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Abstract—Query processing has attracted significant 
attention since XML database is proposed. This paper 
focuses on structural join mainly in our native XML storage 
and query system (XSQS). A hybrid structural join strategy 
based on tree-merge algorithm and stack-tree algorithm is 
proposed. Moreover, a path index scheme is designed to 
accelerate the query processing. Experimental results show 
that the proposed hybrid strategy and the index have a good 
performance in query processing of XSQS. 
 
Index Terms—Query Processing, Structural Join, Path 
Index, XSQS 
 

I. INTRODUCTION 

XML [1] has become the standard in data 
representation and data exchange on web. XML data 
grows exponentially every year, making the native XML 
database attracting more and more attention. Large 
numbers of research papers have been published on 
native XML database, particularly in the aspect of query 
processing, which is one of the most active research 
topics.  

Query processing strategies generally include 
navigation-based strategy, join-based strategy and the 
mixed mode strategy. XSQS (XML Storage and Query 
System) applies the join-based processing strategy, in 
particular structural join. The main idea of structural join 
is decomposing a complex query pattern into several sets 
of basic binary structure relationships, evaluating the 
binary structure relationships, and then combining the 
matched results. In this processing strategy, evaluating 
the basic structures of the relationships is the key issue, 
which includes parent-child relationships and the 
ancestor-descendant relationships. In order to improve the 
efficiency of query processing, developing structural join 
algorithm is a crucial issue, because a proper algorithm 
that fits the query processor can reduce the I/O or the 
time complexity. The contributions of this paper are 
summarized as follows: 

(1) The native XML database XSQS is introduced, 
with general description of the query processing. 

(2) We realize a hybrid structural join strategy on 
XSQS. Accordingly, a modified tree-merge 
algorithm for matching parent-child relationships, 
and a modified stack-tree algorithm for 
ancestor-descendant relationships are proposed. 
Moreover, a path index based on hierarchy 
encoding scheme is developed, which aims at an 
efficient access to the elements satisfying specific 
conditions. 

(3) Finally, experiments are conducted to show the 
performance of the proposed approaches in XSQS. 

The rest of the paper is organized as follows. Section 2, 
presents related work, followed by the general overview 
on query processing emphasizing on the proposed index 
model in XSQS in section 3. Section 4, describes the 
structural join algorithms. In section 5, experiments are 
conducted to evaluate the proposed query processing 
strategy. Finally, a summary concludes this paper in the 
last section. 

II. RELATED WORK 

Structural join is the key issue in join-based query 
processing strategy, and a lot of papers have been 
proposed to develop an effective structural join algorithm 
so far. S. Al-Khalifa et al. [2] proposed a Tree-Merge 
algorithm, and C. Zhang et al. [3] developed an algorithm 
named Multi-Predicate Merge Join. Both of them used 
some conditions to guide the join process, targeting at   
reducing repeating scan of the candidate node lists. 
Besides, S. Al-Khalifa et al. [2] proposed another 
algorithm called Stack-Tree which was based on 
Tree-Merge algorithm. The Stack-Tree algorithm keeps a 
stack to store ancestor nodes, in order to get only one 
scan of the ancestor node list and the descendant node list. 
S. Y. Chien et al. [4] improved Stack-Tree algorithm by 
applying B+ tree indexing, through which the invalid 
nodes can be skipped. All of the above structural join 
algorithms judge the relationships by using an encoding 
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schema. One of the most common encoding schemes is 
region-based encoding schema, which is similar to our 
encoding scheme in XSQS. There are some novel 
labeling schemes that support the update operations, like 
CFE [5] or VLEI [6]. They avoid re-labeling nodes to 
efficiently process the updates, which is also our future 
work needs to do. 

