
Programming Dynamic and Open Multi-Agent 
Systems with Organization Metaphor  

 
Cuiyun Hu, Xinjun Mao, Yin Chen 

School of Computer, National University of Defense Technology, Changsha, Hunan Province, China 410073 
Email: { hcy56316@163.com, mao.xinjun@gmail.com} 

 
 
 

Abstract—Operating in highly dynamic and unpredictable 
environments with partial requirements, modern software 
systems are characterized by context-awareness, flexible 
organization and dynamic interactions. The increasing 
complexity desires natural high-level abstractions and 
effective programming mechanisms to facilitate the 
development and maintenance of such systems. However, 
the abstraction, composition and interaction mechanisms in 
current programming approaches do not directly support 
those characteristics. This paper proposes an organization-
based agent-oriented programming (OrgAOP) approach 
that treats organizations, roles and groups explicitly, and 
provides mechanisms to support context-awareness, flexible 
organization and dynamic interactions. This paper describes 
the philosophy of OrgAOP, designs a programming 
language OragentL with explicit language facilities 
supporting OrgAOP and illustrates how to program and 
implement MAS with OragentL by a case study. 
 
Index Terms—Agent-oriented programming, Organization 
theory, Organization-based programming, Dynamics 
 

I.  INTRODUCTION 

Software systems today are increasingly expected to 
mirror real-world process, i.e. various parts of the system 
even the whole system are often derived from the 
structure and process of human society and co-evolve 
with the social systems (e.g. e-business applications, 
information management systems) [1][2][6]. Therefore, 
current trends in software engineering are facing up the 
challenges of constructing and managing software 
systems operating in dynamic and unpredictable 
environments with partial requirements and interacting 
with the real-world in a seamless way. The complexity of 
modern software systems undermines the assumptions of 
traditional software engineering (i.e. object-orientation), 
such as fixed requirements, static environment or with 
priori know changes and infrequent failures[1][3], and 
has increased the need for natural high-level abstractions 
to facilitate the development and maintenance of the 
systems. 

Agent-oriented software engineering (AOSE) seems to 
provide a proper abstraction and method for developing 
dynamic and open systems, especially for the mobile 
systems[4] and virtual organizations [5], since it 
advocates decomposing problems in terms of autonomous 

agents that can engage in flexible, high-level interactions 
[2]. In particular, with inspiration from organization 
theory, AOSE provides a natural representation of such 
systems with organizational concepts. Recently a variety 
of organization-oriented approaches to multi-agent 
systems engineering have been brought forth including 
modeling approaches (e.g. ARG, Moise+, ODML), 
methodologies (e.g. Gaia, MaSE, OMNI, Tropos), 
infrastructures(e.g. MADKIT, S-Moise) and 
programming languages (e.g. 2OPL). A detail review can 
be found in [7]. 

While organization metaphor has made significant 
contributions to analysis and design multi-agent system 
(MAS), when it comes to implementation, it becomes 
obvious that the true potentials of the organization 
metaphor have not been entirely exploited. In fact, 
current MASs are usually implemented as a set of agents 
in terms of mental concepts (e.g. goals, beliefs, plans and 
etc.), where information about organization structure and 
collective behavior is lost [8][9]. As a result, 
programmers have to manually translate and incorporate 
the organizational concept from design model to metal 
concepts, which leads to poor engineering practice and 
hinders engineers to exploit the full potentials of AOSE. 

A recent trend in the AOSE is to employ organization 
concepts in agent-oriented programming. However, 
currently most organization-based programming 
approaches for MAS oblige the programmers to 
programming organization concepts and agents using two 
different languages without a unify programming and 
computation model. For example, in J-Moise, 
organization concepts are presented with XML and 
agents are programmed with Jason [10].  Moreover, 
current researches in this field usually focus on the 
normative MAS with the aims to deal with the openness 
and heterogeneity [7], but inadequate in handling 
dynamics and flexibility. 

This paper proposes a new agent-oriented 
programming approach with organization metaphor, 
namely Organization-based agent-oriented programming 
(OrgAOP), to construct dynamic and open systems. An 
OrgAOP language – OragentL, is designed to allow 
programmers to construct the systems with first-class 
organizational concepts, such as organizations and roles. 
In addition, mechanisms supporting dynamics and 
flexibility are proposed. The rest of this paper is 
organized as follows. Section II discusses the  

Corresponding author: Cuiyun Hu, hcy56316@163.com 

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 151

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.1.151-159



characteristics and programming challenges of dynamic 
and open MAS. Section III introduces the philosophy of 
the new programming approach OrgAOP. Section IV 
designs the OrgAOP language OragentL with a detail 
description of its syntax and formal execution model. 
Section V analyzes the related works and finally 
conclusions are made and future works are discussed in 
section VI. 

II.  CHALLENGES FOR PROGRAMMING DYNAMIC AND 
OPEN MAS 

This section starts from the characteristics of dynamic 
and open MAS, forming the basis from which we distill a 
number of fundamental challenges when programming 
such systems. A dynamic and open MAS usually consists 
of a changing agents and is situated in a dynamic 
environment. The following characteristics distinguish 
dynamic and open MAS from traditional ones. 
• Context-awareness. The context of dynamic and open 

MAS, including devices, network conditions, personal 
preference and etc., is not known until they are in 
operation. Therefore, the entities in the systems should 
have the ability of context-awareness to sense and 
dynamically adapt their behavior according to the 
execution context. 

• Flexible organization. The agents involved are usually 
developed, owned and controlled by different 
organizations and autonomous to enter or leave the 
system and decide whether to provide services or not 
[6]. Therefore, a flexible organizing mechanism is 
needed to enable the whole system to behave in a 
reasonable manner in presence of changing 
membership and internal failures, e.g. unpredictable 
leaving and refusing service of some entities. 

