) and (0 1) to form 
the primitive view set, and these views can be classified 
into two types(i.e. (1 0) and (0 1)), the kernel-2 may be 
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deduced by analogy. Therefore, we can use views just 
like (1 0) and (0 1) which are included in these same or 
similar views to represent the all primitive views of the 
kernel-1, of course we also can use (1 0) and (0 1) to 
represent the all primitive views of the kernel-2, in other 
words, a set of characteristic views in a kernel will have a 
few representative views which will be a small subset of 
all primitive views of the kernel, then we used it for 
image texture classification, it may save a lot of 
calculation work and computation time but still achieve a 
reasonable classification accuracy. These views which we 
selected to describe the characteristic of a texture image 
and used for image texture classification are called 
characteristic views. All algorithms based on K-View 
which will be introduced later used the characteristic 
views as texture feature. 

We can derive characteristic views set which includes 
K views for each kernel using the K-means algorithm, K 
may vary for each kernel, a larger K usually means it  can 
be extracted a more representative set of characteristic 
views. Just like Figure 1 (d), we may obtain 2 
characteristic views (i.e. (1 0) and (0 1), K=2) by k-
means from Kernel-1. There is a same set of 
characteristic views (i.e. (1 0) and (0 1)) in kernel-1 and 
kernel-2, therefore, characteristic views of each texture 
class can not represent their class good enough to 
discriminate these two types of texture class, and we don't 
think this view size  an optimum size in this example. 

III. THE K-VIEW ALGORITHMS 

In this section, five different K-View based algorithms 
will be briefly reviewed. 

A. The K-View-Template Algorithm (K-View-T) 

The K-View-T algorithm is briefly described in the 
following parts. 

Step 1: Select a sample sub-image for each texture 
class randomly in the area of the corresponding texture 
class from the original image. In other words, N sample 
sub-images will be selected for N texture classes. 

Step 2: Extract a primitive view set from each sample 
sub-image and form a primitive view set S. 

Step 3: Determine the value of K for each view set, and 
derive a K-View of characteristic view set denoted by Cvs, 
from each kernel use the K-means algorithm. The 
parameter K may vary from each texture class. 

Step 4: In the classification process, each view, says V, 
of an image being classified will be compared to each 
characteristic view in all the characteristic view sets of all 
texture classes. 

Step 5: If the best matched characteristic view belongs 
to characteristic view set M, classify all pixels in the view, 
V, from the original image to class M. (If the view is 
regarded as a neighborhood of one pixel, classify that 
pixel only into class M), M is from 1 to N. 

Step 6: Repeat steps 4 and 5 for each pixel in the 
original image being classified. 

Steps 1-3 are used for training which establish a 
prototype for each texture class. Steps 4-6 are used for 

classification which will class each pixel in original 
image into a certain type.  

B. The K-View-Datagram Algorithm (K-View-D) 

The K-View-D algorithm is described in the following 
steps, similar to the K-View-T algorithm, steps 1-4 are 
for training and steps 5-7 are for classification: 

Step 1-3: Same as Step 1-3 in the K-View-T algorithm. 
Step 4: Based on the characteristic view set Cvs, we 

calculated a datagram (D) for each of the N sample sub-
images. According to Equation 1, normalize each 
datagram D (DN). We call these N normalized datagrams 
coming from sample sub-images the sample datagrams 
(DS). 

1 , 2 , 3 ,( )kD d d d d= ⋅ ⋅ ⋅                        (1) 

1

k

i
i

T d
=

= ∑                               (2)  

1 2 3( / , / , / / )N kD d T d T d T d T= ⋅⋅ ⋅                    (3) 

Step 5: Scan the entire image using a window of M×M 
pixels, and obtain the normalized datagram for each 
window. Calculate the differences between the 
normalized datagram and each of the N sample datagrams 
(Ds), and classify the central pixel of the windows to the 
class, such that the difference between the sample 
datagram of the class and the normalized datagram is the 
minimum. The difference (Dif) between a normalized 
datagram (DN) and a sample datagram (Ds) can be 
obtained by the following equations. 

