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Abstract—The dynamic behavior of fractional order systems 
have received increasing attention in recent years, In this 
paper the reliable phase synchronization problem between 
two coupled chaotic fractional order system with varying 
time is constructed, An active   delay expected 
synchronization between two coupled chaotic fractional 
order systems and hyperchaotic fractional order systems is 
analyzed by utilizing Laplace transform. Furthermore, we 
investigated the necessary conditions for fractional order 
Rossler systems to exhibit chaotic attractor. Then, based on 
the stability results of fractional order systems, sufficient 
conditions for phase synchronization of the fractional 
models of Rossler systems and hyperchaotic system are 
derived. The synchronization scheme that is simple and 
global enabled synchronization of fractional order chaotic 
systems to be achieved,  Theory analysis and 
corresponding numerical simulations results show that the 
chaos in such fractional order system with varying time 
delay can be synchronized and the method is effective and 
feasible. 
 
Index Terms—autonomous system, the expected 
synchronization, fractional order, high dimension  

I.  INTRODUCTION 

In recent years, chaos control and synchronization 
have become a hot topic in the study of nonlinear systems. 
It has been applied in many areas, for example, in secure 
communication, model of brain waves and image 
recognition, etc. [1-2]. Up to now, researchers have 
proposed several types of synchronization, such as the 
classic complete synchronization [3], effectively 
complete synchronization [4], the reverse synchronization 
[5-6], generalized synchronization [7], phase 
synchronization [1], projective synchronization [4], the 
expected synchronization and delay synchronization 
[8-10]. 

In the chaos control and synchronization, the unique 
nature of the chaotic system itself, such as extreme 
sensitivity to initial values and long-term unpredictability 
receive long-term attention by people. In 2000, Voss 
proposed a new method, known as the expected 
synchronization [11]. In this method, the response system 
can keep synchronization with the future state of drive 

system, which was the response system predicting the 
future state of the drive system. The method was affirmed 
by the people, but in further study, the researchers found 
that there were some limitations in this method [12-13], 
in which the expected synchronization of Voss method is 
only suitable for continuous chaos systems with delay, 
and has some constraints on the expected time with the 
coupling coefficiency. To solve the limitations of Voss, 
the 12th literature proposed a method of Coupled 
bidirectional delay, and a sufficient condition theoretical 
framework based on Krasovskill-Lyapunov for the 
independence of delay, by which the expected 
synchronization of the system was researched in 
numerical simulation, a fractional order Rossler system as 
an example. 

This paper is structured as follows, Section I describes 
the theoretical analysis of expected synchronization of 
autonomous systems, Section II describes the expected 
synchronization of three-dimensional autonomous system, 
Section III presents the expected synchronization of high 
dimensional autonomous system, and the last part 
contains conclusions. 

II.  THE EXPECTED SYNCHRONIZATION THEORY OF 
AUTONOMOUS SYSTEMS 

Consider the following form of the nonlinear systems, 
namely      

/ ( )dx dt Ax f x= +                (1) 
Where xRn is n-dimensional state vector, A∈R

n×n is 
Constant coefficient matrix, and f (x) is nonlinear vector 
function of the system (1) 

1 2( ) ( ( ), ( ), , ( )) ,T n n
nf x f x f x f x R R= →L  

Is nonlinear vector function of the system.  
Assumption 1: Assume that the state of chaotic 

systems is bounded in this chapter, that is 
xi (t)≤Mi, where  Mi∈R, (i=1, 2, …, n). 
Assumption 2: Assume that nonlinear function f (x) 

satisfies the Lipschitz condition 

( ) ( ) maxi j i i j n i jf x f x l x y≤ ≤− ≤ −
        (2) 
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0il∃ > , 1 2( , , , )T
nx x x x∀ = ∈ΩL  

1 2( , , , )T
ny y y y∀ = ∈ΩL , ( )y y tτ τ= −  

Where yτ=y (t-τ), For every initial value and expected 
time, if the equation lim ( ) ( ) 0

x
x t y t τ

→∞
− − =   holds, the 

response system (3) is able to predict the states of the 
drive system (1) in the interval  ( t, t+τ). 

