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Abstract—This article presents a branch-and-bound 
algorithm for globally solving the general linear sum 
of ratios problem (GFP). By utilizing equivalent 
transformation and linearization technique, a linear 
relaxation programming (LRP) of original problem is 
constructed. The algorithm economizes the required 
computations by conducting the branch-and-bound 
search in pR , rather than in nR , where p  is the 
number of ratios in the objective function of problem 
(P) and n  is the number of decision variables in 
problem (P). To implement the algorithm, the main 
computations involve solving a sequence of linear 
programming problems for which simplex algorithm 
are available. Numerical experiments are given to 
demonstrate that the proposed algorithm can 
systematically solve problem (GFP) to find the global 
optimum. 
 
Index Terms—global optimization, linear relaxation, branch 
and bound, fractional programming, sum-of-ratios 

I.  INTRODUCTION 

Consider the general linear sum of ratios problem 
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Problem (GFP) has attracted the interest of 
practitioners and researchers for at least 40 years. This is 
because, from a practical point of view, problem (GFP) 
and special cases of problem (GFP) have a number of 
important applications. Included among these are 
multistage shipping problems (Ref. [1]), certain 
government contracting problems (Ref. [2]), and various 
economic and financial problems (Refs. [3-7, 22, 23]). In 
these problems, the number of terms p  in the objective 
function of problem (GFP) is usually less than the 
number of the number of decision variables terms n . 
From a research point of view, problem (GFP) poses 
significant theoretical and computational difficulties. This 
is mainly due to the fact that problem (GFP) is a global 
optimization problem, i.e., it is known to generally 
possess multiple local optima that are not globally 
optimal [24, 25]. 

Many algorithms have been developed for solving the 
special case of general linear sums of ratios problems 
(GFP), which are intended only for the sum of linear 
ratios problem with the assumption that 
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In this case, for instance, if the number of ratios 2p = , 
the simplex method-based global solution algorithms by 
Cambini et al. (Ref. [8]) and Konno et al (Ref. [9]) can be 
used. When the number of ratios 2p ≥ , the global 
solution algorithms by Falk and Palocsay (Ref. [10]), 
Konno and Yamashita (Ref. [11]), Konno and Fukaishi 
(Ref. [12]), and Kuno (Ref. [13]), H. Konno and H. 
Yamashita (Ref. [2]), J.E. Falk and S.W. Palocsay (Ref. 
[3]) are available. If exactly the number of ratios 3p = , 
the heuristic algorithm of Konno and Abe (Ref.[14]) may 
be employed. To solve sums of ratios problems in which 
the numerators and denominators are affine functions and 
the feasible region is a compact convex set, an algorithm 
of Konno et al (Ref. [15]) can be used. In addition, under 
the assumption that 
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a branch and bound algorithm has been proposed (Ref. 
[16], Refs. [17-19]). 

Recently, H. Benson (Ref. [20]) consider the sum-of-
ratios fractional program 
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where 2p ≥ , Y  is a nonempty, compact convex set in 
nR , and for each 1, 2, ,i p= L , , n

i in d R∈ , ,i ig h R∈ ，

and ( ),i in y g< > +  and ( ),i id y h< > +  are positive for 
all y Y∈ . Notice that under these assumptions, the 
global maximum θ  for problem (1) is attained at one or 
more points in Y . 

In Ref. [20], the author presented a branch and bound-
outer approximation algorithm for globally solving the 
above problem (1). To globally solve problem (1), the 
algorithm instead globally solves an equivalent problem 
that seeks to minimize an indefinite quadratic function 
over a nonempty, compact convex set. To solve this 
problem, the algorithm combines a branch and bound 
search with an outer approximation method. From a 
computational point of view, the main work of the 
algorithm involves solving a sequence of lower bounding 
convex relaxation programming problems. Since the 
feasible regions of these convex programs are identical to 
one another except for certain linear constraints, to solve 
them, an optimal solution to one problem can potentially 
be used as an effective starting solution for the next 
problem. 