1, 2, 3,( )N N N N NkD d d d d= ⋅⋅⋅                     (4) 

1, 2, 3,( )S S S S SkD d d d d= ⋅⋅⋅                       (5) 

1
| |

k

Si Ni
i

Dif d d
=

= −∑                          (6) 

Step 6: Same as Step 5 in the K-View-T algorithm.  
Step 7: Repeat steps 5 and 6 for each pixel in the 

original image being classified. 

From the steps mentioned above in K-View-D, we may 
find that unlike K-View-T algorithm, the decision is 
made by a single view whose center is located at the 
current pixel being classified, in K-View-D algorithm, 
the decision is made by the distribution of all the views 
contained in a large block in which the current pixel is 
the center of the block. 

C. The K-View Using Rotation-Invariant Feature 
Algorithm (K-View-R) 

The K-View-R algorithm consists of two processes 
which are the training process and the classification 
process similar to K-View-T and K-View-D algorithms. 
The scheme of two processes is shown in Figure 2[11]. 
 

There are two enhancements to improve the original 
K-View-T algorithm and K-View-D algorithms in K-
View-R algorithm. 
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1) The extract method of Characteristic Views Set. 
In the original K-View-T and the K-View-D 

algorithms, the characteristic views can be learned by 
unsupervised clustering algorithms such as the k-means, 
however, being different from the method above, the 
characteristic views are randomly and directly selected 
from the view set of kernel in each texture class in the K-
View-R algorithm. 

2) The correlation-matching method between views. 
The K-View-T compares the similarity between a view 

and all characteristic views directly, while the K-View-D 

computes the histogram distribution of the characteristic 
views for each texture class and the comparison is 
transformed into between the histogram of the view and 
the histograms of each texture class. In the K-View-R 
algorithm, in order to achieve high classification accuracy, 
six significant rotation-invariant features named Mean, 
Standard Deviation, Entropy, Skew, Kurtosis and 
Histogram are extract, with all the characteristic views 
used being transformed into rotation-invariant features in 
this algorithm. Those features provide a good 
discrimination of textures.  

 

Texture Image 

Select sample  
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Randomly generate 
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view set 

Extract the 
rotation-invariant  

features  

Save rotation-invariant features 
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Classified 
result 
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process 
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Figure 2. Training process and classification process of K-View-R. 

D. The Fast Weighted K-View-Voting Algorithm (K-
View-V) 

The K-View-V algorithm is an innovative efficient 
approach to improve K-View-T algorithm. Use a novel 
voting method for texture classification and an 
accelerating method based on the efficient Summed 
Square Image (SSI) [13] scheme and Fast Fourier 
Transform (FFT) for fast processing. The basic ideas of 
these two different algorithms (i.e. K-View-V and K-
View-T) are alike. Therefore, we will be only discussing 
the crucial differences between them detailed. 

Before the introduction of the group decision method 
made by weighted voting, we explain the concept of 
neighborhood supporters firstly.  

1) Neighborhood supporters 
Take an example shown in Figure 3, one pixel of the 

image may have many views which contain the current 
pixel are all correlated to it. Therefore, these views which 
are called neighborhood supporters (i.e. correlative views) 
should be given an opportunity to decide which texture 
class that this pixel belongs to. If the view size is m by n, 
for each pixel there will be m× n different correlative 
views consisting of the corresponding pixel.  

m

n ... ...

m n×

m

n

...

...

...

...

Figure 3. The correlative views of a pixel. 