Define the state error equation as follows:  

E (t) =x (t)-y (t-τ)           (3) 

Equation (3) minus equation (1), then the dynamic 
system expression for the error equation is (3), where  
Ω∈Rn

 belongs to the boundary of all attractors in the 
system (1), and li  is a positive number, often called the 
Lipschitz constant. 

Note 1: Most of the chaotic systems existing almost 
meet the assumptions 1 and assumption 2. See [14], in 
which describes boundaries of the most chaotic systems.  

If the partial derivative / , , 1, ,i jf x i j n∂ ∂ = L  is 
bounded in the right end of the system (1), assumption 2 
is established. In general, most of the chaotic systems 
meet these conditions [12]. 

Consider the following two intercoupling systems:  

1/ ( ) ( )dx dt Ax f x K x yτ= + + −           (4) 

2/ ( ) ( )dy dt Ay f y K y xτ= + + −        (5) 

1 2/ ( ) ( ( )) ( ) ( )de dt Ae t F e t K e t K e t τ= + + + −     (6) 
where F (e (t)) =f (e (t))-f (x (t)-e (t))  

We know that if the origin of the error system (6) is 
asymptotically stable, the equation  

lim || ( ) ( ) || 0
t

x t y t τ
→∞

− − =  must set up. 

Based on the premise theory, similar to the Theorem 1 
in [12], we can derive the sufficient condition, which can 
ensure that the origin of error system (6) is asymptotically 
stable. It must be pointed out that, there are little errors 
for the proof process of the sufficient condition. Once 
again, we give the sufficient condition, and give the proof 
process corrected. 

Theorem 1: If there are two constant matrices k1, k2to 
ensure that the following matrix M is negative definite, 
the origin of error system (6) is asymptotically stable.  

Where l={l1, l2, l3…ln}, n is the number of non-zero li , I 
is a unit matrix and constant matrix B= (2ml+1)I=I•b1. 

Proof: First, construct the Lyapunov Function 

( ) ( ) ( ) ( ) ( )
tT T

t
V t e t e t e s e s ds

τ−
= + ∫          (7) 

Along the track of the error system (7), we can get the 
derivative of Lyapunov function, that is:  

1 1 2

2

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

T T T

T T T T

T T T T

T

V t e t e t e t e t e t e t
e t A K A K I e t e t K e t

e t F e F e e t e t K e t

e t e t

τ τ

τ

τ

τ τ

= + − − −

= + + + + −

+ + + − −

− −

& &

  

(8) 

Satisfy conditions, the expected synchronization can be 
achieved between the drive system (3) and the response 
system (4). Assuming the coefficient matrix A of power 
system (1) 2n is n-order Square Matrix; the Square 
Matrix is the order of. And, for the control matrixes K1, 
K2, there exists 2n2 unknown parameters, to be identified 
to get the concrete matrix M. Therefore, if the matrix M is 
low order matrix, we can easily select the appropriate 
control matrix

 
K1, K2, conversely, if the matrix M 

Lipschitz inequality described by application assumptions 
2, we get:  

1 1

2 2 2

( ) ( )( (2 )) ( )

( ) ( ) ( ) ( )
( )

( ( ), ( ))
( )

T T T

T T t

T T
T

V t e t A K A K m l e t

e t K e t e t K e t K
e t

e t e t M
e t

τ τ

τ
τ

≤ + + + + + +

− + −

⎛ ⎞
= − ⎜ ⎟−⎝ ⎠

&

    (9) 

Therefore, if the matrix 

1 1 2

2

T T

T

A K A K K
M

K I
⎡ ⎤+ + +

= ⎢ ⎥−⎣ ⎦
        (10) 

Is negative definite, V (t)≤0 always holds, and when e 
(t)=0, V (t)=0. 

Proof process is over  
From Theorem 5.1 we know that if the coefficient 

matrixes K1, K2 are able to be found to be higher order 
matrix, selecting the appropriate control matrix  K1, K2, 
and satisfying the matrix M negative definite will become 
more complicated. To simplify the process, it considered 
only a special case in the actual numerical analysis, 
namely, the control matrix K1, K2 , are diagonal matrixes 
and the matrix M is diagonally dominant matrix. 