• Dynamic interactions. Owing to the openness, the 
agents and interactions can not be known at design 
time. Instead, it is necessary for the agents to get their 
partners and interaction patterns dynamically at run-
time. 
The characteristics described above challenges 

traditional programming approach (i.e. object-orientation): 
(i) adequate programming abstractions for specifying 
context-specific behaviors and dynamic composition 
mechanisms are lacked to support context-awareness; (ii) 
the composition mechanism in object-oriented 
programming is reference mechanism, which is 
considered statically and can not support the flexible 
organization; (iii) both in object-oriented programming 
and agent-oriented programming, basic interaction 
mechanism is message passing, which implicitly assumes 
that an entity knows all the entities that it may interact 
with. So message passing mechanism is not realistic for 
programming dynamic and open MAS with highly 
unpredictable dynamic interactions. 

Therefore, current programming languages focus on 
static design and offer few mechanisms to support 
dynamics and flexibility. And it is necessary to develop 
high-level language abstractions and mechanisms that can 
address fine and coarse grained dynamics, coping with 

radical changes from both environments and 
requirements [1]. 

III.  ORGAOP: A NEW ORGANIZATION-BASED AGENT-
ORIENTED PROGRAMMING AP-PROACH  

The development of dynamic and open MAS becomes 
more complex than necessary since there is a lack of 
explicit support for the challenges in programming 
language. This section presents a new programming 
approach, called organization-based agent-oriented 
programming (OrgAOP), which is meant to satisfy the 
above challenges by applying organization metaphor in 
agent-oriented programming. 

A.  Philosophy  
In OrgAOP, a MAS is viewed as a set of groups, each 

of which can be viewed as a dynamic aggregation of 
agents, i.e. an agent can dynamically enter or leave a 
group at run-time. A group provides interaction context 
for its members, i.e. only interactions between agents in 
the same group are allowed. Moreover, each group can 
also regulate its structure (mainly through adding or 
removing members) to adapt to the dynamic environment 
and memberships. A set of groups with the same structure 
and regulation behavior are abstracted as an organization. 
A role defines the behavior of agents in a special type of 
groups (i.e. an organization). At run-time, agents can 
enact multiple roles in multiple groups. So an 
organization is composed with a set of roles and a 
regulation behavior. The following presents the 
philosophy of OrgAOP according to the three 
characteristics of dynamic and open MAS: context-
awareness, flexible organization and dynamic interactions.  
• Context-awareness. OrgAOP represents context-

specific behaviors with roles, which can be 
dynamically composed at run-time depending on 
execution context with a role enactment mechanism. 
Role enactment is a new mechanism introduced in 
AOP by Mehdi Dastani in [14] with the aim to capture 
role dynamics in terms of four operations: enact, deact, 
activate and deactivate. However, in OrgAOP, role 
enactment has been attached more meanings. In 
contrast to the instantiation mechanism in object-
oriented programming (OOP), enactment mechanism 
describes the relationship between agents and roles. 
While an object has to adhere to one class that cannot 
be changed once it is instantiated, an agent can possess 
multiple roles that can be changed dynamically during 
its lifetime.  

• Flexible organization. At design time, OrgAOP 
models a system as a hierarchical organization, which 
means that an organization is a self-contained entity 
and can composite a set of sub-organizations. However, 
at run-time, an origination can be instantiated as 
several groups and the structure of an OrgAOP 
application can be viewed as a social network, since 
agents can play multiple roles in multiple groups. 
Groups are considered as dynamical aggregation of 
agents with self-management ability to maintaining a 
homeostatic relationship between their environments 

152 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER



and their internal members. 
• Dynamic interactions. OrgAOP supports dynamic 

interactions with a role-based interaction mechanism, 
which allows the programmers to specify interactions 
between agents based on roles independently from the 
executing agents. At run-time, OrgAOP also takes 
roles as execution entities that are responsible for 
dispatching the messages to their players. As the 
players of each role are changed from time to time, 
when receiving a message, the role check its current 
available players and dispatches the message to one or 
all of its players. OrgAOP provides two kinds of 
interaction patterns based on roles: one-to-one 
interaction, which means to choose a player of the 
special role to send a message; one-to-many, which 
means to send message to all the players of the special 
role. 

B.  An Example: On-line Auction System  
Throughout this paper, an example of online auction 

system is studied to illustrate how to programming MAS 
with OrgAOP. The on-line auction system is 
implemented as an organization named AuctionOrg, 
which is composed by two sub-organizations, one 
implementing the online bidding function named 
BiddingOrg and one implementing the online payment 
function named PaymentOrg. BiddingOrg has three roles: 
Auctioneer managing the status of an auction, Provider 
providing goods to auction and Bidder bidding on the 
goods. The group of BiddingOrg is dynamically created 
when there are goods on auction and is terminated when 
the auction is completed. PaymentOrg also has three roles: 
Payer paying for the winning goods, Payee receiving the 
payment and Broker transferring the money from the 
account of the payer to the one of the payee. Broker 
agents can be dynamically created and killed according to 
the number of the money transfer request. In the 
AuctionOrg, Buyer specifies the agents that play Bidder 
in BiddingOrg to place bidding and play Payer in 
PaymentOrg to pay for the goods; and Seller specifies the 
agents that play Provider to provide goods and play 
Payee to receive money. 