2) Group decision strategy  
In K-View-V, let d be the distance between a view and 

a texture class which is equal to the minimum Euclidean 
distance between the view and all views in characteristic 
views corresponding to this texture class. Therefore, the 
similarity s between a view and a texture class can be 
defined as the formula: 

2

1s
d

=                                         (7) 

To some extent, the view with more similarity to a 
certain texture class should be given the more powerful 
vote on this class. However, when a view spans the 
boundary of different texture class images, it contains 
mixed pixels from different classes, so the appearance of 
the view looks like several texture classes. This brings 
that the loyalty of the view to the multi-classes has 
dispersed. K-View-V quantifies the loyalty for a view to 
the jth class by uj defined as the formula: 

2

2

1

1/

1/

j
j K

k
k

d
u

d
=

=

∑                                     (8) 
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Here K is the number of the texture classes. In 
summary, if the number of views in the neighborhood 
supporters and texture class are respectively V and K, a 
voting weight matrix W with the size V×K can be defined 
as 

, ,i j i jW u=                                      (9) 

Where ui,j is the loyalty for the ith view to the jth class, 
and di,j is the distance between the ith view and the jth 
class, both of them can be explained above. Then let each 
view in the current pixel’s neighborhood supporters take 
a vote on each texture class (i.e. the vote is the 
corresponding weight factor) in matrix W. Therefore, the 
best-matched texture class is supported by the most 
weighted votes by taking the maximum among the 
weights, that is the Pth class with the P which is 
calculated as in Equation (16): 

,1 ,2 ,
1 1 1

arg(max( , ,..., ))
V V V

i i i K
i i i

P W W W
= = =

= ∑ ∑ ∑        (10) 

3) Summed Square Image (SSI) and FFT method 

In K-View-T, it needs to compare an incoming/being 
classified view with each characteristic view of each 
texture class directly. Take two views (i.e. V1 and V2) 
with the same view size m×m for example, the Euclidian 
distance between two views is d which can be obtained 
by the following equation: 

2
1 2|| ||d V V= −                                   (11) 

To calculate the Euclidian distance for views matching 
is the most time-consuming process. K-View-V uses an 
accelerating method based on the efficient Summed 
Square Image (SSI) scheme as well as Fast Fourier 
Transform (FFT) to enable overall faster processing. The 
method is briefly described as following. Through 
analysis we may find that the d can be calculated as: 

2 2 2
1 2 1 2 1 2|| ||d V V V V V V= − = + − ×             (12) 

Let V1 denote a view of the original image and V2 one 
of characteristic views belonging to a texture class. Just 
because we should calculate the Euclidian distance 
between all views in the original image and each 
characteristic view of each texture class, we may use SSI 
to calculate the part of V1  and FFT to calculate the part 
of 1 2V V×  more quickly. The second square must be 
calculated directly. 

1) SSI Calculations 

Liu et al. proposed an image de-noising method [13] 
using the SSI method which is based on the integral 
image concept [14]. Rectangle features can be computed 
very rapidly using an intermediate representation for an 
image which is called an integral image. Liu et al. 
extended the integral image to their SSI [13] method. In 
SSI, the pixel value at location (xo, yo) contains the 
squared value of each pixel in the original image above 
and to the left of x, y, inclusively: 

2

,
( , ) ( , ) , , (1, )

O O

o o
x x y y

SSI x y I x y x y m
≤ ≤

= ∈∑          (13) 

where I(x, y) is the pixel value in the original image. 

 
Figure 4.  An SSI (Summed Square Image) illustration. 
For example, if we need to calculate the sum of squares 

in region D (this region is denoted the corresponding 
region in the original image) as it is shown in Figure 4, it 
can be obtained as follows: 

D A B C D A A C A BS S S S S= + − −U U U U U                             (14) 

From the SSI shown in Figure 4 ,we can see that: 

2, 2 1, 1

2, 1 1, 2

( ); ( );
( ); ( )

A B C D A

A C A B

S SSI x y S SSI x y
S SSI x y S SSI x y

= =

= =
U U U

U U

         (15)                       

Therefore, we may obtain an equation as follows: 

2, 2 1, 1 2, 1 1, 2( ) ( ) ( ) ( )DS SSI x y SSI x y SSI x y SSI x y= + − −       (16) 

Therefore, each pixel in the SSI can be calculated in 
only one pass over the original image. The computational 
complexity for computing SSI is O (P2) (P2 is the original 
image size). The SSI can be obtained in linear time 
proportional to the image size.  