III.  THE EXPECTED SYNCHRONIZATION OF 
THREE-DIMENSIONAL AUTONOMOUS SYSTEM 

In it takes integer-order three-dimensional autonomous 
Rossler system as simulation object in some numerical 
simulations, after the establishment of the form (1-2) of 
the drive system and response system, achieves the 
expected synchronization between the drive system and 
response system. At present, the dynamics analysis of the 
fractional- order chaotic system and control 
synchronization have also drawn common concern of the 
researchers. Just think: Can the expected synchronization 
theory described in the previous section achieve expected 
synchronization of the fractional- order chaotic system. In 
this section, we're going to explore the issue. 

First, taking integer-order Liu chaotic system of 
three-dimensional autonomous system as the analysis 
object [15], we discuss the expected synchronization on 
integer-order Liu chaotic system and the corresponding 
fractional-order Liu chaotic system. 

Corresponding to (1-2)’s drive system and response 
system are as follows:  
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1 1 1 11 1 2,

1 1 1 1 12 1 2,
2

1 1 1 13 1 2,

/ ( ) ( )
/ ( )
/ ( )

dx dt a y x k x x
dy dt bx cx z k y y
dz dt dz hx k z z

τ

τ

τ

⎧ = − + −
⎪ = − + −⎨
⎪ = − + + −⎩

      (11) 

2 2 2 21 1 2,

2 2 2 2 22 1 2,
2

2 2 2 23 1 2,

/ ( ) ( )
/ ( )
/ ( )

dx dt a y x k x x
dy dt bx cx z k y y
dz dt dz hx k z z

τ

τ

τ

⎧ = − + −
⎪ = − + −⎨
⎪ = − + + −⎩

     (12) 

where system parameters take  
a=10, b=40 

The integer-order Liu chaotic system shows chaotic 
behavior. According to theorem 1, if we can find suitable 
control matrix K1, K2, to make the matrix M negative 
definite, the expected synchronization between the drive 
system and response system can achieve for any initial 
value and the expected time τ. Here we analyze how to 
select the appropriate control matrix K1, K2, and achieve 
the expected synchronization of the drive system (11) and 
the response system (12) through specific numerical 
simulation. In section 1, we analyzed the complex impact 
that the difference of the matrix M order made the 
sufficient condition of the matrix M negative definite 
achieved. For specific examples of integer-order Liu 
chaotic system, the order of Matrix M is 6, so we can 
assume that the matrix M is diagonally dominant matrix, 
and control matrix K1, K2, is the diagonal matrix to 
simplify the analysis process. 

Assuming control matrixes  
K1= diag (k11, k12, k13) 
K2= diag (k21, k22, k23) 

Cconstant matrix and unit matrix  
B= diag (b1, b2, b3, b4) ,  

I= diag (1, 1, 1) 
And the coefficient matrix of integer-order Liu chaotic 
system  

A= [-a, a, 0; b, 0, 0; 0, 0, -d]  
Then, according to Theorem 1, the system coefficient 

matrix A, control matrix K1, K2, and unit matrix I 
substituted into matrix M, we can get the expression of 
matrix M:  

1 1 2

2

T T

T

A K A K K
M

K I
⎡ ⎤+ + +

= ⎢ ⎥−⎣ ⎦
     (13) 

If diagonally dominant matrix M is negative definite, 
the following inequality must be true. 

That is when (13) holds, the matrix M is negative 
definite. We carry out specific numerical simulation here. 
Observing inequalities (14), we found that if the value of 
the control matrix K2 was determined, selecting the 
control matrix K1 will become very simple. In addition, 
parameters can be determined through the Lipschitz 
condition, so m=2, l≈150.993, b1=2ml+1≈605. 

11 1 21

12 1 22

13 1 23

21 22 23

2 2 | | | |
2 | | | |

2 2 | |
, , 1

a k b a b k
k b a b k

d k b k
k k k

− + + < − + −⎧
⎪ + < − + −⎪
⎨− + + < −⎪
⎪ <⎩

       (14) 

For the special case, when control matrix K2 is zero 
matrixes, and substituting the system parameters and b1 
into the inequalities (13), we can get the range of control 
matrix K1 each parameter, as follows:  

K11=-320, K12=-330, K13=-305,  
K21=K22=K23=0 

Then meeting the conditions of all control parameters 
above, the expected synchronization between the drive 
system (11) and the response system (12) can be always 
achieved, for every initial value and the expected time, 
and as time goes to infinity, total error (15) tends to zero.  

