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Abstract—It is a hard problem to anticipate the dynamic 
characteristics of non-linear chaotic system. In this paper, 
based on a stability theorem proved for linear chaotic 
systems, a scheme for anticipating synchronization of 
chaotic system is proposed. This paper investigate the 
synchronization between the receiver system and the future 
state of a transmitter system for an arbitrarily long 
anticipation time, both master and slave systems are 
considered to be involved with time-delay by the proposed 
method. The synchronization scheme guarantees one to 
predict the dynamics of chaotic transmitter at any point of 
time. Where synchronization error will be forced and then 
kept inside a ball around the origin. So the synchronization 
can be done with any desired accuracy. The proposed 
method can be easily extended to synchronize other chaotic 
systems. Numerical simulation results are used to verify the 
theoretical analysis using different values of parameter. 
 
Index Terms—time-delay system; chaotic system; 
anticipation synchronization 

I.  INTRODUCTION 

Recently, control and synchronization of chaotic 
motion are key problems in chaotic application field [1]. 
In 2000, Voss proposed a new real-time delay 
synchronization systems method, known as the expected 
synchronization [2]. In this method, the response system 
can keep synchronization with the future state of drive 
system. That was the response system predicting the 
future state of the drive system. In 2002, E. M. 
Shahverdiev group proposed a new theory on the expected 
synchronization of Reversed-Phase (RP) [3], to realize the 
response system giving the future state of the drive system 
a reverse forecast. After E. M. Shahverdiev group and K. 
Pyragas etc. many times did further analysis and research 
on the expected synchronization and RP expected 
synchronization of time-delay systems, such as with a 
coupling term, the two coupling terms the expected 
synchronization of time-delay systems [5,6] , 
anti-expected synchronization[3], with multiple coupling 

terms the expected synchronization of  time-delay 
systems [7-8]. 

The theoretical analysis and simulation results provide 
a theoretical basis and examples for further research on 
long-term prediction of time-delay systems. We also 
found that the expected synchronization of  time-delay 
system, more is given deductions and analysis of special 
form in current literatures, and theoretical analysis of the 
general form is not detailed enough; for multiple coupling 
terms the RP expected synchronization of time-delay 
systems , in-depth theoretical analysis and simulation 
example aren’t given. Therefore, using the expected 
synchronization and RP expected synchronization 
proposed by E. M. Shahverdiev etc. for reference, we will 
further improve the theoretical analysis on the expected 
synchronization and RP expected synchronization with 
multiple coupling teams in this paper; on the other hand, 
according to the classification of different forms of the 
coupling term of delay system, based on the support of 
the theory, we will give the theory and the simulation on 
expected synchronization and RP expected 
synchronization separately. 

II.  THE THEORY ON EXPECTED SYNCHRONIZATION OF 
TIME-DELAY SYSTEMS 

Before the concrete theory introduction, firstly, we 
introduce a lemma [9, 10] to support the theoretical 
derivation and numerical simulation of this paper. 
Consider the following form of time-delay systems, 
namely: 

/ ( )dx dt Ax f x= +              (1) 

where  x(t)∈Rn, xτ=x(x-τ), Let D is the domain, initial 
value x(t0, ) given, and then the equation (1) has a unique 
solution, denoted as x(t0, ) [9]. Suppose the Function F is 
continuous and derivable, and then define a continuous 
Lyapunov function x(t0, ), denoted as: V:D→R+ .Along 
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the equation (1) path to the function V (t) derivation, we 
can obtain: 

Lemma 1 [11]: Suppose u and v is K-class function, and 
there exists a function V (t,) satisfying the following 
conditions: 

(1) 0, , . .t C s tφ∀ ≥ ∃ ∈ (| (0) |) ( , ) (| |)u V t vφ φ φ≤ ≤ ; 

(2) 0 0, , . .t C s tφ∀ ≥ ∃ ∈  0 0( , ( , )) 0, ( )tV t x t t tφ
•

≤ ≥ ; 
Then the zero solution of the equation (1) is (consistent) 

stable. 