IV.  ORAGENTL: AN ORGANIZATION-BASED AGENT-
ORIENTED PROGRAMMING LANGUAGE  

OragentL provides programming facilities to program 
both organizations and roles and to support the 
programming mechanisms such as role enactment and 
role-based interactions based on the computational and 
programming model defined in [13]. In the follows, the 
syntax of OragentL is presented by means of the on-line 
auction system example, and then the execution of the 
Oragent program is explained. 

A.  Syntax of OragentL  
The syntax of OragentL is presented in Fig. 1 using the 

EBNF notation. <group_id> and <agent_id> are 
<identifier>, sequences of letters and digits starting with 
a lower letter, to denote the addresses of a group and an 
agent, respectively. <org_name> and <role_name> are 

<literal>, sequences of letters and digits starting with a 
capital letter, to denote the names of an organization and 
a role, respectively. In following, the core constructs of 
OragentL, i.e. organizations, roles and behaviors, are 
explained in detail. 

 
Organizations in OragentL are allowed to be nested, i.e. 

an organization can recursively defines sub-organizations. 
An organization program starts with the keyword 
“within” to declare its nested organization if there is one, 
and the keyword “employ” to declare its sub-
organizations that are developed by others or have 
already existed. The formal parameters of the 
organization that is needed when creating a new group is 
declared <parameters> following the <org_name>.  The 
roles of the organization can be either defined inside the 
organization code or defined in a new role program 
independently. 

 A role can be viewed as a set of behaviors that an 
agent can gain by enacting the role. OragentL 
distinguishes two kinds of roles: internal roles, which can 
only be enacted by the native agents (i.e. the agents 
created by its group), and external roles, which is 

Figure 1.   EBNF grammar of OragentL. 

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 153

© 2013 ACADEMY PUBLISHER



provided for outside and can be viewed as the services 
provided by its group. If the “single” modifier appears in 
the definition of a role, the role will have at most one 
player.  The keyword “play” is used to declare the roles 
that the players of a role can enact. For example, “R1 
play R2, R3” means that the agents that enact role R1 can 
also enact both R2 and R3, which can be dynamically 
transferred at run-time. OragentL calls R2 and R3 are 
sub-roles of R1, and the role R1 is a super-role of both R2 
and R3. If the “play” keyword appears, the super-role 
should define the role transformation among its sub-roles. 

The specification of a behavior is started with the 
keyword “when”, followed by the trigger event (i.e. 
messages form other agents or itself). The keyword 
“loop” is used to declare the behavior is circular or one-
shot. The body of a behavior is a statement block in the 
form <statements>. OragentL distinguishes three special 
kinds of behaviors. (i) Initialization behavior, denoted by 
the “initialize” message, executes as long as the entities 
are created. (ii) Regulation behavior, within organization 
program, is specified based on the regulation action to 
manage its members. OragentL allows a group to regulate 
its structure by create a new agent, kill a native agent or 
fire a foreign agent. (iii) Role transfer behavior, defined 
in the role that has sub-roles, is specified based on the 
role transformation actions, such as enact, deact, 
activate and deactivate. 

OragentL provides multiple actions for message 
sending. Firstly, each OragentL agent can send message 
to a known agent with the agent’s identifier.  Secondly, 
an OragentL agent can send a message to an arbitrary 
player of a special role. Thirdly, an OragentL agent can 
send a message to all the players of a special role in the 
form of “<rolename>"*""."<msg>”. At last, an OragentL 
agent can publish an event by sending the message 
without an explicit receiver. Each OragentL agent owns a 
message queue, <on_stm> and <receive_stm> are used to 
fetch a message from the queue. The difference between 
them is that <on_stm> can subscribe event. So besides 
role-based interaction mechanism, OragentL also 
supports event-based interaction based on 
subscribe/publish mechanism. 

The OragentL code of the on-line auction system is 
given in Fig. 2. The buyer agent firstly subscribes wanted 
good by “on(action(good, BiddingOrg g))”, where 
“good” is a variable storing the wanted good and the “g” 
is a variable to get the bidding group address from the 
receiving message. The seller agent creates a bidding 
group for its auction good by “new BiddingOrg()” and 
enacts the Provider role in the created group. As a 
provider, the agent can send message with the auction 
good and initial price to the Auctioneer agent that 
publishes the auction good and the group address. The 
buyer agents who subscribe the good will receive the 
message and then join the group and enact Bidder role to 
place a bid on the good. The following describes how to 
program role transfer and regulation behaviors and 
interaction actions in detail. 

In Fig.2 (a), Buyer role has two sub-roles: 
BiddingOrg.Bidder and PaymentOrg.Payer, and the role 

transfer behavior means: if receiving a winning message 
from Auctioneer role, the agent will enact Payer in the 
payment group g; if receiving a lower message from 
Auctioneer role in bidding group g, the agent will deact 
Bidder role in g; if receiving a payment success message 
from Broker role in payment group g, the agent will deact 
Payer role in g. 

 
Considering the regulation behavior of the payment 

group in Fig.2 (c), if the payment request for each Broker 

Figure 2.  Code fragments of on-line auction system. 

154 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER



agent is more than 5, the group create a new Broker agent, 
and if a Broker agent is free and it is not the only Broker 
agent in the group, the group will kill it. 

B.  Execution Machine of OragentL Program 
In OragentL, there are three kinds of execution entities: 

agents, roles and groups. All these entities execute in 
parallel in a MAS. This section defines three abstract 
state machines, namely execOragentA, execOragentR and 
execOragentG, for agents, roles and groups respectively. 
Some basic symbols and functions defined in [11] are 
used to specify the OragentL program state. The 
meanings of these symbols and functions are given in 
Table I. 