2) The Fast Fourier Transform (FFT) method 

The last term of equation 12 1 2V V× can be calculated 
quickly with multiplication using the FFT [15]. Assuming 
that the view size is all m×m (m is odd in general), we 
flip the characteristic view, V2, from right to left and up 
to down, as shown in Figure 5. In this manner we may 
derive a new view (flipped) which we denote it V3, then 
compute two-dimensional convolution of views V1 and 
V3. We can derive a (2×m-1)×(2×m-1) matrix denoted by 
MAT. According to the Convolution Theorem, the 
following equation can be easily obtained: 

1 2( , ) / 2MAT m m V V= ×                                 (17) 

 
Figure 5.  An original view and its flipped view. 

Since we need to compare an incoming/being 
classified view with each characteristic view of each 
texture class, we can calculate the two-dimensional 
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convolution of V3 and the padded image which we call 
PadI. The convolution is formulated below: 

3 3( , )* ( , ) ( ( ( , )) ( ( , )))V x y PadI x y IFFT FFT V x y FFT PadI x y⇔    (18) 

where “*” is convolution operation symbol, 
IFFT(FFT(V3(x, y))FFT(PadI(x, y))) means  to compute 
the two-dimensional FFT of V3 and PadI, then multiply 
them together, and take the inverse FFT. 

E. The K-View Using Gray Level Co-Occurrence Matrix 
(K-View-G) 

The GLCM model is a second-order statistics which 
calculates how often different combinations of pixel 
brightness values (grey levels) occur in an image. GLCM 
matrices are used to record the spatial relationship 
between pixels and their properties [10], and then the 
statistics of GLCM will be derived. These statistics 
include uniformity of energy, entropy, maximum 
probability, contrast, inverse difference moment, 
correlation, probability of a run of length, homogeneity 
and cluster tendency [10]. These features can be used in 
the classification of texture images.  The GLCM is 
represented in a 2-Dimensional array (i.e. table). We take 
an image with a size of M×N and let ( , )P i j  be an element 
of the GLCM matrix. Hence, ( , )P i j  represents the 
frequency of occurrences of pair pixels which are 
separated by distance δ  and angle α . Matrices with 
different angles and distances can be described as:{e(m,n) 
= i, e(m+ δ α ,n+ δ α ) = j, m (1, 1)M∈ − , 
n (1, 1)N∈ − ,α ∈{0o, 45o, 90o, 135o},δ ∈R},where δ  is a 
real number and α is one of four directions (0o, 45o, 90o, 
135o).  In this paper, we used the GLCM method in the 
K-View-G algorithm for our implementation in the 
experiments, which is briefly described in the following 
steps: 

Step 1-3: Same as Step 1-3 in the K-View-T algorithm. 
Step 4: In the classification process, each view (a small 
image block), says V, of an image is classified. Firstly 
compute the GLCM feature vector (i.e. the vector is 
compose of Contrast, Correlation, Energy, Homogeneity 
and Mean) values of K center view of each sub-image. 
Then compute the GLCM feature vector values of the V. 
If the best matched characteristic view belongs to 

characteristic view set M, classify all pixels in the view, 
V, from the original image to class M. (If the view is 
regarded as a neighborhood of one pixel, classify that 
pixel only to class M). We use Euclidean distance as the 
comparison method. 

Step 5: Repeat steps 4 for each pixel in the original 
image being classified.     

F. The Proposed Combinatorial Algorithm 

In order to utilize the K-View-V and K-View-R 
respective advantages in the best measure, we propose a 
scheme to incorporate those two K-View based method. 
The scheme of K-View-VR is shown in Fig. 7. 