III.  THE EXPECTED SYNCHRONIZATION BETWEEN 
TIME-DELAY SYSTEMS COUPLED WITH DELAY 

This section will classify the different forms under 
time-delay systems with coupling term, introduce 
separately the expected synchronization theory of 
different forms under time-delay systems, and give the 
derivation of the expected synchronization with multiple 
coupling terms theory in detail. 

First consider the simplest case that is the expected 
synchronization of time-delay systems coupled with a 
delay. Drive system and response system [12] are as 
follows: 

 ( ) / ( ) ( )dx t dt ax t f xτ= − +         (2) 

( ) / ( ) ( )dy t dt ay t f x= − +           (3) 
where xτ=(x-τ), define the error e (t) =x (t)-yτ, and then the 
error system is: 

( ) / ( ) ( ) ( ) ( )de t dt ax t f x ay f x ae tτ τ τ= − + + − = −  (4) 

Make Lyapunov function unction V (t) =e (t) 2/2,  
Then along the equation (4) track, deriving to V (t) us 

can obtain: 

2( ) ( ) ( ) ( )V t e t e t ae t
• •

= = −            (5) 

According to lemma, the zero solution of equation (4) 
is consistent and stable. When a>0, and the origin of error 
system is asymptotically stable, the expected 
synchronization is reached between system (1-2). 

The expected synchronization between time-delay 
systems coupled with two different delays 

Consider the expected synchronization between 
time-delay systems coupled with two different delays. 
Drive system and response system are set up as follows: 

 1
/ ( ) ( )dx dt ax t f xτ= − +           (6) 

2
/ ( ) ( )dy dt ay t f xτ= − +             (7) 

where xτ=x (t-τi), (i=1, 2), Assume τ1>τ2, and define the 
error e (t) =x (t) - yτ1-τ2,  

Then the error system can be obtained: 

1 1 2

1

( ) / ( ) ( )

( ) ( )

de t dt ax t f x ay

f x ae t
τ τ τ

τ

−= − + +

− = −
        (8) 

Select the Lyapunov function  V (t) =e (t) 2/2, calculate 
derivative of V (t) along the equation (8) path, one get: 

V (t) =e (t) e (t) =-ae2 (t)  

For τ1>τ2 case, the error can be defined as 
e (t) =x (t) - yτ1-τ2  

The error system and its stability analysis are similar 
with τ1>τ2, this section is no longer analysis. 

The expected synchronization between time-delay 
systems coupled with multiple delays 

Consider the expected synchronization of delay system 
of the general case in the section, that is the expected 
synchronization of time-delay systems coupled with 
multiple delays, and the first two cases can be considered 
as a special case of time-delay systems coupled with 
multiple delay. Then, this section gives a sufficient 
condition to achieve the expected synchronization 
between the drive system and response system and this 
proof for the sufficient condition based on the 
Krasovskii-Lyapunov stability theory. 

Consider the drive system and response system [13] 

11( ) / ( ) ( ) ( )
nx nxdx t dt ax t m f x m f xτ τ= − + + +L     (9) 

11( ) / ( ) ( ) , ,

( ) ( )
n k

y

ny

dy t dt ay t m f y

m f y kf x
τ

τ τ

= − + + +

−

L
    (10) 

where xτi=(x-τi),yτi=y(t-τi),l=1,2,…,n, τk>0, ,mix and miy are 
the feedback gain coefficients, and coefficient k is the 
expression of coupling strength. 

Assume that τi>τk defines the error 
e (t) =x (t) - yτ1-τ2,i=1,2,3…,n   

If mix=miy, and f(x) is continuous and differentiable, 
according to the mean value theorem, we can get  

' '
1,

/ ( ) ( )
j i

n
jy j iy ij j i

de dt ae m f e m f eτ τξ ξ
= ≠

= − + +∑  (11) 

Theorem 1[14]: For arbitrary t>0, if the inequality 
always holds: 

' '
1,

( ) | | ( )jy j iy ij j i
a m f m fξ ξ

= ≠
> +∑  

When t→∞, the error e(t)→0, namely, the error system 
(11) is asymptotically stable at the origin, Therefore, the 
sufficient condition for the inequality V, expected 
synchronization between the drive system (9) and the 
response system (10) can always achiev.  