 
A phrase in Oragent can be seen as a set of statements 

that are surrounded by a pair of “{” and “}”.  When the 
phrase is terminated (denoted by Termination), the 
context switch can be captured by the following 
definition: 

( )
/ ( )

/

context pos pos Termination
restbody up pos

restbody pos

= =if then

else
 

Every behavior of an agent can be blocked by waiting 
a message or interrupted by receiving regulation 
messages from its groups. So when a behavior is blocked 
or interrupted, the state of the behavior beh, consisting of 
beh, restbody and pos, is stored to be resumed when beh 
is scheduled again. A behavior is active if the role it 
belongs to is active, and a behavior is inactive if the role 
it belongs to is inactive. So two lists activeBehs and 
inactiveBehs are used to store the states of the active 
behaviors and inactive behaviors of an agent, respectively, 
and the elements of the lists are added at end and 
removed at head. When a behavior is scheduled at the 
first time, restbody is initialized with the behavior body 
and pos is initialized with its start position firstPos. The 
following defines the transition rules for each machine to 
simulate the execution of agents, groups and roles 
respectively. 

 Transition Rules for the Machine execOragentA  
Each agent executes an execOragentA machine, which 

manages a set of enacted roles and their corresponding 
states, a behavior queue and a message queue. The role of 
an agent can be either active or inactive, and only the 

behaviors of the active roles can be executed by the 
machine. Moreover, every behavior can be blocked by 
waiting a message or interrupted by receiving a 
regulation message from its groups.  When a new 
behavior is added, or a behavior is blocked or interrupted, 
the state of the behavior is stored in the behavior queue to 
be scheduled. In order to reaction to the regulation of its 
groups in time, the handling of the regulation messages is 
prior to all others. Therefore, the execOragentA machine 
has two parts executing in parallel. The behavior manager 
gets the behavior to be executed at the head of the 
behavior queue, executes the behavior and adds a 
new/blocked/interrupted behavior at the end of the 
behavior queue. The message manager is responsible for 
monitoring regulation messages. If a regulation message 
is received, it is added at the head of the message queue; 
otherwise, the message is added at the end of the message 
queue.  

The transition rules for execOragentA are described in 
Fig. 3, where each agent schedules a behavior at one 
moment and executes the behavior based on the 
syntactical structure of the program. The behaviors can be 
either user-defined behaviors or reactions to the received 
regulation messages form its groups.  In Fig. 3, the 
function players(r) returns a set of agents that enact the 
role r; the function getMsg() returns the first message of 
the message queue of the agent, and the function 
regulationMsg(msg) is used to estimate whether the given 
message msg is a regulation message or not. 

 
In Fig. 3, the rule enact(g.r) adds the role g.r as the 

agent’s new active role and adds all the behaviors of g.r 
at the end of activeBehs, and sends a message to the role. 
All the roles enacted by the agent is stored in 
enactedRoles, the elements of which consists the role’s 
identifier (as the form g.r with g is its group’s identifier 
and r is the role name) and the role state (either Active or 
Inactive). The enact(g.r) rule is defined as follows: 

TABLE I.   
MEANINGS OF THE BASIC SYMBOLS AND FUNCTIONS TAKEN FROM [9] 

Symbol/Function Meaning 
αexp /αstm α denotes the position of the expression 

or the statement 
> exp/> stm > indicate where the machine is 

positioned 
pos: Pos pos denotes the current position 
restbody: 
Pos→Phrase 

restbody denotes the part of the current 
program that still to be executed 

restbody/pos The context of the pending computation 
of current phrase 

up: Pos→Pos up yields the parent position of a position, 
thus allowing to retrieve for a phrase and 
to move to the next enclosing phrase. 

( )
. ( . )
. ( . )

. ( . )
. ( . )

. ( ) :

. ( ) ( )
( , , )

( )
*. ( )

AexecOragent context pos
enact g r enact g r
deact g r deact g r
activate g r activate g r
deactivate g r deactivate g r
r m exp pos
r m val a players r

send a m val
up pos

r m exp po

α

α

α

=
→
→
→
→

→ =
→ ∈

→

case of

choose>

:
*. ( ) ( )

( , , )
( )

{ }
()

( ) :

: : [( , , )]
( )

s
r m val a players r

send a m val
up pos

receive guards
msg getMsg

msg null regulationMsg msg pos

activeBehs activeBehs beh restbody pos
regulationMsg msg

res

β

α

β

=
→ ∈

→
=
≠ ∧¬ =

=

forall

let
if then
else

if then

>

>

( )

[( ', ', ')] : '
: '

: '
: '

: . : .
( , ) :
:

: . ( )
{ }

pond msg

activeBehs beh restbody pos activeBehs
beh beh
restbody restbody
pos pos

guard stm guard stm
match guard msg pos

pos
guard stm up pos

receive NotMatch p

α β

α

α
β

=
=

=
=

→
=

=
→

→

else
let

if then
else

>

> :os α=

Figure 3.  Execution of execOragentA 

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 155

© 2013 ACADEMY PUBLISHER



( . )
{( . , )}

( . )
: : [( , ( ), )]

( . ," ")
( )

enact g r
enactedRoles enactedRoles g r Active

b behaviors g r
activeBehs activeBehs b body b firstpos
send g r enact
up pos

=
= ∪

∈
=

forall  

The rule deact(g.r) removes the role g.r and all its sub-
roles, removes all the behaviors of it and its sub-roles, 
and sends messages to all the removed roles. The 
function own computes whether the agent own one 
behavior or not, which is defined as: 

( , ) ( , _, _)b
b

own behList b beh b
beh behList Ture

False

= =
∈

let
if then
else

 