Applying efficient structural join algorithm is one way 
to improve query processing, and another approach is 
developing a summary index for query processor. 
Summary index establishes a simplified XML tree based 
on paths occurred in XML documents, and as a result, 
there are not existing two nodes that share the same path 
in the tree. DataGuide is probably the first summary 
index, which is proposed in [7], every label path in it 
occurs once and only once. B. F. Cooper et al. [8, 9] 
presented Index Fabric index from Patricia Trie tree, by 
marking every label path with a string encoding, and then 
inserting the string encoding into Patricia Trie tree. When 
the query processor executes queries, it turns out to do the 
string matching. For the purpose of adapting to dynamic 
changes of queries, making the high frequency queries 
have better performance, C. W. Chung et al. [10] came up 
with APEX index. APEX introduces a hash structure to 
store label nodes in high frequency queries, it is similar to 
the effect of Caching. When evaluating a new query, the 
query processor will search hash table firstly to find 
whether there are target nodes. 

III. QUERY PROCESSING IN XSQS 

Before going into the query processing in XSQS, a 
general overview of new version XSQS is shown in 
Figure 1(see [11] for details of previous version), only the 
modules corresponding to the query processing are 
described. The architecture of XSQS mainly consists of 
several parts: XML loader, storage manager, query 
engine and index manager. Considering the intimate 
connection between XML loader and storage manager, 
we will introduce them together in the following 
part.

 
A. The XML Loader and Storage Manager 

To store the XML data, XSQS designs a model of 
pages managing based on the compressed table of 
information. It stores two parts of information: the 
control information of XML documents and XML 
document data in files. 

The XML loader (see [12] for details) is designed to 
efficiently parse XML data. It uses the SAX parser to 
analyze XML data and the corresponding information is 
passed to our DOM tree-like structure (an extension of 
the W3C DOM interface) to rebuild a DOM tree. During 
the period of the processing, a thread management is 
applied to improve the performance of loading. 

When finishing the DOM tree, the storage manager 
traverses the tree to generate three parts of information: 
symbols data, string data and node records. Symbols data 
specifies the label names occur in XML document, while 
string data saves the actual data value of document and 
node records record all nodes of document. Node records 
keep the document structure information which is the key 
to reconstruct a XML tree. XSQS denotes nodes by a 
region-based encode scheme <sIndex, eIndex, level> (the 
first region-based encode scheme is proposed in [13]), 
which stores the location of node in XML tree. The 
node’s sIndex represents the value of pre-order traversal 
(e.g., sIndex of root node is 1), the eIndex represents the 
maximum sIndex of this node’s subtree and the level is 
the depth of node in XML tree (e.g., level starts from 1). 
Therefore, it’s convenient to judge the relationships 
between two nodes A and D: 

ancestor-descendant relationships: A.sIndex < 
D.sIndex and A.eIndex > D.eIndex and A.level < D.level 

parent-child relationships: A.sIndex < D.sIndex and 
A.eIndex > D.eIndex and A.level +1= D.level 

B. The Query Engine 
The query engine manages the query processing in 

XSQS, the general procedure includes query parsing and 
query execution (query optimization is an important part 
of query engine, but it is outside the scope of this paper, 
so we exclude it), as shown in Figure 2. Firstly, the query 
engine calls parser interface to analyze the query 
statement into an abstract query tree. After that, it calls 
the Tree Walker interface recursively to execute the 
processing taking the abstract tree as input. Finally, the 
Result Set interface is called to generate result sets. 

  
In XSQS, JavaCC (Java Compiler Compiler) is applied to 
parse the queries, which is a popular open-source 
grammar generator. If the query is “/site/regions//item 
[quantity=1]/name”, then an abstract tree is generated 
after calling the parser, is shown as Figure 3. 

 

Figure 2. Query Engine 
 

Figure 1. XSQS’s Architecture 
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This query execution is implemented by Tree Walker, 

whose function is traversing the query tree and calling 
Result Set to get results. It’s a left-deep traversal of the 
abstract tree, but a right association operation to get query 
results. When traversing the abstract tree, Tree Walker 
uses its own query result set to generate some new query 
result sets, called intermediate results, and then it filters 
the intermediate results recursively until getting the final 
results.  