2 2 2
1 2, 1 2, 1 2,( ) ( ) ( ) ( )E t x x y y z zτ τ τ= − + − + −    (15) 

Selecting the specific control parameters   
K11=-317.5, K12=-327.5, K13=-300 

K21=K22=K23
 

Initial values: X1= [1, 2, 3], X2= [-3, -2, -1] and the 
expected time τ=20 then the corresponding simulation 
results are shown in Figure 1-2. 
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Figure 1. Response system variable 2( )X t  (dashed lines) predicting 

drive system variable 1( )X t    (solid line) 
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Figure 2. The total error ( )E t . 

Considering the general case that element of the 
control matrix is not all zero, if selecting the control 
parameters and substituting the system parameters and 
constant b1  into the inequalities (15),    K21=-0.5, K22=0.5, K23=0.8 

The range of control matrix K1, each parameter is as 
follows: K11, K12, K13 satisfying the inequality (14), the 
expected synchronization between the drive system (11) 
and the response system (12) can be always achieved, and 
as time goes to infinity, total error E (t)  tends to zero.  

Selecting the initial values X1= [-1, 2, 5], X2= [3, -2, 4] 
and the expected time   

K11=-318, K12=-330, K13=-301,  
K21=-0.5, K22=0.5, K23=0.8,  

τ=15 
Then the corresponding simulation results are shown in 

Figure 3-4. 
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Figure 3. Response system variable X1 (t) (dashed lines) predicting drive 

system variable X1 (t) (solid line) 

0 20 40 60 80 100 120
-5

0

5

10

15

20

25

30

35

T/s

Total Error

0 0.2 0.4 0.6 0.8 1

0

10

20

30

 
Figure 4. The total error E (t) 

Selecting the above two sets of specific control 
matrixes  K1, K2, the simulation results are achieved for 
every initial value and every expected time τ, on the 
expected synchronization between drive system (11) and 
the response system (12). Similarly, selecting another 
group to satisfy inequalities (15) of the control matrix 
parameters, drive systems and response systems can also 
achieve the expected synchronization. 

The expected synchronization of the corresponding 
fractional-order Liu chaotic system 

Taking Integer-order Liu system corresponding to the 
homogeneous fractional-order Liu system as the 
simulation object, we discuss the expected 
synchronization of fractional-order chaotic system. 
Seeing fractional-order chaotic system diagram of the 
stable region, we know that the stable region of 
fractional-order chaotic systems is obviously larger than 
of the integer-order chaotic systems. Therefore, according 
to Theorem 1, it is easy to find conditions to meet the 
expected synchronization of fractional-order chaotic 
systems. We omit the related theoretical analysis, only 
taking 0.9 order of the homogeneous fractional-order Liu 
chaotic system as the simulation example, to study the 
expected synchronization by the numerical analysis and 
simulation. 

Drive system and response system are as follows:  
0.9 0.9

1 1 1 11 1 2,
0.9 0.9

1 1 1 1 12 1 2,
0.9 0.9 2

1 1 1 13 1 2,

/ ( ) ( )
/ ( )
/ ( )

dx dt a y x k x x
dy dt bx cx z k y y
dz dt dz hx k z z

τ

τ

τ

⎧ = − + −
⎪ = − + −⎨
⎪ = − + + −⎩

       (16) 

0.9 0.9
2 2 2 21 1 2,

0.9 0.9
2 2 2 2 22 1 2,
0.9 0.9 2

2 2 2 23 1 2,

/ ( ) ( )
/ ( )
/ ( )

dx dt a y x k x x
dy dt bx cx z k y y
dz dt dz hx k z z

τ

τ

τ

⎧ = − + −
⎪ = − + −⎨
⎪ = − + + −⎩

    (17) 

So F (e (t))=f (e (t))-f (x (t)-e (t)), then the error 
dynamic system is:  

1 2( ) / ( ) ( ( )) ( ) ( )q qd x t dt Ae t F e t K e t K e t τ= + + + −  (18) 