The inequality V (e (t)) <0 always holds. 
According to Lemma, easy to select to meet Lemma’s 

two conditions u(x) and v(x), the zero solution is 
uniformly stable. Here, because the function f(x) and the 
reciprocal  f(x) are uncertain, we will ignore the selection 
of the function k-class. The proof is over. 

IV.  THE THEORY ON THE RP EXPECTED 
SYNCHRONIZATION OF TIME-DELAY SYSTEMS 

Similar to the way of the discussions with the expected 
synchronization, this section will classify the different 
forms under time-delay systems with coupling term, 
introduce separately the RP expected synchronization 
theory of different cases, and give the derivation of the RP 
expected synchronization with multiple coupling terms 
theory in detail. 
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The RP expected synchronization between time-delay 
systems coupled with a delay 

First consider the case with a delay. Drive system and 
response system are defined as follows: 

 / ( ) ( )dx dt ax t f xτ= − +          (12) 

/ ( ) ( )dy dt ay t f x= − +            (13) 

where xτ=x (t-τ) , 
Define the error,  

e (t)=x(t)-(-yτ)=x(t)+yτ, 
Then the error system is: 

( ) / ( ) ( ) ( ) ( )de t dt ax t f x ay f x ae tτ τ τ= + − − = −   (14) 

Select Lyapunov function V (t) =e (t) 2/2, then along the 
equation (14) track, deriving to V (t) us can obtain:      

V (t) =e (t) e (t) =-ae2 (t). 
Obviously,  

If a>0, V (t) <0 
Select u(s) =s2/2, 
V =as2, 
us∈K, 

Then  V(t)≤-av2(t)  holds  
We may know according to lemma that the zero 

solution of the equation (14) is consistent and stable. 
When a<0, and the origin of error system is 
asymptotically stable, the RP expected synchronization 
between the systems (12) and (13) can always achieve. 

The RP expected synchronization between time-delay 
systems coupled with two different delays. 

Consider the RP expected synchronization with two 
different delays. Drive system and response system are set 
up as follows: 

1
( ) / ( ) ( )dx t dt ax t f xτ= − +        (15) 

2
( ) / ( ) ( )dy t dt ay t f xτ= − −           (16) 

where xτi=x(t-τi),(i=1,2), Assume τ1>τ2, and define the 
error e(t)=x(t)-(-yτ1-τ2)=x(t)+yτ1-τ2, then the error system 
can be obtained: 

1 1 2 1
( ) / ( ) ( ) ( )

( )

de t dt ax t f x ay f x

ae t
τ τ τ τ−= − + − −

= −
   (17) 

Select the Lyapunov function V (t) =e (t) 2/2, calculate 
derivative of V (t) along the equation (17)'s path, we may 
know according to lemma that the zero solution of 
equation (17) is consistent and stable. 

The RP expected synchronization between time-delay 
systems coupled with multiple delays 

Consider the RP expected synchronization of delay 
system of the general case in the section, that is the RP 
expected synchronization of time-delay systems coupled 
with multiple delays, and the first two cases can be 
considered as a special case of time-delay systems 
coupled with multiple delays. Then, this section gives a 
sufficient condition to achieve the RP expected 
synchronization between the drive system and response 
system. 