Result Set is the interface to get data from storage 
manager (or the index manager) and provide join 
operation functions. It keeps the results in a structure 
named IntArray which can be seen as a two-triple list. 
Each element stores two values of a node, which are the 
node’s sIndex and its parent node’s sIndex, denoted as 
<node.sIndex, parentnode.sIndex>. Considering the 
recursive processing of getting the final results, IntArray 
is more properly represented as <node.sIndex, 
ancestornode.sIndex>. For example, the query 
“/site/regions//item [quantity=1]/name” will get final 
result IntArray as <node (“name”).sIndex, node (parent 
of “site”).sIndex> (here node (parent of “site”).sIndex=0). 
IntArray is the main structure for structural join 
operations. To reduce the accesses to disk, we use the 
structural join algorithm, and a detail description is given 
in section 4.  

XSQS considers seven types of join operations in 
query plan, which are summarized in Table I, including 
the corresponding functions defined in Result Set.  

C. Index Manager 
When evaluating the query, Result Set can get the data 

directly from storage manager or through the index 
manager. Calling the storage manager to get nodes 
matched a given name is a traversal processing through 
accessing all nodes stored in the data file to find the 
matched ones. However, index manager builds a path 
index tree to provide a way to obtain matched nodes for 
the given name, moreover, the set of nodes are 
conforming to the query statement. In that case, index 
manager has greatly reduced the size of intermediate 
results, making the number of join operations much 
smaller.  

The main idea of path index is making use of path 
information in XML document tree, combining the nodes 
that share the same path as a new one. In that condition, 
each node of the path index tree definitely has a path and 
the only. A hierarchy encoding scheme is used in path 
index tree to represent the path information of node. 
Unlike the region-based encode scheme (<sIndex, eIndex, 
level>), hierarchy encoding is a kind of width-first 
encoding scheme. The definition is as follows: 

(1) If N is the root node of a XML document tree, its 
hierarchy encoding ID is 0, Hid (N) =0; 

(2) If N is a child of root node, its hierarchy encoding 
ID is a binary sequence according to its position among 
all its siblings. That is, if N is the ith (starting from 0) 
distinct element in this level of the XML document tree, 
then N’s hierarchy encoding ID is a binary sequence 
whose ith bit ,from the right side to left side, of the binary 
sequence is set to 1, while all other bits are set zeros.  

(3) If N is a node not in condition (1) and (2), its 
hierarchy encoding ID is a binary sequence made up of 
two parts, S1 and S2 (Hid (N) =S1·S2), in which S1 is the 
encoding ID of N’s parent and S2 is the binary sequence 
representation for i which is the ith child among all the 
siblings in the same level. 

Through the hierarchy encoding scheme, it is 
convenient to judge the relationships between XML 
nodes (for details see [11, 12]).  

 

TABLE I.   

JOIN OPERATIONS IN XSQS 

No. Join Type function in Result Set 

1 A / B newNamedParentofNamedChild 

2 A / ResultSet namedParentofEvaledChild 

3 ResultSet / B namedChildofEvaledParent 

4 ResultSet / ResultSet evalParent 

5 A // ResultSet namedAncestor 

6 ResultSet // ResultSet evalAncestor 

7 ResultSet[B] or ResultSet [@B] newLeafNodeList 

 
Figure 3. Abstract Query Tree 
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After the XML loader parsers XML document into 
DOM tree, index manager generates path index tree 
according to the DOM tree, with a hierarchy encode for 
each tree node. During the structural join process, list of 
sIndexs that represent specific tree nodes are served as 
input to Result Set. So, if Result Set wants to get the 
nodes by index manager, there is a necessary process that 
path tree need to do. That is, corresponding the hierarchy 
encode to a list of sIndexs and keeping the list in path tree. 
This process can be seen in Figure 4. 

 Index manager provides supper set of accurate results 
for query. Taking the query “/site/regions//item 
[quantity=1]/name” for example. Assuming the situation 
that Result Set needs to get nodes from data file, whose 
name equals “name”. If Result Set gets nodes from 
storage manager, then it will get all the nodes that have 
the name “name”, while index manager will get nodes 
that have the name “name” and under the path 
“/site/regions//item [quantity]” (not path 
“/site/regions//item [quantity=1]/name”, because the path 
index doesn’t support predication operation), and there is 
an extra filtering operation ” item [quantity=1]” needs be 
done. Supposing another query “/site/regions//item/name”, 
then index manager can directly get the final result set, 
that is, the set of element nodes named “name” and under 
the path“/site/regions//item”. 

