

Structural Join in the ‘XSQS’ Native XML
Database

Dong Li

School of Software Engineering, South China University of Technology, Guangzhou 510006, China
Email: cslidong@scut.edu.cn

Xiuyu Lu

School of Computer Science &Technology, South China University of Technology, Guangzhou 510006, China

Xifeng Huang, Wenhao Chen

School of Software Engineering, South China University of Technology, Guangzhou 510006, China

Abstract—Query processing has attracted significant
attention since XML database is proposed. This paper
focuses on structural join mainly in our native XML storage
and query system (XSQS). A hybrid structural join strategy
based on tree-merge algorithm and stack-tree algorithm is
proposed. Moreover, a path index scheme is designed to
accelerate the query processing. Experimental results show
that the proposed hybrid strategy and the index have a good
performance in query processing of XSQS.

Index Terms—Query Processing, Structural Join, Path
Index, XSQS

I. INTRODUCTION

XML [1] has become the standard in data
representation and data exchange on web. XML data
grows exponentially every year, making the native XML
database attracting more and more attention. Large
numbers of research papers have been published on
native XML database, particularly in the aspect of query
processing, which is one of the most active research
topics.

Query processing strategies generally include
navigation-based strategy, join-based strategy and the
mixed mode strategy. XSQS (XML Storage and Query
System) applies the join-based processing strategy, in
particular structural join. The main idea of structural join
is decomposing a complex query pattern into several sets
of basic binary structure relationships, evaluating the
binary structure relationships, and then combining the
matched results. In this processing strategy, evaluating
the basic structures of the relationships is the key issue,
which includes parent-child relationships and the
ancestor-descendant relationships. In order to improve the
efficiency of query processing, developing structural join
algorithm is a crucial issue, because a proper algorithm
that fits the query processor can reduce the I/O or the
time complexity. The contributions of this paper are
summarized as follows:

(1) The native XML database XSQS is introduced,
with general description of the query processing.

(2) We realize a hybrid structural join strategy on
XSQS. Accordingly, a modified tree-merge
algorithm for matching parent-child relationships,
and a modified stack-tree algorithm for
ancestor-descendant relationships are proposed.
Moreover, a path index based on hierarchy
encoding scheme is developed, which aims at an
efficient access to the elements satisfying specific
conditions.

(3) Finally, experiments are conducted to show the
performance of the proposed approaches in XSQS.

The rest of the paper is organized as follows. Section 2,
presents related work, followed by the general overview
on query processing emphasizing on the proposed index
model in XSQS in section 3. Section 4, describes the
structural join algorithms. In section 5, experiments are
conducted to evaluate the proposed query processing
strategy. Finally, a summary concludes this paper in the
last section.

II. RELATED WORK

Structural join is the key issue in join-based query
processing strategy, and a lot of papers have been
proposed to develop an effective structural join algorithm
so far. S. Al-Khalifa et al. [2] proposed a Tree-Merge
algorithm, and C. Zhang et al. [3] developed an algorithm
named Multi-Predicate Merge Join. Both of them used
some conditions to guide the join process, targeting at
reducing repeating scan of the candidate node lists.
Besides, S. Al-Khalifa et al. [2] proposed another
algorithm called Stack-Tree which was based on
Tree-Merge algorithm. The Stack-Tree algorithm keeps a
stack to store ancestor nodes, in order to get only one
scan of the ancestor node list and the descendant node list.
S. Y. Chien et al. [4] improved Stack-Tree algorithm by
applying B+ tree indexing, through which the invalid
nodes can be skipped. All of the above structural join
algorithms judge the relationships by using an encoding

200 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.1.200-207

schema. One of the most common encoding schemes is
region-based encoding schema, which is similar to our
encoding scheme in XSQS. There are some novel
labeling schemes that support the update operations, like
CFE [5] or VLEI [6]. They avoid re-labeling nodes to
efficiently process the updates, which is also our future
work needs to do.