For each 1, 2, ,i p= L , Benson [20] let 
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From (Ref. [17]), for each 1, 2, ,i p= L , the optimal 
value 0

iU in (2) is positive and is always attained, and this 
value can be computed by applying any efficient convex 
programming algorithm to the optimization problem in 

(2); i.e., any local maximum of problem (2) is a global 
maximum. In addition, for each 1, 2, ,i p= L ，let 

max[ , ], . .i i iS d y h s t y Y= < > + ∈ .       (3) 
and 

max , , . .i i iT n y g s t y Y= < > + ∈ .         (4) 
Then, for each 1, 2, ,i p= L , it is evident that the value of 

iS  in (3) can be computed by solving a convex 
programming problem. It is not difficult to show that for 
each 1, 2, ,i p= L , the value of iT  in (4) is also given by 
solving a convex program. 
Let 
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and let 
{ }2( , , ) | (5) (8)p nZ t s y R y Y and hold+= ∈ ∈ −  

with (5)–(8) given by 
, ] 0, 1, 2, ,i i it n y g i p+ < > + ≥ = L        (5) 

, , 1,2, ,i i is d y h i p− < > + = L                   (6) 
0, 1, 2, ,i iT t i p− ≤ ≤ = L                            (7) 

0 , 1, 2, ,i is S i p≤ ≤ = L                              (8) 
Benson [20] consider the problem ( K ) given by 
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By the conclusion of theorem 2.1, we know that problem 
(1) and problem  ( K ) is equivalent problem, Then the 
main work of Ref. [20] will solve problem ( K ). 

In this article, we present an effective branch-and-
bound algorithm for globally solving a general linear sum 
of ratios problem (GFP) by solving a sequence of linear 
programming problem over partitioned subsets. The main 
feature of this algorithm is as follows. Firstly in (GFP), 
we only request  
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then the model of this paper is more general than other 
paper considered. Secondly, the algorithm economizes 
the required computations by conducting the branch-and-
bound search in the space pR , rather than in the space 

nR  or 2 pR . Thirdly, to implement the algorithm, the 
main computations involve solving a sequence of linear 
programming problems which is easy to be obtained than 
in [5] and does not generate new variables, for which 
standard algorithms are available. Fourthly, the proposed 
branch and bound algorithm is convergent to the global 
maximum through the successive refinement of the linear 
relaxation of feasible region of the objection function and 
constraint functions and the solutions of a series of LRP. 
At last, numerical experiments are given to show the 
feasibility of our algorithm. 
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The article is organized as follows. In Section 2, by 
using a transformation technique, problem EP is derived 
that is equivalent to problem GFP. The rectangular 
branching process, the upper and lower bounding process 
used in this approach are defined and studied in Section 3. 
The algorithm is introduced in Section 4, and its 
convergence is shown. Section 5 report some numerical 
results obtained by solving some examples. Finally, the 
summary of this paper is given. 

II.  PRELIMINAIRES 

In this section, we first give an important theorem, 
which is the foundation of the global optimization 
algorithm. 

Theorem 1. Assume 
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Proof. By the intermediate value theorem, the 
conclusion is obvious. 
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Obviously, in (1), denominators are all positive. Hence, 
in problem GFP, we can assume 
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is always holds. In addition, since 
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where ( 1, , )iM i p= K  is a positive number, if 
( 1, , )iM i p= K  large enough, 
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can be satisfied. Therefore, in the following, without loss 
of generality, we can assume that 
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 in the GFP. 
Next, we show how to convert problem GFP into an 

equivalent problem EP. 
For each 1, , ,i p= K  let  
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then problem GFP can be converted into an equivalent 
nonconvex programming problem as follows: 
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The key equivalence result for problem GFP and 
0EP( )H  is given by the following theorem. 