 

IV. STRUCTURAL JOIN 

As mentioned above, IntArray is the main structure for 
structural join in XSQS, and each element in it is the 
form of <node.sIndex, ancestornode.sIndex>. 
Furthermore, IntArray is ordered by sIndex when it is 
generated from data file.  

Considering IntArray DList (d1, d2,..., dm) in size m 
and IntArray AList (a1,a2,…,an) in size n, represent two 
lists of candidate nodes as inputs for structural join, then 
the output is a new IntArray resultList that satisfies 

parent-child (or ancestor-descendant) relationships. The 
resultList is sorted by child (descendant) node’s sIndex in 
ascending order. 

The traditional way for structural join is a 
traversal-style algorithm. That is, for each node ai in 
AList, judging relationships between ai and all nodes in 
DList. In that case, the parent-child relationships join has 
the time complexity O(m*n). As for the 
ancestor-descendant relationships, structural join needs to 
get all ancestor nodes of the descendant node, by 
recursively accessing data file through its parent node’s 
sIndex, and then checks the given node to see whether it 
is one of them. This process makes ancestor-descendant 
relationships join have time complexity O(m*n*h) and 
the I/O complexity O(m*h), h represents average depth of 
node in the XML tree. The time complexity of structural 
join is too high to accept, therefore some algorithms are 
considered to reduce it.  

A. Modified Tree-Merge-Desc Algorithm 
Tree-Merge-Desc algorithm [2] is the first try to 

achieve low time complexity. After a deep analyze on the 
algorithm, some modifications are done to adapt the 
query processing in XSQS. The main idea of Tree-Merge 
algorithm is finding the first ancestor node ai in AList that 
may satisfy the relationships for each node dj in DList, 
which is named scan start point. As for the node dj+1, it 
scans from scan start point of dj to get its own scan start 
point. There exists a condition in XSQS that 
dj+1.sIndex >= dj.sIndex but dj+1.parent-sIndex<= 
dj.parent-sIndex (it means dj+1.parent node is listed before 
the start scan point), then the Tree-Merge algorithm will 
skip the dj+1’s parent node. So, we do some modifications 
to avoid this situation. Figure 5 shows the modified 
algorithm for parent-child relationships joins in XSQS 
and Figure 6 shows the modified algorithm for 
ancestor-descendant relationships joins in XSQS. 

The modified Tree-Merge-Desc algorithm in XSQS 
has the time complexity O(m+n) for parent-child 
relationships join. However, for the ancestor-descendant 
relationships joins, the time complexity is O(m*n*h) and 
the I/O complexity is O(m*h), which are still 
unacceptable. We will discuss the improvement later.  

 

  1. Algorithm: Modified Tree-Merge-Desc  
2. Inputs: AList, DList 
3. Outputs: resultList 
4. Procedure: 

first-anc= AList.firstNode 
for(d= DList.firstNode; d!=null; d= d.nextNode){ 

     // An adding condition 
   while (first-anc>0&& d.parent-sIndex< first-anc.sIndex) first-anc - -; 
   //find the first node that can be parent of d  
   for (a= first-anc; a!=null && d.parent-sIndex >a.sIndex; a= a.nextNode); 
   first-anc=a;  

if (d.parent-sIndex =a.sIndex)  
Append (d.sIndex, a.parent-sIndex) to resultList;  

}  

Figure 5. Modified Tree-Merge-Desc for Parent/Child   

  1. Algorithm: MatchsIndex ( PathTree, sIndexList) 
2. Inputs: PathTree, sIndexList: represented as <sIndex, tagName, parentsIndex>; 
3. Outputs: The path tree with the matched sindex list in each node; 
4. Procedure: 

for(each node Si in sIndexList) 
Pi = findPathTreeNode(PathTree, Si.parentsIndex) 
for(each node Pci in Pi.childList) 

if(Pci.tagName = Si.tagName) 
          add Si.sIndex to Pci.sIndexList 
 

1. Algorithm: findPathTreeNode(PathTree,Si.parentsIndex) 
2. Inputs: PathTree, Si.parentsIndex; 
3. Outputs: Pi : the corresponding node in PathTree; 
4. Procedure: 

max_size = maxsIndex+1 
//If node N's sIndex is n, Hid(N)=h, then sIndextoEid [n]=h; 
sIndextoEid[max_size]  
for(each node Pi in PathTree) 

if(Pi.eid = sIndextoEid [Si.parent]) 
      return Pi 

 