We analyzed the expression of matrix M in Theorem 1, 
easily found that the system parameter values in the 
matrix M and symbolic representation of the control 
matrixes K1, K2 keep consistent for the corresponding 
integer and fractional-order Liu system, but the constant 
b1  determined by the Lipschitz conditions may be 
different. Therefore, for the fractional-order Liu system, 
the inequality systems (16) also enables diagonally 
dominant matrix M to be negative definite. As about the 
fractional-order Liu system, according to Lipschitz 
condition, we can determine the parameters  m=2, l≈
120.3976, b1=2ml+1≈482.6 the system parameters are 
substituted into (14) get:  

11 21

12 22

13 23

21 22 23

( 512.6 | |) / 2
( 532.6 | |) / 2
( 477.6 | |) / 2

, , 1

k k
k k
k k
k k k

< − −⎧
⎪ < − −⎪
⎨ < − −⎪
⎪ <⎩

 

The following was the specific numerical simulation. 
Simulations of two cases are discussed, in special case, 
when the control matrix  K1 is zero matrixes, the control 
matrix K1, K2 diagonal elements of the range is:  

11 12 13256.3, 266.3, 239.8k k k< − < − < −  
Selecting the initial X1=[-1, 2, 3], X2=[5, -6, 1], the 

expected  time and the control parameters:  
K11=-260, K12=-270, K13<-240 

K11=K12=K13=0 
τ=10 

The simulation results are shown in Figure 5-6:  
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Figure 5. Response system variable X1 (t) (dashed lines) predicting drive 

system variable X1 (t) (solid line) 
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Figure 6. The total error E (t) 

When the control matrix K1 is non-zero matrix, and we 
select K1=diag (0.4, 0.6, -0.5), the control matrix   
diagonal elements of the range is:   

K11=-257, K12=-267, K13=-240 
K11=0.4, K12=0.6, K13=-0.5 

Selecting the initial expected time X1= [-5, 2, 1], X1= 
[1, 6, 3], τ=25.The simulation results are shown in 
Figure 7-8. 
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Figure 7.response system variable X1 (t) (dashed lines) predicting 

drive system variable X1 (t) (solid line) 
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Figure8. The total error  E (t) 

If selecting control parameters, any other initial values, 
and any expected time to meet conditions can still 
achieve the expected synchronization of fractional-order 
Liu chaotic system, these numerical results reconfirm the 
feasibility of expected synchronization theory this section 
describes. We can still use the above idea to achieve the 
expected synchronization of other integer-order and 
fractional-order dynamic systems, such as integer-order 
Lorenz system [16], integer-order Chen system [17], 
integer-order Lü system [18], fractional-order Chua 
system [19], fractional-order Lorenz system family [20], 
Lu system [21], etc. 

Above, we discussed the application on the expected 
synchronization theory in integer-order Liu chaotic 
system of three-dimensional autonomous system and the 
corresponding fractional-order Liu chaotic system , 
successfully achieved the expected synchronization for 
any initial value, any expected time, and confirmed that  
the theory can be applied in fractional-order chaotic 
systems. 

IV.  THE EXPECTED SYNCHRONIZATION OF HIGH 
DIMENSIONAL AUTONOMOUS SYSTEM 

In recent years, dynamics analysis and control of 
high-dimensional chaotic system also received much 
concern. After achieving the expected synchronization on 
three-dimensional integer-order and the corresponding 
fractional-order chaotic systems, we further envisage 
whether the expected synchronization can be achieved for 
high-dimensional case. From the theoretical analysis 
point of view, the result is positive. In order to support 
the conclusion in this section more fully, we still discuss 
the problem taking four-dimensional hyperchaotic Chen 
system [22] as an example and give the specific 
simulation results and instructions in the section. 