Applying efficient structural join algorithm is one way
to improve query processing, and another approach is
developing a summary index for query processor.
Summary index establishes a simplified XML tree based
on paths occurred in XML documents, and as a result,
there are not existing two nodes that share the same path
in the tree. DataGuide is probably the first summary
index, which is proposed in [7], every label path in it
occurs once and only once. B. F. Cooper et al. [8, 9]
presented Index Fabric index from Patricia Trie tree, by
marking every label path with a string encoding, and then
inserting the string encoding into Patricia Trie tree. When
the query processor executes queries, it turns out to do the
string matching. For the purpose of adapting to dynamic
changes of queries, making the high frequency queries
have better performance, C. W. Chung et al. [10] came up
with APEX index. APEX introduces a hash structure to
store label nodes in high frequency queries, it is similar to
the effect of Caching. When evaluating a new query, the
query processor will search hash table firstly to find
whether there are target nodes.

III. QUERY PROCESSING IN XSQS

Before going into the query processing in XSQS, a
general overview of new version XSQS is shown in
Figure 1(see [11] for details of previous version), only the
modules corresponding to the query processing are
described. The architecture of XSQS mainly consists of
several parts: XML loader, storage manager, query
engine and index manager. Considering the intimate
connection between XML loader and storage manager,
we will introduce them together in the following
part.

A. The XML Loader and Storage Manager

To store the XML data, XSQS designs a model of
pages managing based on the compressed table of
information. It stores two parts of information: the
control information of XML documents and XML
document data in files.

The XML loader (see [12] for details) is designed to
efficiently parse XML data. It uses the SAX parser to
analyze XML data and the corresponding information is
passed to our DOM tree-like structure (an extension of
the W3C DOM interface) to rebuild a DOM tree. During
the period of the processing, a thread management is
applied to improve the performance of loading.

When finishing the DOM tree, the storage manager
traverses the tree to generate three parts of information:
symbols data, string data and node records. Symbols data
specifies the label names occur in XML document, while
string data saves the actual data value of document and
node records record all nodes of document. Node records
keep the document structure information which is the key
to reconstruct a XML tree. XSQS denotes nodes by a
region-based encode scheme <sIndex, eIndex, level> (the
first region-based encode scheme is proposed in [13]),
which stores the location of node in XML tree. The
node’s sIndex represents the value of pre-order traversal
(e.g., sIndex of root node is 1), the eIndex represents the
maximum sIndex of this node’s subtree and the level is
the depth of node in XML tree (e.g., level starts from 1).
Therefore, it’s convenient to judge the relationships
between two nodes A and D:

ancestor-descendant relationships: A.sIndex <
D.sIndex and A.eIndex > D.eIndex and A.level < D.level

parent-child relationships: A.sIndex < D.sIndex and
A.eIndex > D.eIndex and A.level +1= D.level

B. The Query Engine
The query engine manages the query processing in

XSQS, the general procedure includes query parsing and
query execution (query optimization is an important part
of query engine, but it is outside the scope of this paper,
so we exclude it), as shown in Figure 2. Firstly, the query
engine calls parser interface to analyze the query
statement into an abstract query tree. After that, it calls
the Tree Walker interface recursively to execute the
processing taking the abstract tree as input. Finally, the
Result Set interface is called to generate result sets.

In XSQS, JavaCC (Java Compiler Compiler) is applied to
parse the queries, which is a popular open-source
grammar generator. If the query is “/site/regions//item
[quantity=1]/name”, then an abstract tree is generated
after calling the parser, is shown as Figure 3.

Figure 2. Query Engine

Figure 1. XSQS’s Architecture

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 201

© 2013 ACADEMY PUBLISHER

This query execution is implemented by Tree Walker,

whose function is traversing the query tree and calling
Result Set to get results. It’s a left-deep traversal of the
abstract tree, but a right association operation to get query
results. When traversing the abstract tree, Tree Walker
uses its own query result set to generate some new query
result sets, called intermediate results, and then it filters
the intermediate results recursively until getting the final
results.

