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Abstract—The encoded negative literals in a conformant 
planning task will result in increasing state spaces. Getting a 
compact representation of state spaces is one of the most 
important issues in conformant planning. In this paper, a 
translation algorithm for negative literals is proposed to 
reduce the state spaces in a conformant planning task. The 
relationship between encoded literals is analyzed in detail. 
Based on the one-of relaxation technique in domain 
language, the algorithm is used to express the uncertain 
initial states and action effects in conformant planning. It 
converts formula one-of into a set of mutually exclusive 
literals with the relationship of mutual. The experiment 
study shows the efficiency of the proposed algorithm in 
pruning the state space in conformant planning tasks. 
 
 
Index Terms—negative literals, domain language, 
conformant planning, formula one-of, mutually exclusive 
literals 
 

I. INTRODUCTION 

Conformant planning refers to solve the planning 
problems with incomplete information in an initial state 
and in state transitions. It decides whether there exists a 
linear sequence of actions for achieving the goal states 
from any initial belief state and resolution of the non-
determinism in a planning problem [1]. Considering all 
possible initial states and transitions, the problem of 
conformant planning is more complex than that of 
classical planning as even under polynomial restrictions 
on plan length and the verification of plans is intractable 
in the worst case. Meanwhile, compared with the 
classical planning, a conformant planning task with 
uncertainty in initial states and action effects has greater 
state spaces [2].  

The standard language for conformant planning is 
PPDDL (Probabilistic Planning Domain Definition 
Language) [3]. PPDDL is an extension to the Planning 
Domain Definition Language (PDDL) [4] and a standard 
for expressing the non-deterministic planning problems. 

The formal definition of the PPDDL is extended with an 
additional non-deterministic one-of statement. Because 
the one-of statement is defined for representing uncertain 
initial states and action effects, the number of literals in 
conformant planning is larger than that of the classical 
planning. It can also result in increasing the state spaces 
for conformant planning.  

Getting a compact representation of state spaces is one 
of the most important issues in a conformant planning 
task. To decrease the state spaces of conformant planning, 
many conformant planners try to reduce the sum of 
encoded literals. Literals can be classified into positive 
and negative literals. Classical planning is based upon the 
closed world assumption: the atoms which do not exist in 
the states are false. The method of translating positive 
literals is as the same as that in classical planning. 
However, the translation of negative literals is a novel 
work. There is a Multi-valued Conformant Planning 
Tasks (MCPT) [5] algorithm which extends the Multi-
valued Planning Tasks (MPT) [6] transform algorithm. In 
MCPT, when translating negative literals in conditions as 
¬p, if the condition contains also some positive literals 
represented by the same variable v as p, there is no 
necessary to encode them at all. Otherwise a new derived 
variable not-p is introduced, and an axiom for each 
valued d∈Dv\{p} is generated. This is reasonable in the 
classical planning. However, in conformant planning the 
atoms that do not exist in the state are false or unknown. 
We improved the algorithm in the MCPT and noted as 
CPT-FDR [7]. Based our earlier work, a novel algorithm 
for translating negative literals is proposed to reduce the 
state spaces in a conformant planning task in this paper. 
The algorithm deals with the formula one-of in domain 
language to express the uncertain initial states and action 
effects in conformant planning. The algorithm converts 
formula one-of into a set of mutually exclusive literals 
with the relationship of mutual. The experiment study 
shows that the proposed algorithm is capable to translate 
most of the negative literals in a conformant planning 
task. 

II. CONFORMANT PLANNING 
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Conformant planning involves generating plans under 
the condition that the initial states and action effects are 
nondeterministic and sensing is unavailable during plan 
execution. 