Theorem 2. If  * * *
1( , , , )px y yK  is a global optimal 

solution for problem 0EP( )H , then *x  is a global 
optimal solution for problem GFP. Converse, if *x  is a 
global optimal solution for problem GFP, then 

* * *
1( , , , )px y yK  is a global optimal solution for problem 

0EP( )H , where  

*

1

, 1, ,
n

i ij j i
j

y e x f i p
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= + =∑ K . 

Proof. The proof of this theorem follows easily from the 
definitions of problems GFP and 0EP( )H , therefore, it is 
omitted. 

From Theorem 2, in order to globally solve problem 
GFP, we may globally solving problem 0EP( )H  instead. 

III.  BASIC OPERATIONS 

In this section, based on the above equivalent problem, 
a branch and bound algorithm is proposed for solving the 
global optimal solution of GFP. The main idea of this 
algorithm consists of three basic operations: successively 
refined partitioning of the feasible set, estimation of 
upper and lower bounds for the optimal value of the 
objective function. Next, we begin the establishment of 
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algorithm with the basic operations needed in a branch 
and bound scheme. 

A.  Branching Process 
In this algorithm, the branching process is performed 

in pR , rather in nR , that iteratively subdivides the p -
dimensional rectangle 0H  of problem 0EP( )H  into 
smaller subrectangles that are also of dimension p . Let 

      { }| , 1,p
i i iH y R l y u i p= ∈ ≤ ≤ = K   

denote the initial rectangle 0H  or subrectangle of it, the 
branching rule as follows: 

(i) Let 1 ( ), 1, ,
2i i il u i pτ = + = K , 

(ii) Let  
{ }1 | , 1,p

i i iH y R l y i pτ= ∈ ≤ ≤ = K

{ }2 | , 1,p
i i iH y R y u i pτ= ∈ ≤ ≤ = K  

It follows easily that this branching process is exhaustive, 
i.e. if { }kH  denotes a nested subsequence of rectangles 

(i.e. 1k kH H+ ⊆  for all k ) formed by branching process, 
then there exists a unique point py R∈  such that  

{ }k

k

H y=I . 

B.  Upper Bound and Lower Bound 
For each rectangle 
 { }| , 1,p

i i iH y R l y u i p= ∈ ≤ ≤ = K 0( )H H⊆  
formed by the branching process, the upper bound 
process is used to compute an upper bound UB( )H  for 
the optimal value ( )v H  of problem EP( )H .  
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It will be seen from below, the upper bound UB( )H  
can be found by solving an ordinary linear program. 

In the following, for convenience of expression, let 
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Then, consider constraint function ( , ), 1, ,i x y i pϕ = K , 
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Based on the above discussion, we can construct a 
linear relaxation programming (LRP) as follows, which 
provides an upper bound for the optimal value ( )v H  of 
problem EP( )H . 

0( ) max ( , )
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Remark 1. Let [ ]v p  denotes the optimal value of the 
problem p , then, from the above discussion, the optimal 
values of HLRP( ) and HEP( ) satisfy  

[ ( )] [ ( )]v LRP H v EP H≥  for 0H H∀ ∈ . 
Remark 2. Obviously, if  

0H H H⊆ ⊆ , 
then 

 ( ) ( ).UB H UB H≤  

Another basic operation is to determinate a lower 
bound for the optimal value 0( )v H  of problem 0EP( )H . 
By the upper bound process, through solving LRP( )H , 
we will have a optimal solution *x .  

Let  
* *

1

n

ij j i
j

y e x f
=

= +∑ , 

obviously, ( )* *,x y  is a feasible solution of problem 

0EP( )H , hence, * *
0 ( , )x yϕ  provides a lower bound for 

the optimal value 0( )v H  of problem 0EP( )H . 

IV.  ALGORITHM AND ITS CONVERGENCE 

Based upon the results and operations given in Section 
3, the branch and bound algorithm for problem GFP may 
be stated as follows. 