Result Set is the interface to get data from storage
manager (or the index manager) and provide join
operation functions. It keeps the results in a structure
named IntArray which can be seen as a two-triple list.
Each element stores two values of a node, which are the
node’s sIndex and its parent node’s sIndex, denoted as
<node.sIndex, parentnode.sIndex>. Considering the
recursive processing of getting the final results, IntArray
is more properly represented as <node.sIndex,
ancestornode.sIndex>. For example, the query
“/site/regions//item [quantity=1]/name” will get final
result IntArray as <node (“name”).sIndex, node (parent
of “site”).sIndex> (here node (parent of “site”).sIndex=0).
IntArray is the main structure for structural join
operations. To reduce the accesses to disk, we use the
structural join algorithm, and a detail description is given
in section 4.

XSQS considers seven types of join operations in
query plan, which are summarized in Table I, including
the corresponding functions defined in Result Set.

C. Index Manager
When evaluating the query, Result Set can get the data

directly from storage manager or through the index
manager. Calling the storage manager to get nodes
matched a given name is a traversal processing through
accessing all nodes stored in the data file to find the
matched ones. However, index manager builds a path
index tree to provide a way to obtain matched nodes for
the given name, moreover, the set of nodes are
conforming to the query statement. In that case, index
manager has greatly reduced the size of intermediate
results, making the number of join operations much
smaller.

The main idea of path index is making use of path
information in XML document tree, combining the nodes
that share the same path as a new one. In that condition,
each node of the path index tree definitely has a path and
the only. A hierarchy encoding scheme is used in path
index tree to represent the path information of node.
Unlike the region-based encode scheme (<sIndex, eIndex,
level>), hierarchy encoding is a kind of width-first
encoding scheme. The definition is as follows:

(1) If N is the root node of a XML document tree, its
hierarchy encoding ID is 0, Hid (N) =0;

(2) If N is a child of root node, its hierarchy encoding
ID is a binary sequence according to its position among
all its siblings. That is, if N is the ith (starting from 0)
distinct element in this level of the XML document tree,
then N’s hierarchy encoding ID is a binary sequence
whose ith bit ,from the right side to left side, of the binary
sequence is set to 1, while all other bits are set zeros.

(3) If N is a node not in condition (1) and (2), its
hierarchy encoding ID is a binary sequence made up of
two parts, S1 and S2 (Hid (N) =S1·S2), in which S1 is the
encoding ID of N’s parent and S2 is the binary sequence
representation for i which is the ith child among all the
siblings in the same level.

Through the hierarchy encoding scheme, it is
convenient to judge the relationships between XML
nodes (for details see [11, 12]).

TABLE I.

JOIN OPERATIONS IN XSQS

No. Join Type function in Result Set

1 A / B newNamedParentofNamedChild

2 A / ResultSet namedParentofEvaledChild

3 ResultSet / B namedChildofEvaledParent

4 ResultSet / ResultSet evalParent

5 A // ResultSet namedAncestor

6 ResultSet // ResultSet evalAncestor

7 ResultSet[B] or ResultSet [@B] newLeafNodeList

Figure 3. Abstract Query Tree

202 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

After the XML loader parsers XML document into
DOM tree, index manager generates path index tree
according to the DOM tree, with a hierarchy encode for
each tree node. During the structural join process, list of
sIndexs that represent specific tree nodes are served as
input to Result Set. So, if Result Set wants to get the
nodes by index manager, there is a necessary process that
path tree need to do. That is, corresponding the hierarchy
encode to a list of sIndexs and keeping the list in path tree.
This process can be seen in Figure 4.