A. Development 
In 1998, Smith and Weld [8] gave a definition of 

conformant planning as in the case of all possible world 
states to develop valid plans without sensory information. 
In 2004, Brafman and Hoffmann [9] proposed that a task 
of uncertain initial states and action effects to generate 
plans without any sense capabilities during plan 
execution is conformant planning. The valid plan should 
be successful regardless of which particular initial world 
starting from and which action effects occur while 
executing an action. In 2006, conformant planning [10] 
was joined in IPPC (International Probabilistic Planning 
Competition) as conformant track for the first time. In 
2008, conformant planning tracks [11] were partitioned to 
the part of uncertainty in IPPC secondly joined in this 
international competition. Conformant track is renamed 
as NOND (non-observable non-deterministic) track. 
NOND task is one without sensory information from 
agents and without certain initial belief states and action 
effects. In 2011, conformant track [12] continued to be a 
part of IPPC. In this time, it has been renamed as 
POMDPs (Partially-observable Markov Decision 
Processes) track and NOMDPs (No-Observation Markov 
Decision Processes). A conformant planner [13] can 
handle with NOMDPs and POMDPs problems. A 
conformant plan is a sequence of actions which will lead 
to the goal states with at least some probability p, which 
is predetermined before the planning task. Conformant 
planning problem [14] is the path-finding problems over 
a directed graph G = <V, E> where V is the nodes in the 
graph and E = <v1, v2> is the directed edges in the graph. 
The nodes are the sets of all belief states, which express 
the states of the world that are assumed possible to the 
agent. The edges illustrate that executing action has 
changed the current state v1 to the next state v2. 

The first conformant planner CGP (Conformant 
Graphplan) was based on the classical planner Graphplan. 
This planner was designed to deal with the problem with 
uncertainty in the initial states and certainty in action 
effects. The valid plan of CGP is distributed into two 
phases: build planning graph and extract the valid plans. 
Then Brafman and Hoffmann designed CFF (Conformant 
Fast Forward) planner to handle the initial states with 
uncertainty. CFF is a domain independent planning 
system. It extends the classical planner FF (Fast Forward) 
which handles uncertain planning task expressed in the 
form of a CNF formula. It defines known propositions as 
the proposition is always true in all possible belief states 
and replaces CNF with 2-CNF projection of the formula 
that captures the true belief state semantics. Next a large 
number of conformant planners are springing up since 
2006 [10]. Most of conformant planners are to translate 
the conformant problem into classical problem, such as 
CGP, CFF, CMBP and t0. 

In Probabilistic-FF conformant planner, the 
conformant problem is that the initial belief state with 

uncertainty and uncertain action effects. Especially it 
used the Bayesian networks to present all belief states in 
the planning task. In t0 planner [15], it used some 
algorithm in classical planning for solving conformant 
problems with incomplete information. Finding sequence 
of actions between belief states is the vital part in 
planning under no observations. Planner t0 use 
propositional logic, like in SATPLAN. The search is to 
construct a CNF with all possible plans. It introduced the 
function K (p), meaning that translating from conformant 
problem p into classical problem K (p). All the literals in 
the conformant problem are changed into conjunctive 
formula of KL and ¬ KL. KL is known literal L while 
¬KL is unknown literal L. 

B. Conformant Planning Tasks in PPDDL 
In [7], an approach to translating the PPDDL-based 

conformant planning tasks into FDR (Finite Domain 
Representation) state variable is described. The approach 
extends the FDR algorithm to settle uncertain initial 
conditions and the non-deterministic operator effects, is 
introduced to reduce the size of belief states. 

A PPDDL task for conformant planning can be 
described by a 4-tuple:  

∏ = <I0, IG, A, O>                            (1) 

The components in (1) are described as follows. 
1) I0 is the set of all initial belief states. It is composed 

of conjunction and disjunction of ground atoms over the 
object named the initial belief state. The conjunction 
formula represents for the sets of atoms in the same belief 
states, while the disjunction formula is the relationship 
between different possible belief states. 

As the initial belief state is uncertain, some new 
operators, including or and one-of operators, are defined 
as follows. 