Figure 4. Algorithm: Matching Hierarchy encode with sIndex 
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B. Modified Stack-Tree- Desc Algorithm 
Judging ancestor-descendant relationships by 

Tree-Merge-Desc algorithm still has a high complexity, 
which only uses parent node’s sIndex. Therefore, another 
algorithm named Stack-Tree-Desc [2] is developed with 
the encode scheme <sIndex, eIndex, level> to judge 
ancestor-descendant relationships. The traditional 
Stack-Tree algorithm specifies only one condition in 
structural join (AList and DList are not empty or the 
stack is not empty), this consideration is so rough that 
may make mistake. Therefore, we consider some special 
situations may occur in the algorithm, adding the proper 
procedure for each one to deal with. See the details of the 
modified algorithm in Figure 7.  

The I/O complexity of the algorithm is O(m) and time 
complexity is O(m+n), which are acceptable.  
 
 

V. EXPERIMENTAL EVALUATION 

In this section, we present experiments to verify the 
validity of the approaches in XSQS. All experiments 
were run on a machine with 2.53GHz Intel(R) Core(TM) 
i3 processor, 8GB memory, and the OS is win7.  

The popular XMark [14] data set are used in these 
experiments, with the size from 10MB to 40MB by 
10MB increments. We evaluate the structural join 
algorithms in XSQS with or without path index, to 
evaluate the performance of algorithms in different 
environment, furthermore, to figure out how the 
algorithms and index contribute to query performance. 
The experiments use sets of queries, shown in Table II. 
Q1 to Q3 have two ancestor-descendant relationships join 
operations in similar length. Q4 to Q6 have 
ancestor-descendant relationships join operations from 
one to three in similar length. This classification is used 
to present whether the algorithm has similar performance 
in a variety of queries.  

Here, the MST is short for Modified Stack-Tree 
algorithm, MTM for Modified Tree-Merge algorithm, 
and PI for Path Index.       

Figure 8 depicts the speedup ration of MST over MTM 
for Q1 to Q6 with PI (or without PI) in database size of 
20MB as an example. The experiments in database of 
other sizes show the similar effects. It is concluded that 
no matter PI is used in XSQS or not, MST always has a 
much better performance than MTM. 

To figure out the correlation between databases’ size 
and speedup ration of MST over MTM, we did the tests 
with six queries in different database size. The speedup 
ratio is computed as the value of (the cost time of MTM – 
the cost time of MST)/ the cost time of MTM. Figure 9 
shows that the speedup ratio generally increases along 
with the growth of the size of database. 

  1. Algorithm: Modified Stack-Tree-Desc  
2. Inputs: AList, DList 
3. Outputs: resultList 
4. Procedure: 

a= AList.firstNode; d=DList.firstNode 
 while (AList and DList are not empty or the stack is not empty){ 
// Consider several situations may occur, adding the proper procedure for each one 

if (AList and DList are not empty){     
    if (stack is empty){ stack. push(a); a=a.nextNode; 

} else {  
      If (d.sIndex<stack->top.sIndex) d=d.nextNode; 
      else{   

if (a.sIndex> stack->top.eIndex && 
(d.sIndex< stack->top.sIndex || d.sIndex< stack->top.sIndex) ) stack. pop (); 

        else if( a.sIndex<d.sIndex){ stack. push(a); a=a.nextNode;} 
            else{  

for( ai in stack) Append( d.sIndex, ai.parent-sIndex) to resultList; } 
} 

} 
}else if (AList is empty and DList is not empty){ 

   While( DList and stack are not empty){  
     If( d.sIndex>= stack->top.sIndex && d.eIndex<= stack->top.eIndex) 