 Index manager provides supper set of accurate results
for query. Taking the query “/site/regions//item
[quantity=1]/name” for example. Assuming the situation
that Result Set needs to get nodes from data file, whose
name equals “name”. If Result Set gets nodes from
storage manager, then it will get all the nodes that have
the name “name”, while index manager will get nodes
that have the name “name” and under the path
“/site/regions//item [quantity]” (not path
“/site/regions//item [quantity=1]/name”, because the path
index doesn’t support predication operation), and there is
an extra filtering operation ” item [quantity=1]” needs be
done. Supposing another query “/site/regions//item/name”,
then index manager can directly get the final result set,
that is, the set of element nodes named “name” and under
the path“/site/regions//item”.

IV. STRUCTURAL JOIN

As mentioned above, IntArray is the main structure for
structural join in XSQS, and each element in it is the
form of <node.sIndex, ancestornode.sIndex>.
Furthermore, IntArray is ordered by sIndex when it is
generated from data file.

Considering IntArray DList (d1, d2,..., dm) in size m
and IntArray AList (a1,a2,…,an) in size n, represent two
lists of candidate nodes as inputs for structural join, then
the output is a new IntArray resultList that satisfies

parent-child (or ancestor-descendant) relationships. The
resultList is sorted by child (descendant) node’s sIndex in
ascending order.

The traditional way for structural join is a
traversal-style algorithm. That is, for each node ai in
AList, judging relationships between ai and all nodes in
DList. In that case, the parent-child relationships join has
the time complexity O(m*n). As for the
ancestor-descendant relationships, structural join needs to
get all ancestor nodes of the descendant node, by
recursively accessing data file through its parent node’s
sIndex, and then checks the given node to see whether it
is one of them. This process makes ancestor-descendant
relationships join have time complexity O(m*n*h) and
the I/O complexity O(m*h), h represents average depth of
node in the XML tree. The time complexity of structural
join is too high to accept, therefore some algorithms are
considered to reduce it.

A. Modified Tree-Merge-Desc Algorithm
Tree-Merge-Desc algorithm [2] is the first try to

achieve low time complexity. After a deep analyze on the
algorithm, some modifications are done to adapt the
query processing in XSQS. The main idea of Tree-Merge
algorithm is finding the first ancestor node ai in AList that
may satisfy the relationships for each node dj in DList,
which is named scan start point. As for the node dj+1, it
scans from scan start point of dj to get its own scan start
point. There exists a condition in XSQS that
dj+1.sIndex >= dj.sIndex but dj+1.parent-sIndex<=
dj.parent-sIndex (it means dj+1.parent node is listed before
the start scan point), then the Tree-Merge algorithm will
skip the dj+1’s parent node. So, we do some modifications
to avoid this situation. Figure 5 shows the modified
algorithm for parent-child relationships joins in XSQS
and Figure 6 shows the modified algorithm for
ancestor-descendant relationships joins in XSQS.

The modified Tree-Merge-Desc algorithm in XSQS
has the time complexity O(m+n) for parent-child
relationships join. However, for the ancestor-descendant
relationships joins, the time complexity is O(m*n*h) and
the I/O complexity is O(m*h), which are still
unacceptable. We will discuss the improvement later.

 1. Algorithm: Modified Tree-Merge-Desc
2. Inputs: AList, DList
3. Outputs: resultList
4. Procedure:

first-anc= AList.firstNode
for(d= DList.firstNode; d!=null; d= d.nextNode){

 // An adding condition
 while (first-anc>0&& d.parent-sIndex< first-anc.sIndex) first-anc - -;
 //find the first node that can be parent of d
 for (a= first-anc; a!=null && d.parent-sIndex >a.sIndex; a= a.nextNode);
 first-anc=a;

if (d.parent-sIndex =a.sIndex)
Append (d.sIndex, a.parent-sIndex) to resultList;