So the deact(g.r) rule is defined as follows (where the 
function sub(r) returns all the sub-roles of role r. ): 

( . )
/ {( . , )}

( , ," ")
( ')

( , ) ( , )
( , ) ( , )

( ', )

deact g r
enactedRoles enactedRoles g r Active
send g r deact

b behaviors r
exist activeBehs b remove activeBehs b
exist inactiveBehs b remove inactiveBehs b

role s e

=
=

∈

∈

forall
if then
if then

forall ' ( )
( ')

nactedRoles role sub r
deact role

∧ ∈

 

The rule activate(g.r) changes state of the role g.r and 
its behaviors from inactive to active. Especially, if the 
agent has not enacted g.r, the execOragentA will generate 
an exception. A function is defined to implement the 
movement a behavior from a behavior list to another: 

1 2
1

1 1
2 2

( , , )
( , , )

\ {( , , )}
{( , , )}

move behList b behList
b restbody pos behList

behList behList b restbody pos
behList behList b restbody pos

=
∈

=
= ∪

let  

And the activate (g.r) rule is defined as follows: 
( . )

( . , )
( )

( . ) ( )

( \ {( . , )})
{( . , )}

( ," ")

activate g r
g r s enactedRoles

failUp NotEnactedRoleException

active g r up pos

enactedRoles enactedRoles g r Inactive
g r Active

send role activate
b behaviors

=
∉

=
∪

∈

if
then

else
if then
else

forall ( . )
( , )
( , , )

( )

g r
exist inactiveBehs b

move inactiveBeh b activeBeh
up pos

if then

 

The rule deactivate(g.r) changes state of the role g.r 
and all its sub-roles, and moves all the  behaviors of these 
roles  from active behavior list to inactive behavior list. 
The deactivate (g.r) rule is defined as follows: 

( . )
.

( )

( . ) ( )

( . )
( , )
( , , )

'

deactivate g r
g r enactedRoles
failUp NotEnactedRoleException

inactive g r up pos

b behaviors g r
exist activeBehs b

move activeBehs b inactiveBehs
role enacted

=
∉

∈

∈

if then

else
if then
else

forall
if then

forall
( ') ' ( . )

( ')
( )

Roles
active role role super g r

deactivate role
up pos

∧ ∉if then

 

Moreover, although an agent can send messages to 
another agent with the agent identifier, we only consider 
the role-based interaction which is new for OragentL. 
From Fig. 3, we can see that, in this way, an agent just 
send the message and parameters to the corresponding 
role but leaving the actual receiver agent open. Then the 
role handles the receiving messages based on the 
transition rules defined in section 4.2.3. 

 Transition Rules for the Machine execOragentG  
In OragentL, each group executes an execOragentG 

machine, which executes the user-defined regulation 
behavior to manage its memberships. The execution of 
the execOragentG machine is described in Fig. 4. An 
agent creation based on a role requires the role to be 
initialized, i.e. the role is ready to receive messages from 
others. A new agent is created with a function “create 
agent” which means to create an agent with a fresh agent 
identifier “agent”. The initialization state of the agent is 
recorded by the function heap(agent). And the data 
structure Agent({r},∅,∅) stores the enacted roles, active 
behaviors and inactive behaviors of the agent, 
respectively. Then, the group notifies the corresponding 
role with the new agent identifier. The execution of the 
agent is started by the following function: 

( , , )
( ).

( ) { }
( )

( )
( ) ( ) { }

( )

start agent group r
role groupNm group r

rolesOf agent role
roleState role Active

b behaviors role
activeBehs agent activeBehs agent b
behaviorState b Ready

=
=

=
=

∈
= ∪

=

let

forall

 

Moreover, the regulation actions are executed by 
sending a corresponding message to the involved role. In 
other words, a group regulates its structure through its 
roles. 

 
 Transition Rules for the Machine execOragentR 

In OragentL, when a group is created, the initialization 
of the group should create all the roles that defined in its 
organization. A role is responsible for dispatching 
messages to its players, so a role can be viewed as a 
reactive entity to react to the received messages. Each 
role executes an execOragentR machine, which manages a 
message queue storing the messages from its group and 

( )
( )

( ) ({ }, , )
( ," ", )

( ) ( ) 1
( , , )

( )
(

BexecOragentGroup context pos
new r initialized r

agent
heap agent Agent r
send r new agent
payersNum r payersNum r
start agent group r

initialize r
kill r internal r

=
→

= ∅ ∅

= +

→ ¬

case of
if then
create

else
if ) ( )

( ," ")
( ) ( ) 1

* ( ) ( )

( ," ")
( ) 0

( ," ")

failUp KillNotInteranlException

send r kill
payersNum r payersNm r

kill r internal r failUp KillNotInteranlException

send r killAll
payersNum r

fire r send r fire
payersN

= −
→ ¬

=
→

then
else

if then
else

( ) ( ) 1
* ( ," ")

( ) 0

um r payersNm r
fire r send r fireAll

payersNum r

= −
→

=

Figure 4.  Execution of execOragentG 

156 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER



its players, and dispatches the messages to its group or its 
players. The messages received by roles can be classified 
into three types: regulation messages received from its 
group, role transformation messages received form its 
players and normal communication messages received 
from other agents and required to be dispatched to its 
players. Handling a communication message is simple, as 
it will not change the state of the role or its group, and the 
role just dispatches the message to one or all of its players. 