Define the drive system and response system: 

11( ) / ( ) ( ) , , ( )
nx nxdx t dt ax t m f x m f xτ τ= − + + +L    (18) 

11( ) / ( ) ( ) , ,

( ) ( )
n k

y

ny

dy t dt ay t m f y

m f y kf x
τ

τ τ

= − − − −

+

L
  (19) 

where xτl=x(t-τl),yτl=y(t-τl),l=1,2,…,n, τk>0, mlx and mly 
are  the feedback gain coefficients, and coefficient k is 
the expression of coupling strength. Assume that τi>τk 
defines the error 

 e (t) =x (t) –(-yτ1-τk)=x(t)+ yτ1-τk,(i∈1,2,…,n) 
 Then the error system is 

1,

2

( ) / [ ( ) ( )]

[ ( ) ( )]
j j i k

i i k

jyj j i

iy

de t dt ae m f x f y

m f x f y
τ τ τ τ

τ τ τ

+ −= ≠

−

= − + − +

−

∑
 

If f(x) is continuous and differentiable, according to the 
mean value theorem, we can get: 

'
1,

'

( ) / ( ( )

( ) )
j

i

jy jj j i

iy i

de t dt ae m f e

m f e

τ

τ

ξ

ξ
= ≠

= − + +∑     (20) 

where  

1 2( , )j j jξ η η∈ , 1 2( , )iξ θ θ∈ , 

1 min{ , }
j j i kj x yτ τ τ τη + −= , 2 max{ , }

j j i kj x yτ τ τ τη + −=   

 1 2min{ , }
i i k

x yτ τ τθ −= , 2 2max{ , }
i i k

x yτ τ τθ −= . 
Theorem [16]: For arbitrary t>0, if the inequality 

' '
1,

( ) ( )jy j iy ij j i
a m f m fξ ξ

= ≠
> +∑  

Always holds, the error system (20) is asymptotically 
stable at the origin, and the RP expected synchronization 
between the drive system (18) and the response system 
(19) can always achieve. 

The proof of the theorem can refer to the proof of 
Theorem 1, so here no proof is given in detail. 

V.  EXPECTED SYNCHRONIZATION OF TIME-DELAY 
SYSTEMS ON NUMERICAL SIMULATION OF THE 

MACKEY-GLASS 

In the previous two sections on the basis of theoretical 
analysis, this section will analyze the application of the 
expected synchronization and RP expected 
synchronization in the specific time-delay system, and 
give the numerical simulation results. 

The classical Mackey-Glass system [17] as the research 
object, the equation is as follows [18]: 

( ) / ( ) /(1 )b
t tdx t dt cx t ax xτ τ− −= − + +         (21) 

where x (t) means that on the time, t, a, b, c are equation 
parameters, and τ is time delay parameter. Usually taking, 
τ is increasing constantly, and as τ increases, the 
dimension of chaotic dynamics in time-delay system is 
growing constantly. JD Farmer conducted in-depth study 
on the complex dynamics of Mackey-Glass system [84]:  

When τ<4.35, the system is stable at a fixed point; 
4.35<τ<13.1 
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 The system is in the limit cycle state; 13.1<τ<16.8, the 
system presents periodic states; τ>16.8, the system 
appears the chaotic attractor. 

We will discuss the expected synchronization and RP 
expected synchronization of the Mackey-Glass system. 
Referring to of the three cases of the expected 
synchronization theory in Section 3, in example analysis 
and value simulation stage, we will also have sequential 
analysis for three cases. 

A. The Expected Synchronization Coupled with A Delay 
Drive system and response system are as follows: 

( ) ( )
1

axdx t cx t bdt x
τ

τ
= − +

+
          (22) 

( ) ( )( )
1 ( )

dy t ax tcy t bdt x t
= − +

+
          (23) 

where xτ=xi-τ. 
Define the error e (t) =x (t)-yτ, According to the 

theoretical analysis in section 3, when c>0, the expected 
synchronization between the drive system and the 
response system can always achieve.  