Branch and bound algorithm 
Step 0.  Choose 0ε ≥ . Let 0H  be denoted by 

{ }0 0
0 | , 1, ,p

i i iH y R l y u i p= ∈ ≤ ≤ = K  

Find an optimal solution 0x  and the optimal value 
0UB( )H  for problem 0LRP( )H . Set 

0
0UB UB( )H= , 
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0 0 ( , ),c cLB x yϕ=  
If  

0 0BUB L ε− ≤ , 
stop. ( , )c cx y  and cx  are global ε -optimal solutions for 
problems 0EP( )H  and GFP, respectively. Otherwise, set  

{ }0 0P H= , , 1F kφ= = , 
and go to Step 1. 

Step 1.  Set  
1k kLB LB −= . 

Subdivide 1kH −  into two p -dimensional rectangles 
,1 ,2,k k pH H R⊆ , 

via the branching rule. Set  
{ }1kF F H −= U . 

Step 2.  For 1, 2j = compute ,UB( )k jH  and, if  
,UB( )k jH ≠ −∞ , 

find an optimal solution ,k jx  for problem 
�

LRP( )H  with 
,( ) k jH H=

)
, Set 0t = . 

Step 3.  Set 1t t= + . If 2t > , go to Step 5. Otherwise, 
continue.  

Step 4.  If  
,UB( )k t

kH LB≤ , 
set 

{ },k tF F H= U , 
and go to step 3. Otherwise, Set 
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go to Step 3. If  
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and continue. 
Step 5.  Set 

{ },1 ,2
1| ( { , }),k k

k kP H H P H H H F−= ∈ ∉U  
Step 6.  Set  

max{ ( ) | }k kUB UB H H P= ∈ , 
and let k
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k kUB LB ε− ≤ , 
stop. ( , )c cx y  and cx  are global ε -optimal solutions for 
problems 0EP( )H  and GFP, respectively. Otherwise, set 

1k k= +  and go to Step 1. 
The convergence properties of the algorithm are given 

in the following theorem. 
Theorem 3. (a) If the algorithm is finite, then upon 

termination, ( , )c cx y  and cx  are global ε -optimal 
solutions for problems 0EP( )H and GFP, respectively. 

(b) For each 0k ≥ , let kx  denote the incumbent 
solution cx  for problem GFP at the end of Step k . If the 
algorithm is infinite, every accumulation point of which 
is a global optimal solution for problem GFP, and 

lim limk kk k
UB LB v

→∞ →∞
= =  

Proof. (a) If the algorithm is finite, then it terminates in 
Step 0k ≥ . Upon termination, since ( , )c cx y  is found by 
solving problem EP( )H , for some 0H H⊆ , for an 
optimal solution  cx  and setting 

1
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i ij j i

j

y e x f i p
=

= + =∑ K  

cx  is a feasible solution for problem GFP, and ( , )c cx y  is 
a feasible solution for problem 0EP( )H . Upon 
termination of the algorithm,  

k kUB LB ε− ≤  
is satisfied. From Step 0 and Step 1 and Step 4, this 
implies that  

0 ( , )c c
kUB x yϕ ε− ≤ . 

By the algorithm, it shows that 
kUB v≥  

Since ( , )c cx y  is a feasible solution for problem 0EP( )H ,  

0 ( , )c cx y vϕ ≤  
Taken together, this implies that 

0 ( , )c c
kv UB x y vϕ ε ε≤ ≤ + ≤ +  

Therefore 
0 ( , )c cv x y vε ϕ− ≤ ≤ . 
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 we have 
0( ) ( , ).c c cg x x yϕ=  

 this implies that 
( )cv g x vε− ≤ ≤ , 

and the proof of part (a) is complete. 
(b) Suppose that the algorithm is infinite. Then it 

generates a sequence of incumbent solutions for problem 
0EP( )H , which we may denote by {( , )}k kx y . For each 

1k ≥ , {( , )}k kx y is found by solving problem EP( )kH , 
for some rectangle 0

kH H⊆ , for an optimal solution 
kH ∈Λ , and setting  

122 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER



1
, 1, 2, , ,

n
k k
i ij j i

j

y e x f i p
=

= + =∑ K . 