The steps of this new combinatorial method can be 
described as follows: 

Step 1: Selecting sample sub-image randomly for each 
texture class from the originally classified image; 

Step 2: Selecting characteristic views. In this step, two 
types of characteristic view sets are produced for K-
View-R and K-View-V method respectively. This is to 
say, the first type of characteristic view set will be 
generated by K-means algorithm or fuzzy c-means 
algorithm for K-View-V approach. On the other hand, 
another type of characteristic view set is extracted 
randomly from each sample sub-image for K-View-R 
approach. 

Step 3: Calculate the loyalty1 for each pixel being 
classified by using K-View-V approach. Calculate the 
loyalty2 for each pixel being classified by using K-View-
R approach. 

Step 4: Voting. In this step, a simple fusion method 
was used to yield a final loyalty for this pixel being 
classified. The fusion method is shown in the following 
equation.  

Loyalty=max (loyalty1, loyalty2)              (19) 
Step 5: Classify the pixel to a class when getting the 

max loyalty. 
Step 6: Repeat steps 3, 4 and 5 for each pixel in the 

original image being classified. 
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Figure 6.  The entire training process and classification process of K-View-VR. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this section, experiments for a number of image 
textures were performed with the characteristic views 
texture features and different five K-View based 
algorithms as stated in the previous sections. Those 
algorithms were tested on a set of variety representative 
texture images include coarse texture, irregular texture 
and regular texture which were obtained randomly from 
Brodatz Gallery [16]. The size of these artificial images is 
150×150 pixels. In our experiments, all K-View based 
algorithms were implemented with same number of 
characteristic views (i.e. K) and view size, we choose 
K=30, which means that there are 30 characteristic views 
for each texture class. The view size was set to 7×7. The 
features used in GLCM include contrast, correlation, 
energy, homogeneity and mean. Other parameters were 
set as follows: distanceδ = 1, α = {0 o,45 o,90 o,135o }, 
gray-level = 16, we ran experiments on GLCM model 
with 0o, 45o, 90o and 135o four directions respectively, 
and selected the optimum one as the final results. 
Classified results of all texture images with different K-
View based algorithms are shown in Figure 6. 

By comparing experimental results shown in Figure 6 
and 7 ,we can see that the proposed combinatorial K-
View-VR algorithm performs better than those of K-

View-T, K-View-D, K-View-R, K-View-V and K-View-
G, and it can achieve overall better classification 
accuracy. The average classified right ratio which is 
obtained through the proposed method obtained is o.9810, 
while the ratios of K-View-T, K-View-D, K-View-G, K-
View-R, K-View-V are 0.9217, 0.8932, 0.8608, 0.9377 
and 0.9712 respectively. Classified results of K-View-T, 
K-View-R and K-View-G are not very good in interior 
regions as shown in Figure 6 a(2), a(4), a(5),d(2), d(4), 
d(5) and so on, and many pixels were misclassified in the 
interior regions. On the contrary, the K-View-D, K-View-
V and the K-View-VR gave higher classification 
accuracy in interior regions; moreover, the pixels near 
boundary areas classified by K-View-VR are more 
correctly classified. But K-View-D makes the classified 
boundaries distorted, such as c (3), h (3), with many 
pixels misclassified which are all located near the 
boundaries. From the Figure 7, we also can find that K-
View-V and K-View-VR are more robust than other four 
algorithms. The reason is that K-View-V uses group 
decisions made by weighted voting, and it makes the 
decision more reasonable and has a better performance. 
In addition, the proposed combinatorial K-View-VR can 
take the advantages of K-View-R and K-View-V, 
therefore, the proposed method achieves the better 
performance compared with K-View-R and K-View-V 
methods.  