Fig. 5 describes how a role responds to regulation and 
role transformation messages. When the role receives a 
new message from its group, it just adds the agent as its 
active player. When the role receives a kill message from 
its group, it first removes one of its players or clears all 
its players depending on the parameter of the message 
whether one or all and then sends a dead message to the 
removed agent(s).  A fire message is handled similarly to 
the kill message at the first step, but in the second step, 
the role sends a fired message to the removed agent(s). 
The selection mechanism for the removed player (both in 
the kill one and fire one messages) is out of the scope of 
this paper. For the enact and deact messages, the role first 
adds or removes the agent and then notifies its group. 
Moreover, for the activate and deactivate messages, the 
role just changes the state of the agent in the role. 

 

V.  RELATED WORKS  

With the increasing demand for dynamics and 
openness of software systems, there are a number of 
research proposals in programming field that attempt to 
present and manage the dynamics and openness with 
organization metaphor. This section will try to summarize 
some representative works based on the programming 
challenges of dynamic and open systems. These works 
have addressed one or more of the challenges, and are 

classified into two categories according to the underlying 
programming paradigms. 

The first category is based on OOP, and devises some 
new programming model by extending objects, such as 
COP[12], AmOP [20], role-based programming (RBP) 
[21][22] and interaction-oriented programming (IOP) 
[23]. AmOP proposes an ambient actor model, which can 
dynamically detect available/unavailable resources in its 
context and recover from partial failures. So AmOP 
supports dynamic interactions and flexible organization. 
COP introduces dedicated abstraction for the 
modularization (e.g. layers, roles and etc.) and dynamic 
composition of crosscutting context-dependent behavior 
[12]. COP focuses the context-awareness but leaving the 
other characteristics open. RBP aims to support dynamic 
behavior composition and complex interactions among 
objects based on roles, which provides a potential for the 
context-awareness and dynamic interactions. IOP aims to 
manage and control the complexity of interactions by 
reifying interactions. Table 2 gives the evaluation of these 
works based on the characteristics of dynamic and open 
systems. Although these works attempt to support 
dynamic and open systems by extending OOP, the 
intrinsic and static features of OOPL limit the potential to 
support dynamics and openness. 

 
The second category is based on AOP, and provides 

explicit organization abstractions with a programming 
language or middleware. Many organization frameworks 
and middleware have been proposed in the literature. For 
example, Janus[15] is a platform based on java for 
holonic agent, in which roles are used to define the 
context-specified behaviors, an organization is used to 
abstract the groups of agents, a role-based interaction 
mechanism allows agent to get their partners dynamically 
at run-time and a holonic agent can recruit agents and 
manage its memberships according to the programmer-
defined conditions. powerJade[16] allows an agent to 
dynamically compose its behavior by playing different 
roles, and as an autonomous agent, an organization can 
manage itself and reify its internal interactions by 
defining management and interaction behaviors, 
respectively. MACODO[17] does not consider agents, 
just focuses on the merging and slipping of  organizations. 
J-Moise+ [10] allows the organization dynamics such as 
dynamic creation of a group, group merging, dissolving a 
group, but the organization dynamics are specified inside 
the agents, which pollutes the agent’s code. AMELI [18] 
provides dialogues and scenes to support open systems. 

An alternative to middleware is programming 
languages. However, currently there are very few 
programming languages providing explicit organization 
abstraction. MetataM [19] is one of such works which 

TABLE II.   
EVALUATION OF OOP-EXTENDED APPROACHES BASED ON 

CHARACTERISTICS OF DYNAMIC AND OPEN SYSTEMS 

Challenges COP AmOP RBP IOP 

Context-awareness √  √  
Flexible organization  √   
Dynamic interaction  √ √ √

( )
(" ", ) {( , )}
(" "," ") ( , )

\ {( , )}
( ," ")

(" "," ")
( ,

execOragentRole
msgQueue null
msg top msgQueue

new a players players a Active
kill one a s players

players players a s
send a dead

kill all players
a s

=
≠

=
→ = ∪

→ ∈
=

→ =∅

while
case of

choose

forall )
( ," ")

(" "," ") ( , )
\ {( , )}

( ," ")
(" "," ")

( , )
( ," ")

(" ", ) {( ( ),

players
send a dead

fire one a s players
players players a s
send a fired

fire all players
a s players

send a fired
enact players players sender msg Activε

∈

→ ∈
=

→ = ∅
∈

→ = ∪

choose

forall

)}
( ," ")

(" ", ) ( , ( ))
( )

( , ) ( , ( ))
\ {( , )}

( ," ")
("

e
send mygroup enact

deact exist players sender msg
fialUp UnknownPlayerDeactRoleException

a s lookup players sender msg
players players a s
send mygroup deact

activa

ε → ¬

=
=

if then

else
let

", ) ( )
( , )
( )

( )
( \ {( , )}) {( , )}

(" ", ) ( )
(

te a sender msg
exist players a

fialUp UnknownPlayerActivateRoleException

inactive a
players players a Inactive a Active

deactivate a sender msg
exist play

ε

ε

→ =
¬

= ∪
→ =

¬

let
if then

else
if then

let
if , )

( )

( )
( \ {( , )}) {( , )}

ers a
fialUp UnknownPlayerDeactivateRoleException

active a
players players a Active a Inactive= ∪

then

else
if then

Figure 5.  Execution of execOragentR according to regulation and role 
transformation messages 

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 157

© 2013 ACADEMY PUBLISHER



introduces the notion of group by enlarging the notion of 
agent with a context and content. MetataM agents have 
the ability to decide to join or leave a context with the 
primitives of moveInto(Agent) and moveUp(Agent), 
respectively, and recruit or remove its content with the 
primitives of goInto(Agent) and goUp(Agent), 
respectively. So we can see the MetataM agents can be 
dynamic organized, i.e. an agent can decide its members. 
Another work is in [14], where agent organizations are 
programmed with norms and roles. The role enactment 
enables the agents to dynamically compose their 
behaviors by enacting different roles according to 
organization context. However, this work lacks a clear 
description of how the approach integrates with the agent 
level from a practical programming point of view. Finally, 
in [24] a general-purpose agent-oriented programming 
language is designed to support the concurrency and 
distributed systems, which employs a new programming 
construct – artifact to support the dynamics and openness 
rather than an organization abstraction. 