Therefore, the sequence kx  consists of feasible 
solutions for problem GFP. Let x  be an accumulation 
point of { }kx , and assume without loss of generality that 

lim k

k
x x

→∞
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Then, since Λ  is a compact set, x ∈Λ . Furthermore, 
since { }kx is infinite, we may assume that without loss of 
generality that, for each k , 1k kH H+ ⊆ . From Horst and 
Tuy (Ref.[21]), since the rectangles , 1kH k ≥ , are 
formed by rectangular bisection, this implies that, for 
some point py R∈  

lim { }k k
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Let { }H y=  and, for each k , by Remark 2 and Step 4, 
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UB H v

→∞
≥  

For each k , from Step 2, ( )kUB H  equal to the 
optimal value of the problem LRP( )kH and kx  is an 
optimal solution for this problem. From the above, we 
have  

lim lim { } .k k

k k
l u y H

→∞ →∞
= = =  

Since  
lim k

k
x x

→∞
= , 

1

n
k k k
i ij j i i

j

l e x f u
=

≤ + ≤∑ , 

and the continuity of 
1

n
k

ij j i
j

e x f
=

+∑ , 

1
, 1, 2, ,

n

ij j i i
j

e x f y i p
=

+ = =∑ K . 

This implies that ( , )x y  is a feasible solution for 
problem 0EP( )H . Therefore,  

0 ( , )x y vϕ ≤ . 
Combing the former formulation, we obtain that 

0 ( , ) lim ( )k

k
x y v UB Hϕ

→∞
≤ ≤ . 

Since 

1

1

1

0

lim ( )

( , )

i i

k

k

n
j j i i

ij ijk k k k
j j T j T i D i Di i i i

n

ij j jp
j

i
i i

UB H

x x d d
c c

l u l u

e x f
c

y
x yϕ

+ − + −

→∞

= ∈ ∈ ∈ ∈

=

=

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠

+
=

=

∑ ∑ ∑ ∑ ∑

∑
∑

 

From the above formulation, we have 

0lim ( ) ( , )k

k
UB H v x yϕ

→∞
= = . 

Therefore, ( , )x y  is a global optimal solution for 
problem 0EP( )H . By Theorem 2, this implies that x is a 
global optimal solution for problem GFP.  

For each k , since kx  is the incumbent solution for 
problem GFP at the end of Step k ,  

( ) ( ),k
kLB g x g x= =  for all 1k ≥ . 

By the continuity of g , we have 
lim ( ) ( ).k

k
g x g x

→∞
=  

Since x  is a global optimal solution for problem GFP, 
( ) .g x v=  

Therefore,  
lim kk

LB v
→∞

= , 

and the proof is complete. 

V.  NUMERICAL EXPERIMENTS 

To verify the performance of the proposed global 
optimization algorithm, some test problems are 
implemented on microcomputer, and the convergence 
tolerance set to 610ε −=  in our experiment. The results 
are summarized in Table 1.  

Example 1. 
1 2 3

1 2 3

3 5 3 50
min

3 4 5 50
x x x
x x x
+ + +

−
+ + +

 

1 2

1 2 3

3 4 50
4 3 2 50

x x
x x x

+ +
−

+ + +
 

1 2 3

1 2 3

4 2 4 50
5 4 3 50

x x x
x x x
+ + +

−
+ + +

 

1 2 3

1 2 3

1 2 3

. . 10 3 8 10,
6 3 3 10,

, , 0.

s t x x x
x x x

x x x

+ + ≤

+ + ≤
≥

 

Obtain the optimal solution *
1 0,x =  

*
2 0.333333,x = *

3 0x = . 
Example 2. 