Selecting the system parameters a=0.2, b=10, c=0.1, 
Numerical simulation is shown in Figure 1-2. 
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Figure 1.Response system variable y (t) (dashed lines) predicting the 

expected synchronization and error e (t) of drive system variable x (t)  
(solid line), τ=30 
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Figure 2.The phase diagram of state variables x (t) and y (t-(τ1-τ2), 

τ=30 

B. The Expected Synchronization Coupled with Two 
Different Delays 

Drive system and response system coupled with two 
different delays are as follows: 

( ) 1( )
1

1

axdx t cx t bdt x

τ

τ
= − +

+
            (24) 

( ) 2( )
1

2

axdy t cy t bdt x

τ

τ
= − −

+
              (25) 

Define the error 
e (t) =x (t) - yτ1-τ2, τ1>τ2 

According to the theoretical analysis, when c>0, the 
expected synchronization between the drive system and 
the response system can always achieve. And when t→
∞,e(t)→0, selecting the system parameters a=0.2, b=10, 
c=0.1, numerical simulation is shown in Figure 3-4. 
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Figure 3. Response system variable y (t) (dashed lines) predicting the 
expected synchronization and error e (t) of drive system variable x (t) 

(solid line), τ1=45, τ2=5 
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Figure 4. The phase diagram of state variables x (t) versus y (t-(τ1-τ2), 

τ1=45, τ2=5 

C. The Expected Synchronization between Time-delay 
Systems Coupled with Multiple Delays 

In the last section, we give the general form of 
time-delay systems coupled with multiple delays. Given 
different values for parameter n, the corresponding 
numerical simulations between coupled systems  are 
similar So, in this section we will only discuss the 
expected synchronization taking the Mackey-Glass system 
as an example in the case of n=1 and n=2. 

The nonlinear part of the Mackey-Glass system is 
expressed as:  

When n=1, drive system and response system are as 
follows: 

11( ) / ( ) ( )xdx t dt cx t m f xτ= − +           (26) 

11( ) / ( ) ( ) ( )
kydy t dt cy t m f y kf xτ τ= − + −      (27) 

Define the error e (t) =x (t) -yτ1-τk (τ1>τk), then when 
m1x+k=m1y, the error system is: 

1

'
1( ) / ( ) ( )yde t dt ce t m f eτξ= − +         (28) 

Where 

1 2( , )ξ θ θ∈ ,
1 11 2min{ , }

k
x yτ τ τθ −= ,

1 12 2max{ , }
k

x yτ τ τθ −=  
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According to the theoretical analysis is easy to know 
that when '

1| ( ) |yc m f ξ> , the expected synchronization 
can always achieve. In [15, 18],  

x= ((b+1)/ (b-1)) 1/b 
Takes '| ( ) |f xτ the maximum value, and maximum 

value is a (b-1)2/4b. 
Therefore, other appropriate parameters are easily 

selected to achieve the expected synchronization between 
the drive system and response system.  

Selecting the parameters: 
 a=0.2, b=10, c=0.1, 

τ1=50, τk=20, 
m1x=1, m1y=0.1, k=-0.9 

Numerical simulation is shown in Figure 5-6. 
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Figure 5. Response system variable y (t) (dashed lines) predicting the 
expected synchronization and error e (t) of drive system variable x (t)  

(solid line), τ1=50, τ2=20 
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Figure 6.The phase diagram of state variables x (t) and y (t-(τ1-τ2), τ1=5, 

τ2=20 

When 2n = , the corresponding drive system and 
response system are as follows: 

1 21 2( ) / ( ) ( ) ( )x xdx t dt cx t m f x m f xτ τ= − + +       (29) 

11 2 2( ) / ( ) ( ) ( ) ( )
ky ydy t dt cy t m f y m f y kf xτ τ τ= − + + −  (30) 

Here we discuss the systems and simulation results 
dividing two kinds of situations under two different errors 
first, we discuss the first case defining error: 

 
1 1( ) ( ) ( )

k ke t x t yτ τ τ τ−= − > .  