A. The Expected Synchronization of Integer-order 
Hyperchaotic Chen System 

First of all, corresponding to equation (1, 3) of the 
drive system and response system equations are as 
follows:  

1 1 1 1 11 1 2,

1 1 1 1 1 12 1 2,

1 1 1 1 13 1 2,

1 1 1 1 14 1 2,

/ ( ) ( )
/ ( )
/ ( )
/ ( )

dx dt a y x w k x x
dy dt dx x z cy k y y
dz dt x y bz k z z
dw dt y z rw k w w

τ

τ

τ

τ

= − + + −⎧
⎪ = − + + −⎪
⎨ = − + −⎪
⎪ = + + −⎩

      (19) 

2 2 2 2 21 2, 1

2 2 2 2 2 22 2, 1

2 2 2 2 23 2, 1

2 2 2 2 24 2, 1

/ ( ) ( )
/ ( )
/ ( )
/ ( )

dx dt a y x w k x x
dy dt dx x z cy k y y
dz dt x y bz k z z
dw dt y z rw k w w

τ

τ

τ

τ

= − + + −⎧
⎪ = − + + −⎪
⎨ = − + −⎪
⎪ = + + −⎩

      (20) 

where, when the system parameters are: a=35, b=3, 
c=12, d=7, r=0.5. The integer-order hyperchaotic Chen 
system presents chaotic state. 

Next, we determine the control parameter matrixes  
K1, K2 to meet the Theorem 5.1. For the expected 
synchronization of high-dimensional chaotic system, we 
can assume that the matrix M is diagonally dominant 
matrix to find the appropriate control matrixes K1, K2, 
which has been discussed. When the coefficient matrix A 
of hyperchaotic Chen system will be substituted into the 
matrix M, the matrix M of the form can be obtained as  

1 2

2

2T

T

A K A m I K
M

K I
⎡ ⎤+ + + +

= ⎢ ⎥−⎣ ⎦
         (21) 

According to Theorem 5.1, if the matrix M is negative 
definite, the following inequalities systems hold as (22). 

The parameters can m be determined through Lipschitz 
condition, so m=3 l≈61.14444 b1=2ml+1≈368.It can be 
found from the above inequality, as long as the value of 
taking control matrix K2 is set, it is easy to obtain the 
range of control matrix K1. 

11 1 21

12 1 22

13 1 23

14 1 24

21 22 23 24

2 2 | | 1 | |
2 2 | | | |

2 2
2 2 1 | |

, , , 1

a k b a d k
c k b d a k

b k b k
r k b k

k k k k

− + + < − + − −⎧
⎪ + + < − + −⎪⎪− + + < −⎨
⎪ + + < − −⎪

<⎪⎩

      (22) 

First, considering the special case, assuming K2=diag 
(0.0.0.0), we make the system parameters of 
hyperchaotic Chen system substituted into the simplified 
inequality (22) equations, therefore, the range of control 
matrix K1, K2 can be obtained. 

K11<-170.5, K12<-217, K13<-181, K14<185 
According to Theorem 5.1, for every initial value and 

expected time, the expected synchronization between the 
drive system (19) and the response system (20) can be 
always achieved. And for total error:  

2 2 2
1 2, 1 2, 1 2,( ) ( ) ( ) ( )E t x x y y z zτ τ τ= − + − + −

 
As time goes to infinity, the total error (t) tends to zero. 

Selecting the control matrix parameters  
K11=-171, K12=-220, K13=-185, K14<-190 

K21= K22=K23= K24=0 
Initial value X2=[-4, -3, -2, -1], X1 (0)=[1, 2, 3, 4] the 

expected time τ=10, the corresponding simulation results 
are shown in Figure 9-10. 
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Figure 9. Response system variable X1 (t) (dashed lines) predicting drive 

system variable X1 (t) (solid line) 
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Figure 10. The total error E (t) 

Secondly, considering the the control matrix is 
non-zero matrix. Assuming control matrix  

K1=diag (0.5, -0.5, 0.8, -0.2)  
The control parameters of hyperchaotic Chen system 

substituted into the simplified inequality equations (22), 
the range of control matrix  K1 is:  

K11<-170.75, K12<-217.25, K13<-181.4, K14<185.1   
Selecting the specific control parameters  
K11<-180, K12<-220, K13<-190, K14<-188  

Initial values  
X1 (0) = [1, 0, 3, 8], X2 (0) = [-14, -3, 12, 0]  