{ for( ai in stack) Append( d.sIndex, ai.parent-sIndex) to resultLis;} 
       else stack. pop(); } 
  }else break;  
} 

 
Figure 7. Modified Stack-Tree -Desc for Ancestor/Descendant  

  1. Algorithm: Modified Tree-Merge-Desc  
2. Inputs: AList, DList 
3. Outputs: resultList 
4. Procedure: 
first-anc= AList.firstNode 
for(d= DList.firstNode; d!=null; d= d.nextNode){ 

Anclist[ ]=get_ancestorlist(d);  //get all ancestors of node d 
//find the first node that can’t be ancestor of d  

   for(a= first-anc; a!=null && d.parent-sIndex>=a.sIndex; a= a.nextNode); 
   first-anc=a;   
   for(Anclist[i]) {   

   for(a=AList.firstNode ;a<first-anc; a=a. nextNode){  
       [if (a.sIndex= Anclist[i]) ]  
       Append( d.sIndex, a.parent-sIndex) to resultList; } 

} 
} 

Figure 6. Modified Tree-Merge-Desc for Ancestor/Descendant 
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In Figure 10 and Figure 11, “MTM (with/without) PI” 
represents the speedup ratio of MTM with PI over MTM 
without PI, and the same explanation applied to “MST 
(with/without) PI”. “(MST/MTM) without PI” represents 
the speedup ratio of MST without PI over MTM without 
PI, and the same explanation applied to “(MST/MTM) 
with PI”.  

From Figure 10 and Figure 11, we can see the 
correlation between PI and MST (or MTM). It is 
concluded that if PI has greater influence on MST than 

MTM (the speedup ratio of MST with PI over MST 
without PI, is bigger than the speedup ratio of MTM with 
PI over MTM without PI), then the speedup ratio of MST 
over MTM will increase when using PI. To the opposite, 
if PI has greater influence on MTM than MST (the 
speedup ratio of MTM with PI over MTM without PI, is 
bigger than the speedup ratio of MST with PI over MST 
without PI), then the speedup ratio of MST over MTM 
will decrease when using PI. Figure 10 shows the 
situation one, and Figure 11 shows the other situation.

 

 

 
Figure 9. Speedup Ratios of MST over MTM for Q1-Q6（without PI） 

 

Figure 8. Speedup Ratios of MST over MTM for Q1-Q6 (with/without) PI 

TABLE II.   

QUERIES FOR TESTING 

QNum Path Expression 

Q1 /site/regions//item/description//parlist/listitem/text/emph 

Q2 /site/regions//item/description/parlist/listitem//parlist/listitem 

Q3 /site//annotation//parlist/listitem/parlist/listitem 

Q4 /site/closed_auctions/closed_auction/annotation/description//parlist/listitem 

Q5 /site/closed_auctions/closed_auction//description//parlist/listitem 
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VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we introduce the native XML database 
system XSQS and focus on implementation of the query 
processing in it. Moreover, we show the details on how 
the structural join and the path index is designed to help 
query engine get a better performance. The experimental 
results indicate that the Modified Stack-Tree algorithm 
always has a much better performance than Modified 
Tree-Merge algorithm, and the advantages generally 
increase along with the growth of the size of database. 
Our future work will focus on the query optimization in 
XSQS by taking advantages of structural join. 

 
 
 

ACKNOWLEDGMENT 

The work is partially supported by National Natural 
Science Foundation of China (Grant No. 71090403), 
Education Ministry of Education of P.R.C (Grand No. 
x2rjB7110020), Bureau of Science and Information 
Technology of Guangzhou (Grant No. x2rjB2111420 ). 

REFERENCES 

[1] World Wide Web Consortium. Extensible Markup 
Language (XML) 1.0 (Fifth Edition), W3C 
Recommendation, 26 November 2008, DOI= 
http://www.w3.org/TR/REC-xml/. 

[2] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. 
Srivastava, Y. Wu, "Structural Joins: A Primitive for 
Efficient XML Query Pattern Matching", In Proc. 18th 
ICDE Conf, Mar 2002, pp. 141-154. 