When 1 1x ym k m+ = , 2 2x ym m=  the error system is: 

1 2

' '
1 1 2 2( ) / ( ) ( ) ( )y yde t dt ce t m f e m f eτ τξ ξ= − + +    (31) 

The expected synchronization between the drive system 
and the response system can always achieve. Selecting the 
parameters:  

a=0.2, b=10, c=0.1 
τ1=25, τ2=30, τk=10 

m1x=1, m1y=-0.1, m2x=m2y=0.1, k=-1.1 
Numerical simulation is shown in Figure 7-8. 
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Figure 7. Response system variable y (t) (dashed lines) predicting the 
expected synchronization and error (t) of drive system variable x (t) 

(solid line), τ1=25, τ2=30, τk=10 
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Figure 8.The phase diagram of state variable x (t) and τ1=25, τ2=25, 

τk=10, y (t-(τ1-τ2) 

Next, we discuss the second case defining the error 
e (t) =x (t) - yτ1-τk, τ1>τk. 

when m1x= m1y, m2x+k= m2y he error system is 

1 2

' '
1 1 2 2( ) / ( ) ( ) ( )y yde t dt ce t m f e m f eτ τξ ξ= − + +    (32) 

The expected synchronization between the drive system 
and the response system can always achieve.  

Selecting the parameter:  
  a=0.2, b=10, c=0.1 
  τ1=50, τ2=35, τk=20 

m1x= m1y=-0.05, m2y=0.1, m2x=0.9, k=-0.8 
Numerical simulation is shown in Figure 9-10. 
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Figure  9. Response system variable y (t) (dashed lines) predicting 

the expected synchronization and error ( )e t  of drive system variable x 
(t) (solid line), τ1=50, τ2=35, τk=20 
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Figure 10. The phase diagram of state variables x (t) and y (t-(τ1-τ2), 

τ1=50, τ2=35, τk=20 
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VI. THE RP EXPECTED SYNCHRONIZATION OF 
MACKEY-GLASS TIME-DELAY SYSTEMS  

Referring to of the three cases of the RP expected 
synchronization theory in Section 4.4, we will conduct 
example analysis and numerical simulation for the RP 
expected synchronization of Mackey-Glass time-delay 
systems followed by the three cases. 

A. The RP Expected Synchronization Coupled with A 
Delay 

Drive system and response system are as follows: 

( ) ( )
1

axdx t cx t bdt x
τ

τ
= − +

+
         (33) 

( ) ( )( )
1 ( )

dy t ax tcy t bdt x t
= − −

+
         (34) 

According to the theoretical analysis, the RP expected 
synchronization between the drive system and the 
response system can be achieved. Selecting the system 
parameters a=0.2, b=10, c=0.1, numerical simulation is 
shown in Figure 11-12.  
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Figure 11. Drive system variable x (t) (solid line), response system 

variable y (t) (dashed lines), and error e (t) =x (t) +y (t-τ), τ1=30 

Simulation results show that: when achieving 
synchronization, the response variables y (t) struck and 
driving variables x (t), strack are opposite, and the whole 
translates τ time units toward left. 
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Figure 12.The phase diagram of state variables x (t) and y (t-τ), τ=30 

B. The RP Expected Synchronization Coupled with Two 
Different Delays 

Drive system and response system coupled with two 
different delays are as follows: 

( ) 1( )
1

1

axdx t cx t bdt x

τ

τ
= − +

+
           (35) 

( ) 2( )
1

2

axdy t cy t bdt x

τ

τ
= − −

+
          (36) 

According to the theoretical analysis in section 4.2, 
when c<0, the RP expected synchronization between the 
system (35) and (36) can always achieve. And Selecting 
the system parameters a=0.2, b=10, c=0.1, numerical 
simulation is shown in Figure 13-14. 
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Figure 13. Drive system variable x (t) (solid line), response system 

variable y (t) (dashed lines), and error e (t) =x (t) +y (t-(τ1-τ2)), τ1=25, τ2=11 
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Figure 14. The phase diagram of state variables x (t) and y (t-(τ1-τ2)), 

τ1=25, τ2=11 

C. The RP Expected Synchronization Coupled with 
Multiple Delays 

In the section 5, we give the general form of time-delay 
systems coupled with multiple delays. Given different 
values for parameter n, the corresponding numerical 
simulations are similar so, in this section we will only 
discuss the RP expected synchronization of the 
Mackey-Glass system in the case of n=1 and n=2 [21], 
and denote it as 