}

Figure 5. Modified Tree-Merge-Desc for Parent/Child

 1. Algorithm: MatchsIndex (PathTree, sIndexList)
2. Inputs: PathTree, sIndexList: represented as <sIndex, tagName, parentsIndex>;
3. Outputs: The path tree with the matched sindex list in each node;
4. Procedure:

for(each node Si in sIndexList)
Pi = findPathTreeNode(PathTree, Si.parentsIndex)
for(each node Pci in Pi.childList)

if(Pci.tagName = Si.tagName)
 add Si.sIndex to Pci.sIndexList

1. Algorithm: findPathTreeNode(PathTree,Si.parentsIndex)
2. Inputs: PathTree, Si.parentsIndex;
3. Outputs: Pi : the corresponding node in PathTree;
4. Procedure:

max_size = maxsIndex+1
//If node N's sIndex is n, Hid(N)=h, then sIndextoEid [n]=h;
sIndextoEid[max_size]
for(each node Pi in PathTree)

if(Pi.eid = sIndextoEid [Si.parent])
 return Pi

Figure 4. Algorithm: Matching Hierarchy encode with sIndex

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 203

© 2013 ACADEMY PUBLISHER

B. Modified Stack-Tree- Desc Algorithm
Judging ancestor-descendant relationships by

Tree-Merge-Desc algorithm still has a high complexity,
which only uses parent node’s sIndex. Therefore, another
algorithm named Stack-Tree-Desc [2] is developed with
the encode scheme <sIndex, eIndex, level> to judge
ancestor-descendant relationships. The traditional
Stack-Tree algorithm specifies only one condition in
structural join (AList and DList are not empty or the
stack is not empty), this consideration is so rough that
may make mistake. Therefore, we consider some special
situations may occur in the algorithm, adding the proper
procedure for each one to deal with. See the details of the
modified algorithm in Figure 7.

The I/O complexity of the algorithm is O(m) and time
complexity is O(m+n), which are acceptable.

V. EXPERIMENTAL EVALUATION

In this section, we present experiments to verify the
validity of the approaches in XSQS. All experiments
were run on a machine with 2.53GHz Intel(R) Core(TM)
i3 processor, 8GB memory, and the OS is win7.

The popular XMark [14] data set are used in these
experiments, with the size from 10MB to 40MB by
10MB increments. We evaluate the structural join
algorithms in XSQS with or without path index, to
evaluate the performance of algorithms in different
environment, furthermore, to figure out how the
algorithms and index contribute to query performance.
The experiments use sets of queries, shown in Table II.
Q1 to Q3 have two ancestor-descendant relationships join
operations in similar length. Q4 to Q6 have
ancestor-descendant relationships join operations from
one to three in similar length. This classification is used
to present whether the algorithm has similar performance
in a variety of queries.

Here, the MST is short for Modified Stack-Tree
algorithm, MTM for Modified Tree-Merge algorithm,
and PI for Path Index.

Figure 8 depicts the speedup ration of MST over MTM
for Q1 to Q6 with PI (or without PI) in database size of
20MB as an example. The experiments in database of
other sizes show the similar effects. It is concluded that
no matter PI is used in XSQS or not, MST always has a
much better performance than MTM.

To figure out the correlation between databases’ size
and speedup ration of MST over MTM, we did the tests
with six queries in different database size. The speedup
ratio is computed as the value of (the cost time of MTM –
the cost time of MST)/ the cost time of MTM. Figure 9
shows that the speedup ratio generally increases along
with the growth of the size of database.

 1. Algorithm: Modified Stack-Tree-Desc
2. Inputs: AList, DList
3. Outputs: resultList
4. Procedure:

a= AList.firstNode; d=DList.firstNode
 while (AList and DList are not empty or the stack is not empty){
// Consider several situations may occur, adding the proper procedure for each one

if (AList and DList are not empty){
 if (stack is empty){ stack. push(a); a=a.nextNode;

} else {
 If (d.sIndex<stack->top.sIndex) d=d.nextNode;
 else{

if (a.sIndex> stack->top.eIndex &&
(d.sIndex< stack->top.sIndex || d.sIndex< stack->top.sIndex)) stack. pop ();

 else if(a.sIndex<d.sIndex){ stack. push(a); a=a.nextNode;}
 else{

for(ai in stack) Append(d.sIndex, ai.parent-sIndex) to resultList; }
}

}
}else if (AList is empty and DList is not empty){

 While(DList and stack are not empty){
 If(d.sIndex>= stack->top.sIndex && d.eIndex<= stack->top.eIndex)