 

Figure 11. Speedup Ratios of Q2, Q4, and Q6 with Different Algorithms in Database Size of 20MB 

 
Figure 10. Speedup Ratios of Q1, Q3, and Q5 with Different Algorithms in Database Size of 20MB 

206 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER



 

[3] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman, 
"On Supporting Containment Queries in Relational 
Database Management Systems", In Proc. of the 2001 
ACM SIGMOD Int’l Conf. on Management of Data, May 
2001, ACM Press, pp. 425-436. 

[4] S. Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, C. 
Zaniolo, "Efficient Structural Joins on Indexed XML 
Documents", In Proc. of the 28th Int’l Conf. on Very 
Large Data Bases, August 2002, pp. 263-274. 

[5] Yi Jiang, Xiangjian He, Fan Lin, et al., " An Encoding and 
Labeling Scheme Based on Continued Fraction for 
Dynamic XML", Journal of Software, Vol 6, No 10 
(2011), Oct 2011, pp. 2043-2049 

[6] Jie Chen, Wenxin Liang, Haruo Yokota, " A 
Two-Dimension XML Encoding Method based on 
Variable Length Binary Code", Journal of Software, Vol 
6, No 12 (2011), Dec 2011, pp. 2426-2433 

[7] R. Goldman and J. Widom, "DataGuides: Enabling Query 
Formulation and Optimization in Semistructured 
Databases", In Proc. of the 23th VLDB Conf, August 
1997, pp. 436-445. 

[8] B. F. Cooper, N. Sample, M. J. Franklin, et al., "A Fast 
Index for Semistructured Data", In Proc. of the 27th 
VLDB Conf, September 2001, pp. 341-350. 

[9] B. F. Cooper, N. Sample and M. Shadmon, "A Parallel 
Index for Semistructured Data", In Proc. of the 2002 
ACM Symposium on Applied Computing (SAC), March 
2002, ACM Press, pp. 890-896. 

[10] C. W. Chung, J. K. Min and K. Shim, "APEX: An 
Adaptive Path Index for XML Data", In Proc. of 2002 
ACM International Conference on Management of Data 
SIGMOD, June 2002, ACM Press, pp. 121-132. 

[11] L. Hong, D. Li, N. Gu, "Design and Implementation of 
XSQS System", In Proc. of the 2009 International Forum 
on Information Technology and Applications, Vol. 3, 
2009, pp. 385-388. 

[12] D. Li, N. Gu, "Hierarchy Encoding Based XML Query 
Estimation", In International Forum on Information 
Technology and Applications, Vol. 2, May 2009, pp. 
451-456. 

[13] P. F. Dietz, "Maintaining Order In a Linked List", In Proc. 
of the 14th annual ACM Symposium on Theory of 
Computing, 1982, ACM Press, pp. 122-127. 

[14] A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. 
Manolescu, M. Carey and R. Busse, "XMark: A 
Benchmark for XML Data Management", In Proc. of 
International Conference on Very Large Data Bases, 
2002, pp. 974-985. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Dong Li Dong Li received his BS from 
Harbin Institute of Technology in 1992 
and his Master and PhD from Huazhong 
University of Science and Technology 
in 1995 and 2001, respectively. He had 
been to UCSB as a visiting scholar from 
2008 to 2009. He is a professor at South 
China University of Technology in 
China. His research interests include 

XML databases, mobile database and service computing. 
 

 
Xiuyu Lu Xiuyu Lu received her BS 
from Sun Yat-sen University in 2010. 
She is currently a Master student in 
South China University of Technology 
in China, and her research interest is 
XML database. 
 
 
 

 
 

Xifeng Huang Xifeng Huang is 
currently a Master student in South 
China University of Technology in 
China, and her research interest is XML 
database. 
 
 
 
 

 
 

Wenhao Chen Wenhao Chen received 
his BS from South China University of 
Technology in 2011. He is currently a 
Master student in South China 
University of Technology in China, and 
his research interest is XML database. 

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 207

© 2013 ACADEMY PUBLISHER