While the expected time is τ=50, the corresponding 
simulation results are shown in Figure11, 12. 
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Figure 11. Response system variable X1 (t) (dashed lines) predicting 

drive system variable X1 (t) (solid line) 
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Figure 12. The total error E (t) 

From the special cases to the general ones, the 
simulation results show that Theorem 1 can achieve the 
expected synchronization of integer-order hyperchaotic 
Chen system, and the overall error E (t) will tend to 
infinity as 

Time tends to zero. Further, Theorem 1 is still able to 

achieve the expected synchronization results for other 
initial value and expected time. We have achieved the 
expected synchronization of integer-order hyperchaotic 
system in the high-dimensional system until now. Next, 
we will discuss the expected synchronization of 
corresponding fractional-order hyperchaotic Chen 
system. 

B. The Expected Synchronization of Fractional -order 
Hyperchaotic Chen System 

Taking the corresponding fractional-order 
hyperchaotic Chen system of Integer- order hyperchaotic 
Chen system as specific simulation object, we discuss the 
expected synchronization of corresponding drive system 
and response system. Equations of fractional-order 
hyperchaotic Chen system are as follows:  

1 1

2 2

3 3

4 4

/ ( )
/
/
/

q q

q q

q q

q q

d x dt a y x w
d y dt dx xz cy
d z dt xy bz
d w dt yz rw

⎧ = − +
⎪ = − +⎪
⎨

= −⎪
⎪ = +⎩

         (23) 

when the order is q1= q2= q3= q4. 
According to the stability theory of fractional-order 

systems, we can obtain the necessary condition of 
presenting chaotic behavior of fractional hyperchaotic 
Chen system by calculating, which is q>0.9630. If the 
stable regions of corresponding fractional-order chaotic 
systems are larger than of integer-order chaotic system, 
Theorem 1 will apply equally to the expected 
synchronization of corresponding fractional chaotic 
system. 

According to the necessary condition, we take the 0.98 
order homogeneous hyperchaotic Chen system as the 
research object. In corresponding to the drive system (24) 
and response system of equations are as follow:  

0.98 0.98
1 1 1 1 11 1 2,

0.98 0.98
1 1 1 1 1 12 1 2,

0.98 0.98
1 1 1 1 13 1 2,

0.98 0.98
1 1 1 1 14 1 2,

/ ( ) ( )
/ ( )
/ ( )
/ ( )

d x dt a y x w k x x
d y dt dx x z cy k y y
d z dt x y bz k z z
d w dt y z rw k w w

τ

τ

τ

τ

⎧ = − + + −
⎪ = − + + −⎪
⎨ = − + −⎪
⎪ = + + −⎩

   (24) 

0.98 0.98
2 2 2 2 21 2, 1

0.98 0.98
2 2 2 2 2 22 2, 1

0.98 0.98
2 2 2 2 23 2, 1

0.98 0.98
2 2 2 2 24 2, 1

/ ( ) ( )
/ ( )
/ ( )
/ ( )

d x dt a y x w k x x
d y dt dx x z cy k y y
d z dt x y bz k z z
d w dt y z rw k w w

τ

τ

τ

τ

⎧ = − + + −
⎪ = − + + −⎪
⎨ = − + −⎪
⎪ = + + −⎩

 (25) 

And the corresponding error system is:  
0.98 0.98

1 2( ) / ( ) ( ( )) ( ) ( )d e t dt Ae t F e t K e t K e t τ= + + + −  (26) 
where  

1 2 3 4( ) ( ( ), ( ), ( ), ( ))Te t e t e t e t e t=

( ( )) ( ( )) ( ( ) ( ))F e t f e t f x t e t= − −  
As Theorem 1 also applies to the corresponding 

fractional-order chaotic systems, similarly to the analysis 
process of the section, we can get the value conditions 
met by the control matrixes  K1, K2. According to 
Theorem 1, if the matrix is negative definite,  
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21 2

2

TA K A m I K
M

TK I

⎡ ⎤+ + + +
⎢ ⎥=
⎢ ⎥−⎢ ⎥⎣ ⎦

   (27) 

The following inequality hold:       