Operator or (l1, l2, …, ln) is defined in the PPDDL and 
it is equal to the sets {l1, l2, …, ln }. One has 

{l1, l2, …, ln} = l1U l2 U …U ln                      (2) 

Operator one-of (l1, l2, …, ln) is defined in PPDDL and 
it is used to represent for the uncertain initial states. The 
one-of statement has the form:  

one-of  (e1, e2, …, en)                               (3) 

where ek (k=1, 2, …, n) are the PPDDL effects. 
2) IG is the closed formula called the goal formula. It is 

the conjunction formula of atoms or negative atoms. 
3) A is a finite stratified set of the PPDDL axioms. A 

PPDDL axiom is a pair ,ϕ ψ〈 〉 such that ϕ is a first-order 
atom and ψ is a first order formula with free (ψ ) ⊆ free 
(ϕ ). The axiom formula ,ϕ ψ〈 〉 is the same asϕ ψ← , 
where ϕ is the head of this formula and ψ is the body of 
this formula.  

The set A of PPDDL axioms is stratifiable only if there 
is a total preorder −

p on the predicate symbols of A such 
that for each axiom where predicate Q occurs in the head, 

having P −
p

 Q for all predicates P occurring in the body, 
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and P −
p

 Q for all predicates P occurring in a negative in 
the transition of the body to negation normal form. 

Stratifiability of a set of axiom formulas is with the 
purpose for making sure that the outcome of axiom 
evolution is well-defined. Suppose that if the axiom 
formula is not stratifiable, it would be possible to specify 
rules of the form as P (x) is true if P (x) is false. P

−
p Q 

means that the truth value of atoms over Q must be 
determined after the truth value of atoms over P.  

4) O is a finite set of operators. A schematic operator 
o1 is showed as , eχ〈 〉 , where χ the first-order formula is 
defined as precondition of the operator o1 and e is the 
conjunction or disjunction sets of first-order formula 
defined as effect of the operator o1. Especially, the 
PPDDL effects of operator are recursively defined by 
finite application of the following rules:  

a) A literal l is a first-order formula. The effect is 
expressed by l is called a simple effect. 

b) If e1…en are the effects of one operator, then 
e1 Λ e2 Λ … Λ en is called a conjunctive effect. 

c) e>χ is called a conditional effect if χ is a first-
order formula and e is the effect of one operator. 

d) If v1, v2, …, vn are the variables in the first-order 
formula and e is an effect of one operator, then 
∀ v1, v2, …, vn: e is called a universally 
quantified effect or a universal effect. 

e) If e1…en with ei  (1≤i≤n) is simple effect as 
described in the first rule are the effects in the 
formula one-of  (e1, e2, …, en), then every effect 
ei  (1≤i≤n) is in one-of formula is called a non-
deterministic effect. 

Free variable is the parameter of one operator. The free 
variables of simple effects are defined as for literals in 
first-order logic. Free variables of other effects are 
defined with following rules which are shown in  (4),  (5) 
and  (6). 

free (e1, e2…en) = 

free (e1)U free (e2)U …U free (en)            (4) 

free ( e>χ ) = free ( χ )U free (e)             (5) 

free (∀ v1, v2, …, vn: e) = free (e)\{ v1, v2, …, vn }    (6) 

In the definition of the PPDDL task for conformant 
planning, the operator O defines the translation of the 
world state. If the current state satisfies the precondition 
of one operator, then the operator may be executed and 
meanwhile it has renamed as action. The executing action 
leads to a new state which is like the old one except that it 
is modified in certain ways specified by the effect of the 
action. An operator with parameters cannot be applied 
directly. It must be grounded by substituting concrete 
objects for the parameters. 

C. Conformant Planning Tasks in FDR 
Conformant planning task in a finite-domain 

representation is given by a 5-tuple:  

∏ = <V, I0, IG, A, O>                            (7) 

The components in (7) are described as follows. 
1) V is a finite set of FDR state variables. Every 

variable v ∈ V owns an associated finite domain 
represented by sets of values, DV.  The state variable is 
portioned into two kinds: fluent and derived variable. The 
fluent is affected by operators or occurring in I0. The 
value of the fluent is changed from value1 to value2. The 
derived variable is computed by evaluating axioms. The 
domain of derived variables must contain the undefined 
value ⊥ . The undefined value means the value of this 
variable is unknown or does not matter. As the planning 
problem is the reasoning problem of a totally or partially 
ordered set of operators that achieves a specified goal 
from a given initial state. So a total world state assigns 
defined values to all state variables, while a partial world 
state is to assign the undefined value. The undefined 
value is for representing the partial world state. 