( ( )) / (1 )b
t tf x t ax xτ ττ − −− = +  

When  n=1, drive system and response system are as 
follows: 

11( ) / ( ) ( )xdx t dt cx t m f xτ= − +            (37) 

11( ) / ( ) ( ) ( )
kydy t dt cy t m f y kf xτ τ= − − +       (38) 

Define the error, e (t) =x (t) - yτ1-τk, τ1>τk  
The error system is:  

1

'
1( ) / ( ) ( )yde t dt ce t m f eτξ= − +          (39) 

where
1 12 2max{ , }

k
x yτ τ τθ −= ,

1 11 2min{ , }
k

x yτ τ τθ −=

1 2( , )ξ θ θ∈  
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When '
1| ( ) |yc m f ξ> , the RP expected synchronization 

between the drive system and the response system can 
always achieve. Selecting the parameters:  

 a=0.2, b=10, c=0.1 
τ1=30, τk=2 

m1x=1, m1y=0.01, k=-0.99 
Numerical simulation is shown in Figure 15-16. 
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Figure 15. Drive system variable x (t) (solid line), response system 

variable y (t) (dashed lines), and error e (t) =x (t) +y (t-(τ1-τ2)), τ1=30, τ2=2 
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Figure 16. The phase diagram of state variables x (t) and y (t-(τ1-τ2)), 

τ1=30, τ2=2 

When  n=2, the corresponding drive system and 
response system are as follows: 

1 21 2( ) / ( ) ( ) ( )x xdx t dt cx t m f x m f xτ τ= − + +       (40)     

11 2 2( ) / ( ) ( ) ( ) ( )
ky ydy t dt cy t m f y m f y kf xτ τ τ= − − − +  (41)    

Here we discuss the systems and simulation results 
dividing two kinds of situations under two different errors 
first, we discuss the first case defining error: 

e (t) =x (t) - yτ1-τk, τ1>τk. 
When m1x+k=m1y, m2x=m2y, the error system is: 

1 2

' '
1 1 2 2( ) / ( ) ( ) ( )y yde t dt ce t m f e m f eτ τξ ξ= − + +    (42) 

Selecting the parameters:  
a=0.2, b=10, c=0.1 
τ1=30, τ2=20, τk=15 

m1x=0.99, m1y=-0.01, m2x=m2y=0.01, k=-1 
Numerical simulation is shown in Figure 17-18. 
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Figure 17 Drive system variable x (t) (solid line), response system 
variable y (t) (dashed lines), and error e (t) =x (t) +y (t-(τ1-τ2)), τ1=30, τ2=20, 

τk=15 
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Figure 18. The phase diagram of state variables x (t) and y (t-(τ1-τ2)), 

τ1=30, τ2=20, τk=15 

The RP expected synchronization between the drive 
system and the response system can always achieve.  

Selecting the system parameters:  
    a=0.2, b=10, c=0.1 

  τ1=25, τ2=35, τk=5 
m1x= m1y=-0.01, m2x=0.79, m2y=0.01, k=-0.8 

The corresponding numerical simulation is shown in 
Figure 19-20. 
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Figure 19. Drive system variable x (t) (solid line), response system 

variable y (t) (dashed lines), and error e (t) =x (t) +y (t-(τ1-τ2)), τ1=25, τ2=35, 
τk=5 
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Figure 20 the phase diagram of state variables x (t) and y (t-(τ1-τ2)), 

τ1=25, τ2=35, τk=5 

VII.  CONCLUSIONS 

In this paper, with a time delay, two different delays 
and multiple delays between the two coupled time-delay 
systems the basic theories of the expected 
synchronization and RP expected synchronization are 
respectively conducted a detailed derivation. And 
sufficient conditions, which the special form and general 
form between coupling time-delay systems have to meet 
to achieve the synchronization and the certification 
process are given. On the basis of theoretical derivation, 
to the Mackey-Glass system for instance, the general case 
and special case of the expected synchronization and RP 
expected synchronization are conducted numerical 
simulation and the simulation results further verify the 
correctness of theoretical analysis 
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