1 2 3

2 3

1 3

1 2 3

1 2 3

1 2 3

1 2 3

2 3

4 3 3 50
min

3 3 50
3 4 50

4 4 5 50
2 4 50
5 5 50
2 4 50

5 4 50

x x x
x x

x x
x x x

x x x
x x x
x x x

x x

+ + +
−

+ +
+ +

−
+ + +
+ + +

−
+ + +
+ + +

−
+ +

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

. . 2 2 10,
6 2 10,

5 9 2 10,
9 7 3 10,

, , 0.

s t x x x
x x x
x x x
x x x
x x x

+ + ≤
+ + ≤
+ + ≤
+ + ≤

≥

 

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 123

© 2013 ACADEMY PUBLISHER



Obtain the optimal solution *
1 1.11111,x =  *

2 0,x =  
*
3 0x = . 
Example 3. 

1 2

1 2

37 73 50
min

13 13 50
x x
x x
+ +
+ +

 

1 3

1 2

13 13 50
37 73 50

x x
x x
+ +

+
+ +

 

1 2

1

. . 5 3 3,
1.5 3.

s t x x
x

− =
≤ ≤

 

Set 610ε −= , obtain the optimal solution *
1 1.5,x =  

*
2 1.5x = . 
Example 4. 

1 2

1 2 3

1 2 3

1 2 3

1 2 3

2 3

1 2 3

2 3

1 2 3

1 2 3

1 2 3

3 4 50
max

3 5 4 50
3 5 3 50
5 5 4 50

2 4 50
5 4 50

4 3 3 50
3 3 50

. . 6 3 3 10,
10 3 8 10,

, , 0.

x x
x x x

x x x
x x x

x x x
x x

x x x
x x

s t x x x
x x x

x x x

+ +
+ + +
+ + +

−
+ + +
+ + +

−
+ +

+ + +
−

+ +
+ + ≤
+ + ≤

≥

 

Obtain the optimal solution *
1 0,x =  *

2 3.33333,x =  
*
3 0x = . 
Example 5. 

1 2

1 2

1 2

1 2

1 2

2 3

1 2

1 2

1 2

1

37 73 13max
13 13 13

63 18 39
13 26 13
13 13 13
63 18 39
13 26 13
37 73 13

. . 5 3 3,
1.5 3.

x x
x x

x x
x x
x x
x x
x x
x x

s t x x
x

+ +
+ +
− +

−
+ +
+ +

+
− +
+ +

−
+ +

− =
≤ ≤

 

Obtain the optimal solution *
1 3,x =  *

2 4x = . 
Example 6. 

1 2 3

1 2 3

1 2

1 2

1 2 3

1 2 3

3 5 3 50
min

3 4 50
3 4 50
3 3 50
4 2 4 50
4 3 50

x x x
x x x

x x
x x
x x x
x x x

+ + +
+ + +
+ +

+
+ +
+ + +

+
+ + +

 

1 2 3

1 2 3

. . 2 5 10,
6 2 10,

s t x x x
x x x

+ + ≤
+ + ≤

 

1 2 3

1 2 3

1 2 3

5 9 2 10,
9 7 3 10,

, , 0.

x x x
x x x
x x x

+ + ≤

+ + ≤
≥

 

Obtain the optimal solution * *
1 20, 0x x= = , *

3 0.x =  
Example 7. 

1 2 3

1 2 3

1 2

1 2 3

1 2 3

1 2 3

3 5 3 50
min

3 4 5 50
3 4 50

4 3 2 50
4 2 4 50
5 4 3 50

x x x
x x x

x x
x x x
x x x
x x x

+ + +
+ + +

+ +
+

+ + +
+ + +

+
+ + +

 

1 2 3

1 2 3

. . 2 5 10,
6 2 10,

s t x x x
x x x

+ + ≤
+ + ≤

 

1 2 3

1 2 3

1 2 3

5 9 2 10,
9 7 3 10,

, , 0.

x x x
x x x
x x x

+ + ≤

+ + ≤
≥

 

Obtain the optimal value * 3.0029V = . 
Numerical result shows that our algorithm can globally 

solve global optimization problem (GFP). 
From numerical experiments, it is seen that 

computational efficiency of our algorithm is higher and 
can be used to large scale of linear sum of ratios problem 
GFP. 