{ for(ai in stack) Append(d.sIndex, ai.parent-sIndex) to resultLis;}
 else stack. pop(); }
 }else break;
}

Figure 7. Modified Stack-Tree -Desc for Ancestor/Descendant

 1. Algorithm: Modified Tree-Merge-Desc
2. Inputs: AList, DList
3. Outputs: resultList
4. Procedure:
first-anc= AList.firstNode
for(d= DList.firstNode; d!=null; d= d.nextNode){

Anclist[]=get_ancestorlist(d); //get all ancestors of node d
//find the first node that can’t be ancestor of d

 for(a= first-anc; a!=null && d.parent-sIndex>=a.sIndex; a= a.nextNode);
 first-anc=a;
 for(Anclist[i]) {

 for(a=AList.firstNode ;a<first-anc; a=a. nextNode){
 [if (a.sIndex= Anclist[i])]
 Append(d.sIndex, a.parent-sIndex) to resultList; }

}
}

Figure 6. Modified Tree-Merge-Desc for Ancestor/Descendant

204 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

In Figure 10 and Figure 11, “MTM (with/without) PI”
represents the speedup ratio of MTM with PI over MTM
without PI, and the same explanation applied to “MST
(with/without) PI”. “(MST/MTM) without PI” represents
the speedup ratio of MST without PI over MTM without
PI, and the same explanation applied to “(MST/MTM)
with PI”.

From Figure 10 and Figure 11, we can see the
correlation between PI and MST (or MTM). It is
concluded that if PI has greater influence on MST than

MTM (the speedup ratio of MST with PI over MST
without PI, is bigger than the speedup ratio of MTM with
PI over MTM without PI), then the speedup ratio of MST
over MTM will increase when using PI. To the opposite,
if PI has greater influence on MTM than MST (the
speedup ratio of MTM with PI over MTM without PI, is
bigger than the speedup ratio of MST with PI over MST
without PI), then the speedup ratio of MST over MTM
will decrease when using PI. Figure 10 shows the
situation one, and Figure 11 shows the other situation.

Figure 9. Speedup Ratios of MST over MTM for Q1-Q6（without PI）

Figure 8. Speedup Ratios of MST over MTM for Q1-Q6 (with/without) PI

TABLE II.

QUERIES FOR TESTING

QNum Path Expression

Q1 /site/regions//item/description//parlist/listitem/text/emph

Q2 /site/regions//item/description/parlist/listitem//parlist/listitem

Q3 /site//annotation//parlist/listitem/parlist/listitem

Q4 /site/closed_auctions/closed_auction/annotation/description//parlist/listitem

Q5 /site/closed_auctions/closed_auction//description//parlist/listitem

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 205

© 2013 ACADEMY PUBLISHER

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce the native XML database
system XSQS and focus on implementation of the query
processing in it. Moreover, we show the details on how
the structural join and the path index is designed to help
query engine get a better performance. The experimental
results indicate that the Modified Stack-Tree algorithm
always has a much better performance than Modified
Tree-Merge algorithm, and the advantages generally
increase along with the growth of the size of database.
Our future work will focus on the query optimization in
XSQS by taking advantages of structural join.

ACKNOWLEDGMENT

The work is partially supported by National Natural
Science Foundation of China (Grant No. 71090403),
Education Ministry of Education of P.R.C (Grand No.
x2rjB7110020), Bureau of Science and Information
Technology of Guangzhou (Grant No. x2rjB2111420).

REFERENCES

[1] World Wide Web Consortium. Extensible Markup
Language (XML) 1.0 (Fifth Edition), W3C
Recommendation, 26 November 2008, DOI=
http://www.w3.org/TR/REC-xml/.