2 2 | | 1 | |11 1 21
2 2 | | | |12 1 22

2 2 13 1 23
2 2 1 | |14 1 24

, , , 121 22 23 24

a k b a d k

c k b d a k

b k b k

r k b k

k k k k

− + + < − + − −⎧
⎪

+ + < − + −⎪
⎪⎪− + + < −⎨
⎪ + + < − −⎪
⎪

<⎪⎩

     (28) 

Where 
A=[-a, a, 0, 1; d, c, 0, 0; 0, 0, -b, 0; 0, 0, 0, r],  

I=diag (1, 1, 1, 1) 
B= diag (b1, b2, b3, b4),  

 K1= diag (k11, k12, k13, k14),  
 K2= diag (k21, k22, k23, k24)  

 By analyzing the 0.98 order hyperchaotic Chen 
system of equations, we can obtain 

m=3, l≈69.4517, b1=2ml+1≈417.4   
We carry out specific numerical simulation here. 

Similarly, we first determine the specific value of the 
control matrix, next get the range of control matrix  K1 
by control matrix  K2, and then select the appropriate 
value of the numerical simulation. 

Still first consider the special case that the control 
matrix is   zero matrixes. Setting K2=diag (0.0.0.0).the 
system parameters of the fractional-order hyperchaotic 
Chen system are substituted into (28), and then we can 
get the range of the control matrix K1:  

K11<-195.35, K12<-241.85,  
K13<-205.85, K14<-209.85 

For every initial value and expected time, the expected 
synchronization between the drive system (24) and the 
response system (25) can be always achieved, and as time 
goes to infinity, total error E (t) tends to zero. 

Select the following specific parameter values   K11<-200, K12<-242, K13<-206, K14<-210  
K21= K22=K23= K24=0 

When the expected time is 20τ = , the initial value is 
X1 (0) = [1, 20, 3, 0], X2 (0) = [-4, 3, -2, 6]  

The simulation results are shown in Figure 13, 14. 
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Figure 13. Response system variable X1 (t) (dashed lines) predicting 

drive system variable X1 (t) (solid line) 

Consider the general case that the control matrix  K2 
is not zero matrixes. Setting  K2= diag (0, 0.9, -0.4, 0.2)  

The range of the control matrix is:  
K11<-195.35, K12<-242.3, K13<-206.05, K14<-209.9 
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Figure 14. The total error E (t)  

Similarly, for every initial value and expected time τ, 
the expected synchronization between the drive system 
(24) and the response system (25) can be always achieved, 
and as time goes to infinity, total error  E (t) tends to 
zero. 

Select the parameter values of control matrix  
K11<-200, K12<-245, K13<-207, K14<210  

K21=0, K22=0.9, K23=-0.4, K24=0.2 
When the expected time is τ=30, the initial value is  

X1 (0) = [0, -5, 11, 4], X2 (0) = [5, 3, -12, 6]  
The simulation results are shown in Figure 15, 16. 
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Figure 15. Response system variables X1 (t) (dashed lines) predicting 

drive system variable X1 (t) (solid line) 
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Figure 16. The total error E (t) 

The above results achieved the expected 
synchronization of fractional-order hyperchaotic Chen 
system. We further implement the expected 
synchronization of integer-order and fractional-order 
four-dimensional hyperchaotic system, and we are also 
able to implement the expected synchronization of other 
integer-order and fractional-order hyperchaotic system by 
using the same method  for every initial value and 
expected time, such as integer-order hyperchaotic Lü 
system, integer-order hyperchaotic Rossler system, 
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fractional-order hyperchaotic Rossler system, 
fractional-order hyperchaotic Lü system and so on. 

V.  CONCLUSION 

This section describes the expected synchronization 
theory, respectively taking the three-dimensional 
integer-order and the corresponding fractional-order Liu 
system, and four-dimensional integer-order and the 
corresponding fractional-order hyperchaotic Chen system 
as the analysis object, analyze the sufficient condition 
satisfying Theorem 1 for different systems, and give 
specific simulation examples of which  the simulation 
results have confirmed realization of the expected 
synchronization. But it is necessary to point out that: 
Theorem 1 is only a necessary condition but not sufficient 
condition, that there exist control parameters not 
satisfying the theorem, but still able to achieve the 
expected synchronization. Therefore, we need to improve 
the part designing more effective controller to get a more 
precise condition 
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