 

a (1) a (2) a (3) a (4) a (5) a (6) a (7) 
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b (1) b (2) b (3) b (4) b (5) b (6) b (7) 

c (1) c (2) c (3) c (4) c (5) c (6) c (7) 

d (1) d (2) d (3) d (4) d (5) d (6) d (7) 

e(1) e (2) e(3) e (4) e (5) e (6) e (7) 

f (1) f (2) f (3) f (4) f (5) f (6) f (7) 

g (1) g (2) g (3) g (4) g (5) g (6) g (7) 

h (1) h (2) h (3) h (4) h (5) h (6) h (7) 

Figure 6.The classified results of the texture images with different K-View algorithms. a(1) An original image, classified result with  K-View-T, K-
View-D, K-View-G, K-View-R, K-View-V and the proposed K-View-VR are shown in a(2),a(3),a(4),a(5), a(7)and a(6) respectively, The classified 

results of original image Figure 6 b(1)- Figure 6 h(1) may be shown in Figure 6 deduced by analogy. The white lines are drawn on the top of 
classified results to show the actual boundary. 
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Figure 7. Classified right ratios of each texture image classification with different K-View algorithms 
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TABLE I. 

COMPUTATION TIME(S) OF EACH TEXTURE IMAGE CLASSIFICATION WITH DIFFERENT K-VIEW ALGORITHMS  

Sequence 
number K-View-T K-View-D K-View-G K-View-V K-View -R K-View -VR 

1 37.67 1258.72 177.00 17.97 15.78 33.78 

2 36.78 1224.26 151.43 17.93 11.84 28.98 

3 38.34 1229.12 160.10 18.30 17.69 35.75 

4 35.84 1176.76 150.43 17.65 12.28 29.58 

5 36.41 1210.24 152.55 17.82 11.02 28.24 

6 36.00 1178.20 160.40 17.98 12.22 29.52 

7 35.95 1183.10 155.61 18.02 10.20 28.00 

8 37.53 1181.59 147.22 17.56 11.98 29.22 

Average 36.81 1205.24 156.84 17.9 12.88 30.38 

 

As to the computation time, we know that K-View-V is 
much faster by using the SSI and FFT methods. From the 
Table 1, we can also see that K-View-D algorithm takes 
more computation time which is from 10 to 100 
magnitudes of time that is used in other K-View based 
algorithms,  because  this algorithm needs to calculate the 
datagram (DN) of original texture image. K-View-G 
should calculate the GLCM and features of each views in 
original images and characteristic views, so it is also 
much slower than other algorithms. Due to the 
combination of K-View-V and K-View-R in K-View-VR, 
the K-View-VR achieves the best classification accuracy 
at the cost of computation time.  

V. CONCLUSIONS 

In this paper, a combinatorial K-View based algorithm 
which attempts to incorporate the advantages of the K-
View-R and K-View-V is presented. Experimental results 
show that the K-View-VR algorithm achieves 
encouraging classification accuracy compared with other 
K-View based algorithms, which is more robust and 
accurate.  

From the image process of these algorithms, we may 
also find that these algorithms have some weaknesses or 
disadvantages in common. We concluded them and 
provided the possible improvement of these algorithms as 
following: firstly, these algorithms have a shortcoming by 
refering to supervise classification method. Because 
unsupervised method has more actually applied value, it 
is the right time to research the method which can 
determine the number of the texture class auto in future 
work. Secondly, by increasing the view size and number 
of characteristic views, the classification accuracy will be 
increased at the expense of processing time, so we need 
to explore an intelligent method which can determine 
these parameters in the future. 

ACKNOWLEDGMENTS 

This study was supported in part by the China 
International Science and Technology Cooperation 

Project (Grant No. 2009DFA12290), and by the Huaihai 
Institute of Technology Natural Science Foundation 
(grant No. Z2009013). 

REFERENCES 

[1] C Palm. Color texture classification by integrative Co-
occurrence matrices. Pattern Recognition, 2004, 
37(2004):965-976. 

[2] CaS-CA, R Rangel-Kuoppa, M Reyes-Ayala, et al. high-
order statistical texture analysis-font recognition applied. 
Pattern Recognition Letters, 2005, 26(2005):135-145. 

[3] M Partio, B Cramariuc, M Gabbouj, et al. Rock Texture 
Retrieval Using Gray Level Co-occurrence Matrix. In Proc. 
of 5th Nordic Signal Processing Symposium, 2002.   