A detail comparison of the above approaches is given 
Table 3. Firstly, the languages are used to specify the 
organization abstraction and agents. Current approaches 
can be classified in to three types: (i) both organization 
abstractions and agents are specified with object-oriented 
programming language (e.g. Janus, PowerJade); (ii) 
organization abstractions are specified with XML and 
agents are specified with either object-oriented language 
or agent language event undefined (e.g. MACODO, J-
Moise, EI); (iii) both organization abstraction and agents 
are specified with agent languages (e.g. MetataM). The 
context-awareness and dynamic interaction can be 
supported by library (platform), middleware or language 
facilities. And the flexible organization can be 
implemented either by agents, organizations or 
middleware. In Table 2, “–” means the approach does not 
support the ability, and “÷” means that the concept is 
undefined by the approach. 

 

VI.  CONCLUSIONS AND FUTURE WORK  

This paper proposes a new programming approach—
OrgAOP to support the characteristics, such as context-
awareness, dynamic interactions and flexible organization, 
of dynamic and open systems. Firstly, to support context-
awareness, roles are used to specify the context-specific 

behaviors, which agents can dynamically compose with 
enactment mechanism at run-time. Secondly, to support 
dynamic interactions, both role-based and event-based 
interaction mechanisms are provided. Thirdly, to support 
flexible organization, organizations are used to abstract 
the agent groups, of which the memberships changes 
dynamically at runtime. The main contribution of this 
paper is that the above mechanisms are supported in the 
programming language level by defining an OrgAOP 
language named OragentL. OragentL provides explicit 
language facilities for high-level organizational 
abstraction (i.e. organizations and roles), role enactment 
and role-based programming mechanism. Moreover, the 
syntax and formal execution model are defined in detail. 

Furthermore, as a new programming approach, 
OrgAOP follows the main principles in programmming 
techinques such as abstraction, modualrity and reusability. 
(1) OrgAOP provides different levels of abstractions, 
such as organizations/groups for aggregation of  agents, 
roles for context-specific behaivors of agents. (2) An 
agent can be viewed as a dynamic set of roles, each of 
which is relatively independent modular and can be 
composed dyanmically with enactment mechanism, (3) In 
OrgAOP, there are multiple entities can be reused, such 
as oragnizations, roles even agents. 

OrgAOP is composed of programming model, 
language and infrastructure. The development of an 
infrastructure is ongoing based on the execution model 
defined in section 4.2. Moreover, some more complex 
cases should be studied to validate the availability and 
advantage for the development of dynamic and open 
systems. 

ACKNOWLEDGMENT 

Acknowledge the financial support from Natural 
Science Foundation of China under granted number 
61070034 and 91024030, Program for New Century 
Excellent Talents in University, Opening Fund of Top 
Key Discipline of Computer Software and Theory in 
Zhejiang Provincial Colleges at Zhejiang Normal 
University.  

REFERENCES 

[1] M. Broy, “The Grand Challenge in Informatics:  
Engineering Software-Intensive Systems,” IEEE Computer 
Society, pp. 54-62, 2006. 

[2] N.R. Jennings, “On Agent-Based Software Engineering,” 
Artificial Intelligence, vol. 117, no.2, pp. 277–296, 2000. 

[3] F. Zambonelli and H. Van Dyke Parunak, “Towards a 
Paradigm Change in Computer Science and Software 
Engineering: a Synthesis,” The Knowledge Engineering 
Review, vol.18, no.4, pp. 329-342, 2003. 

[4] Y. Xu, Z. Zhao, W. Wu and Y. Zhao, “RPPA: A Remote 
Parallel Program Performance Analysis Tool,” Journal of 
Software, vol. 6, no. 12, pp. 2399–2406, 2011. 

[5] J. Hu, Y. Song and Y. Sun, “Multi-agent Oriented Policy-
based Management System for Virtual Enterprise,” 
Journal of Software, vol. 7, no. 10, pp. 2399–2406, 2012. 

[6] W. Jiao, Y. Sun and H. Mei, “Automated Assembly of 
Internet-Scale Software Systems Involving Autonomous 
Agents,” The Journal of Systems and Software, vol. 83, pp. 

TABLE III.   
COMPARISON OF AGENT ORGANIZATIONAL APPROACHES 

Criteria Language Context-
awareness 

Flexible 
organization 

Dynamic 
interactionOrg agent 

Janus Java Java library holon(agent) platform
powerJade Java Java library – platform
MACOD

O 
Java ÷ middleware middleware middleware

J-Moise XML Jason library agent – 
EI XML ÷ middleware – middleware

MetataM MetataMMetataM language  agent language
2OPL 2OPL 2APL language  – – 

simpAL simplAL Language 
(artifact) 

– Language
(artifact)

158 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER



1838–1850, 2010. 
[7] N.A.M. Tinnemeier, “Organizing Agent Organizations: 

Syntax and Operational Semantics of an Organization-
Oriented Programming Language,” SIKS Dissertation 
Series 2011(2), Utrecht University, 2011. 