[2] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D.
Srivastava, Y. Wu, "Structural Joins: A Primitive for
Efficient XML Query Pattern Matching", In Proc. 18th
ICDE Conf, Mar 2002, pp. 141-154.

Figure 11. Speedup Ratios of Q2, Q4, and Q6 with Different Algorithms in Database Size of 20MB

Figure 10. Speedup Ratios of Q1, Q3, and Q5 with Different Algorithms in Database Size of 20MB

206 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

[3] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman,
"On Supporting Containment Queries in Relational
Database Management Systems", In Proc. of the 2001
ACM SIGMOD Int’l Conf. on Management of Data, May
2001, ACM Press, pp. 425-436.

[4] S. Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, C.
Zaniolo, "Efficient Structural Joins on Indexed XML
Documents", In Proc. of the 28th Int’l Conf. on Very
Large Data Bases, August 2002, pp. 263-274.

[5] Yi Jiang, Xiangjian He, Fan Lin, et al., " An Encoding and
Labeling Scheme Based on Continued Fraction for
Dynamic XML", Journal of Software, Vol 6, No 10
(2011), Oct 2011, pp. 2043-2049

[6] Jie Chen, Wenxin Liang, Haruo Yokota, " A
Two-Dimension XML Encoding Method based on
Variable Length Binary Code", Journal of Software, Vol
6, No 12 (2011), Dec 2011, pp. 2426-2433

[7] R. Goldman and J. Widom, "DataGuides: Enabling Query
Formulation and Optimization in Semistructured
Databases", In Proc. of the 23th VLDB Conf, August
1997, pp. 436-445.

[8] B. F. Cooper, N. Sample, M. J. Franklin, et al., "A Fast
Index for Semistructured Data", In Proc. of the 27th
VLDB Conf, September 2001, pp. 341-350.

[9] B. F. Cooper, N. Sample and M. Shadmon, "A Parallel
Index for Semistructured Data", In Proc. of the 2002
ACM Symposium on Applied Computing (SAC), March
2002, ACM Press, pp. 890-896.

[10] C. W. Chung, J. K. Min and K. Shim, "APEX: An
Adaptive Path Index for XML Data", In Proc. of 2002
ACM International Conference on Management of Data
SIGMOD, June 2002, ACM Press, pp. 121-132.

[11] L. Hong, D. Li, N. Gu, "Design and Implementation of
XSQS System", In Proc. of the 2009 International Forum
on Information Technology and Applications, Vol. 3,
2009, pp. 385-388.

[12] D. Li, N. Gu, "Hierarchy Encoding Based XML Query
Estimation", In International Forum on Information
Technology and Applications, Vol. 2, May 2009, pp.
451-456.

[13] P. F. Dietz, "Maintaining Order In a Linked List", In Proc.
of the 14th annual ACM Symposium on Theory of
Computing, 1982, ACM Press, pp. 122-127.

[14] A. Schmidt, F. Waas, M. Kersten, D. Florescu, I.
Manolescu, M. Carey and R. Busse, "XMark: A
Benchmark for XML Data Management", In Proc. of
International Conference on Very Large Data Bases,
2002, pp. 974-985.

Dong Li Dong Li received his BS from
Harbin Institute of Technology in 1992
and his Master and PhD from Huazhong
University of Science and Technology
in 1995 and 2001, respectively. He had
been to UCSB as a visiting scholar from
2008 to 2009. He is a professor at South
China University of Technology in
China. His research interests include

XML databases, mobile database and service computing.

Xiuyu Lu Xiuyu Lu received her BS
from Sun Yat-sen University in 2010.
She is currently a Master student in
South China University of Technology
in China, and her research interest is
XML database.

Xifeng Huang Xifeng Huang is
currently a Master student in South
China University of Technology in
China, and her research interest is XML
database.

Wenhao Chen Wenhao Chen received
his BS from South China University of
Technology in 2011. He is currently a
Master student in South China
University of Technology in China, and
his research interest is XML database.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 207

© 2013 ACADEMY PUBLISHER