VI.  CONCLUDING REMARKS 

In this paper, we present a branch and bound algorithm 
for solving general linear fractional problem GFP. To 
globally solve problem GFP, we first convert it into an 
equivalent problem 0EP( )H , then, through using 
linearization method, we obtain a linear relaxation 
programming problem of 0EP( )H . In the algorithm, First, 
the branching process takes place in the space nR  rather 
than in the space nR . This economizes the computation 
required to solve problem GFP. This mainly due to the 
fact that the numbers of ratios in the objective function of 
problem GFP is smaller than the number of decision 
variables n  in the problem. Second, the upper bounding 
sub-problems are linear programming problems that are 
quite similar to one another. These characteristics of the 
algorithm offer computational advantages that can 
enhance the efficiencies of the algorithm. 

It is hoped that in practice, the proposed algorithm and 
ideas used in this paper will offer valuable tools for 
solving general linear fractional programming. 

ACKNOWLEDGEMENTS 

This paper is supported by the National Natural 
Science Foundation of Henan Province, Natural Science 
Research Foundation of Henan Institute of Science and 
Technology (06054, 06055). 

The work was also supported by Foundation for 
University Key Teacher by the Ministry of Education of 

124 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER



Henan Province and the Natural Science Foundation of 
He'nan Educational Committee (2010B110010). 

REFERENCES 
[1] H. Konno, Y. Yajima and T. Matsui, Parametric simplex 

algorithms for solving a special class of nonconvex 
minimization problem, Journal of Global Optimization, 
Vol.1, pp. 65-81,1991. 

[2] H. Konno and H. Yamashita, Minimizing sums and 
products of linear fractional functions over a polytope, 
Naval Research Logistics, vol.46, pp. 583-596, 1999. 

[3] J.E. Falk and S.W. Palocsay, Image space analysis of 
generalized fractional programs, Journal of Global 
Optimization, vol.4, pp. 63-88, 1994. 

[4] Y. Ji, K.C. Zhang and S.J. Qu, A deterministic global 
optimization algorithm, Applied Mathematics and 
Computation, vol.185, pp. 382-387, 2007. 

[5] H. Konno and M.Inori, Bond protfolio optimization by 
bilinear fractional programming, Journal of the Operations 
Research Society of Japan, vol. 32, pp.143-158, 1989. 

[6] R. Horst and H.Tuy, Global Optimization: Deterministic 
Approaches, 2nd Edition, Spring Verlag, Berlin, Germany, 
1993. 

[7] I. Qusada and I. Grossmann, A Global Optimization 
Algorithm for Linear Fractional and Bilinear Programs, 
Journal of Global Optimization, vol. 6, pp. 39–76, 1995. 

[8] A. Cambini, L. Matein and S. Schaible , On Maximizing a 
Sum of Ratios, Journal of Information and Optimization 
Sciences, vol. 10, pp. 65–79, 1989. 

[9] J. E. Falk, and S. W. Palocsay , Image Space Analysis of 
Generalized Fractional Programs, Journal of Global 
Optimization, vol. 4, pp. 63–88, 1994. 

[10] H. Konno, and K. Fukaishi, A Branch-and-Bound 
Algorithm for Solving Low-Rank Linear Multiplicatiue 
and Fractional Programming Problems, Journal of Global 
Optimization, vol. 18, pp. 283–299, 2000.  

[11] T. Kuno, A Branch-and-Bound Algorithm for Maximizing 
the Sum of Several Linear Ratios, Report ISE-TR-00-175, 
University of Tsukuba, 2000. 

[12] H. Konno, and N. Abe , Minimization of the Sum of Three 
Linear Fractional Functions, Journal of Global 
Optimization, vol. 15, pp. 419–432, 1999. 

[13] C.F. Wang, P.P. Shen, A global optimization algorithm for 
linear fractional programming, Applied Mathematics and 
Computation, vol. 204, pp.281-287, 2008. 

[14] N.T.H. Phuong, and H. Tuy, A unified monotonic 
approach to generalized linear fractional programming, 
Journal of Global Optimization, vol. 26, pp.229-259, 2003. 