[8] R.H. Bordini, M. Dastani, and M. Winikoff, “Current 
Issues in Multi-Agent Systems Development,” in 
Proceedings of the Seventh Annual International Workshop 
on Engineering Societies in the Agents World, 2007, pp. 
38-61.  

[9] N.A. Tinnemeier, M. Dastani, and J.-J.C. Meyer, “Roles 
and Norms for Programming Agent Organizations,” in 
Proceedings of the Eighth International Joint Conference 
on Autonomous Agents and Multi-Agent Systems, Budapest, 
2009, pp. 121–128. 

[10] O. Boissier, J.F. Hübner, and J.S. Sichman, “Organization 
Oriented Programming: From Closed to Open 
Organizations,” in ESAW 2006, LNAI 4457, P G. O’Hare et 
al., Eds., 2006, pp. 86–105. 

[11] R. Stärk, J. Schmid, and E. Börger, Java and the Java 
Virtual Machine: Definition, Verification, Validation, 
Springer-Verlag, 2001.  

[12] R. Hirschfeld, P. Costanza, and O. Nierstrasz, “Context-
Oriented Programming,” Journal of Object Technology, 
vol.7, no.3, pp. 125–151, 2008. 

[13] C. Hu, X. Mao, Y. Chen, and H. Zhou, “OrgMAP: An 
Organization-based Approach for Multi-Agent 
Programming,” in AAMAS 2012, Valencia, Spain, in press. 

[14] M.M. Dastani, M.B. van Riemsdijk, J. Hulstijn, F.P.M. 
Dignum, and J.-J.C. Meyer, “Enacting and Deacting Roles 
in Agent Programming,” in AOSE 2004, LNCS 3382, J.J. 
Odell, P. Giorgini, J.P. Muller, Eds., 2004, pp. 189–204.  

[15] N. Gaud, S. Galland, V. Hilaire, and A. Koukam, “An 
Organisational Platform for Holonic and Multiagent 
Systems,” in PROMAS-6@AAMAS’08, Estoril, Portugal, 
2008, pp. 111–126. 

[16] M. Baldoni, G. Boella, V. Genovese, R. Grenna, and L. van 
der Torre, “How to Program Organizations and Roles in the 
JADE Framework,” in MATES 2008, LNAI 5244, R. 
Bergmann et al., Eds., 2008, pp. 25–36. 

[17] D. Weyns, R. Heasevoets, A. Helleboogh, T. Holvoet, and 
W. Joosen, “MACODO: Middleware Architecture for 
Context-Driven Dynamic Agent Organizations,” ACM 
Transactions on Autonomous and Adaptive Systems, vol. 5, 
no. 1, pp. 1–25, 2009. 

[18] M. Esteva, J.A. Rodriguez-Aguilar, B. Rosel, L. Joseph, 
“MELI: An Agent-based Middleware for Electronic 
Institutions,” in Proceedings of the Third International 
Joint Conference on Autonomous Agents and Multi-Agent 
Systems 2004, ACM Press, New York, 2004, pp. 236-243.  

[19] C. Ghidini, B. Hirsh, and M. Fisher, “Programming Group 
Computations,” in Proceedings of EUMAS '03, 2003. 

[20] J. Dedecker, T.V. Cutsem, S. Mostinckx, T. D’Hondt, and 
W. De Meuter, “Ambient-Oriented Programming,” in 
Proceedings of Companion of the 20th annual ACM 
SIGPLAN Conference on Object-Oriented Programming, 
Systems, Languages and Applications, New York: ACM 
Press, 2005, pp. 31-40. 

[21] M. Baldoni, G. Boella, and L. van der Torre, “Interaction 
Between Objects in powerJava,” Journal of Object 
Technology, vol. 6, no. 2, pp. 7 –12, 2007. 

[22] T. Tamai, N. Ubayashi and R. Ichiyama, “An Adaptive 
Object Model with Dynamic Role Binding,” in 
Proceedings of ICSE’05, St. Louis, Missouri, USA, May 
2005. 

[23] J.C. Cruz, A Group Based Approach for Coordinating 
Active Objects, Phd Thesis, der Universität Bern, 2006. 

[24] A. Ricci and A. Santi, “Designing a General-Purpose 
Programming Language based on Agent-Oriented 
Abstractions: The simpAL Project,” in SPLASH’11 
Workshops, Portland, Oregon, USA, October 2011. 

 
 

Cuiyun Hu, born in Huixian of Henan 
province, China, March 3rd, 1985. She 
received her Bachelor’s degree in Computer 
Science and Technology from Central 
South University, Changsha, China, 2006, 
and her Master’s degree in Computer 
Science and Technology from National 
University of Defense Technology, 
Changsha, China, 2008.  She is a Phd 

student in National University of Defense Technology and her 
major researching field is agent-oriented software engineering.
 
 

 
 

Yin Chen, born in Beijing, China, 1988. 
He is a Master candidate in National 
University of Defense Technology. His 
major researching field is agent-oriented 
software engineering. 

 
 
 

 

Xinjun Mao, born in Jiangshan of 
Zhejiang province, China, 1970. He 
received the Bachelor’s degree in 
Computer Science and Technology from 
College of Information Engineering, 
Zhenzhou, China, 2006, the Master’s and 
PhD’s degrees in Computer Science and 
Technology from National University of 
Defense Technology, Changsha, China in 

1995 and 1998 respectively. His current main research interests 
include software engineering, agent theory and technology, 
self-adaptive and self-organizing systems. 
Prof. Mao is the membership of IEEE and ACM, editor board 
member of several international journals and PC member of 
more than 20 international conferences/workshops. He has 
published two books and 100 papers in his interesting research 
area. 

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 159

© 2013 ACADEMY PUBLISHER