[4] Oriol Pujol. Texture segmentation by statistic deformable 
models, International Journal of Image and Graphics. 4(3) 
(2004) 433- 452. 

[5] J.Havlicek, D.Harding, and A. Bovik. The multi-
component AM-FM image representation, IEEE 
Transaction on image processing. 5(6)(1996)1094-1100. 

[6] Chen D, Wang L.1991. Texture features based on texture 
spectrum. Pattern Recognition, 24:391-399 

[7] Haralick, R. M. and L. G. Shapiro, Computer and Robot 
Vision, (Volume I and II), Addison Wesley, 1993. 

[8] C. C. Hung, S. Yang, and C. Laymon, Use of 
Characteristic Views in Image Classification. In 
proceedings of the 16th International Conference on 
Pattern Recognition, Quebec, Canada, August 11--15, 
2002.  

[9] Yang, S. and C.-c. Hung, Texture Classification in 
Remotely Sensed Images. In proceedings IEEE Southeast 
Con 2002, 2002: p. 62-66. 

[10] Yang S., C.C. Hung, Image texture classification using 
datagrams and characteristic Views. In proceedings of the 
2003 ACM symposium on applied computing, 2003, pp.22-
26. 

[11] H Liu, S Dai, E Song, et al., A New K-View Algorithm for 
Texture Image Classification Using Rotation-Invariant 
Feature. In proceedings of the 2009 ACM Symposium on 
Applied Computing, 2009: 914-921. 

[12] H. Liu, Y. Lan, Q. Wang, R. Jin, E. Song, and C. Hung, 
"Fast weighted K-view-voting algorithm for image texture 
classification", Opt. Eng. 51, 027004 (2012), 
DOI:10.1117/1.OE.51.2.027004 

226 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER



[13] Y. L. Liu, J. Wang, X. Chen, Y. W. Guo, and Q. S. Peng. 
A robust and fast non-local means algorithm for image 
denoising. Journal of Computer Science and Technology, 
vol. 23, pp. 270-279, 2008. 

[14] P. Viola and M. Jones. Rapid Object Detection using a 
Boosted Cascade of Simple. In proceedings of the IEEE 
Computer Society Conference on Computer Vision and 
Pattern Recognition. Vol. 1, pp. I511-I518. 2001. 

[15] J hne, B. Digital image processing: concepts, algorithms 
and scientific applications. 1991: Springer-Verlag London, 
UK. 

[16] P. Brodatz, Textures: A Photographic Album for Artists 
and Designers: New York: Dover Publications, 1966. 

 
Yihua Lan received his Ph.D. degree in 
Computer Science from the School of 
Computer Science and Technology, 
Huazhong University of Science and 
Technology,Wuhan(HUST) in 2011, 
now he held teaching and research 
positions at School of Computer 
Engineering, Huaihai Institute of 
Technology (HHIT), Jiangsu, China. His 

research areas are image processing and analysis. His research 
interests include PDE methods for image processing, iterative 
methods, Krylov subspace methods, optimization algorithms, 
and artificial intelligence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Yong Zhang received the M.S.degree in 
in School of computer science, SuZhou 
University in 2007, China. His M.S. 
subject is digital image processing.  He 
held teaching and researching positions 
at the School of Computer Engineering, 
Huaihai Institute of Technology, where 
he has been an instructor. His research 
interests include image processing and 
machine vision. 

 
 
 
 

Haozheng Ren received the M.S.degree 
in computer engineering, China, in 2006, 
from the Lanzhou University of 
Technology. She is currently a teacher of 
the School of Computer Engineering, 
Huaihai Institute of Technology, where 
she has been an Instructor since 2008. 
Her research interests include PDE 
methods for image processing, iterative 
methods, Krylov subspace methods, and 

parallel algorithms. 
 

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 227

© 2013 ACADEMY PUBLISHER