[15] R. Freund and F. Jarre, Solving the Sum-of-Ratios Problem 
by an Interior-Point Method, Journal of Global 
Optimization,vol.19 , pp.83-102,2001.  

[16] H. P. Benson, A simplicial branch and bound duality-
bounds algorithm for the linear sum-of-ratios problem, 
European Journal of Operational Research ,vol.182 pp. 
597-611,2007. 

[17] H. P. Benson, On the Global Optimization of Sums of 
Linear Fractional Functions over a Convex Set, Journal of 
Optimization Thoery and Applications ,vol.121,pp.19-39, 
2004. 

[18] J.E. Falk and S.W. Palocsay, Image space analysis of 
generalized fractional programs, Journal of Global 
Optimization, vol.4, pp.63-88, 1994. 

[19] P. Shen, C. Wang, Global optimization for sum of linear 
ratios problem with coeffcients, Applied Mathematics and 
Computation ,vol.176, pp.219-229, 2006. 

[20] H. Benson, Branch-and-Bound Outer Approximation 
Algorithm for Sum-of-Ratios Fractional Programs, Journal 
of Optimization Theory and Applications, vol. 146, pp. 1-
18, 2010. 

[21] R. Horst and H. Tuy, Global Optimization: Deterministic 
Approaches, 2nd Edition, Spring Verlag, Berlin, Germany, 
1993. 

[22] Ching-Feng Wen, Hsien-Chung Wu, “Approximate 
solutions and duality theorems for continuous-time linear 
fractional programming problems”, Numerical Functional 
Analysis and Optimization, vol. 33, no. 1, pp. 80-129, 
January 1, 2012 

[23] Qigao Feng, Hongwei Jiao, Hanping Mao, Yongqiang 
Chen, “A deterministic algorithm for min-max and max-
min linear fractional programming problems”, 
International Journal of Computational Intelligence 
Systems, vol.  4, no. 2, pp. 134-141, April 2011. 

[24] Milan Hladík, “Generalized linear fractional programming 
under interval uncertainty”, European Journal of 
Operational Research, vol. 205, no. 1, pp. 42-46, August 
16, 2010. 

[25] R. Kapoor, S.R. Arora, “Linearization of 0-1 multi-
quadratic fractional programming problem”, Asia-Pacific 
Journal of Operational Research, vol. 26, no. 1, pp. 59-84, 
February 2009. 

 
Baolin Ma is a Lecturer, at Department of Mathematics, Henan 
Institute of Science and Technology, China. He received the 
Master Degree from the Northwest Normal University in 2009.  

His research interests include software engineering, 
computer application, optimization algorithm design, product 
design, manufacturing information systems, optimization 
algorithm, nonlinear system, optimal control theory. E-mail: 
xxdsmbl@163.com 

 
Lei Geng is a Lecturer of Henan Mechanical and Electrical 
Engineering College. 

His research interests include software engineering, 
computer application, optimization algorithm design, product 
design, manufacturing information systems, optimization 
algorithm, nonlinear system, optimal control theory. E-mail: 
genglei168@126.com 

 
Jingben Yin is a associate professor at Department of  
Mathematics, Henan Institute of Science and Technology, 
China. He received the Master Degree from the Zhengzhou 
University in 2009.  

His research interests include software engineering, 
computer application, optimization algorithm design, product 
design, manufacturing information systems, optimization 
algorithm, nonlinear system, optimal control theory. He has 
published over 30 research monographs. Email: 
jingbenyin@163.com 

 
 

Liping Fan is a associate professor at Department of 
Mathematics, Henan University, China. He received the Ph. 
Degree from the Wuhan University in 2008.  

His research interests include nonlinear analysis, software 
engineering, computer application, optimization algorithm 
design, product design, manufacturing information systems, 
optimization algorithm, nonlinear system, optimal control 
theory. 

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 125

© 2013 ACADEMY PUBLISHER