2) I0 is a set of completely specified all possible initial 
world, called the initial belief state. Every initial world is 
consisted of the conjunctions of state variables 
assignment over V. 

3) IG is a finite set of DNF formula, called the goal of 
the task. Each goal is composed of the conjunction of 
state variables assignment over V. 

4) A is a finite set of axioms over V.  It is explained as 
a triple , ,cond v d〈 〉 , where cond is the condition or the 
body of the axiom, and pair ,v d〈 〉  is the head of the 
axiom. In the pair ,v d〈 〉 , v is a derived variable named an 
affected variable, and d ∈Dv is the new value for V.   

5) O is a set of operators with the form <pre, post, prv>, 
where it is denoting the pre-, post and prevail-condition 
respectively. In the form <pre, post, prv>, pre and prv is 
the precondition of the operator and post is the effect of 
the operator. The variable in pre is affected variable 
while the variable in prv is unaffected variable. The effect 
post is defined as a tripe , ,cond v d〈 〉 , where cond is a 
partial variable assignment, v is a fluent affected by the 
operator and d is a new value for V. For every operator o 
= <pre, post, prv> ∈ O, it must satisfy two restrictions 
shown as follows. 

For all v∈V, if pre[v] ≠ ⊥ , then  

pre[v] ≠ post[v] ≠ ⊥                        (8) 

For all v∈V,  

 post[v] = ⊥                              (9) 

or 

prv[v] = ⊥                             (10) 

Thirdly, the state space of the conformant planning 
task in a finite-domain representation ∏ = <V, I0, IG, A, 
O> is denoted as P (∏). The formula P (∏)is a directed 
graph:  

G = <V, E>                                (11) 

where V is the sets of state variable V.  E = <v1, v2> if 
exists one operator with the formula <pre, post, prv> or 
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axiom with the formula , ,cond v d〈 〉 , such that pre ⊆ s  (a 
state of conformant planning task) and s’  (v) = d for all 
effects or axiom , ,cond v d〈 〉 such that cond ⊆ s and s’  (v) 
= s  (v) for all other fluent. 

Finally, the conformant planning task is the problem of 
planning with the following definition. 

Given a conformant planning task by 5-tuple: ∏ = <V, 
I0, IG, A, O> with initial belief state I0 and goal set IG, the 
planning computes some paths in directed graph of P (∏), 
or proves that IG cannot be achieved in the task. The paths 
which all encode the same action sequence, should reach 
one of goals in IG respectively, regardless of which initial 
world the planning start from and which action effects 
occur. 

In [7], the difference among FDR, MCPT and CPT-
FDR in a finite-domain representation is summarized, 
which is shown in Table I. 

TABLE I.   
THE DIFFERENCE AMONG FDR, MCPT AND CPT-FDR 

Property FDR MCPT CPT-FDR 
Fluents 
in state 
variables 

affected by 
operators 

affected by 
operators 

affected by operators 
or occurring in initial 
belief state 

Initial 
state 

complete 
information uncertain uncertain 

Operator 
effects deterministic deterministic non-deterministic 

others extended 
states - extended belief 

states 
In Table I, “-” means nothing. 

III. LITERALS AND ONE-OF FORMULA 

Literals in planning task are the atoms or negate atoms 
for representing the propositions in the real world. The 
atom in literals is well formed formula including 
antecedent and consequent. Literals can be classified into 
two kinds. First one is the positive literal a  is of the form 
P (t1, t2, …, tn), while another is the negative literal ¬ a is 
of the form ¬ P (t1, t2, …, tn) where P is a predicate and 
the terms ti in formula are constants or variables.  

The number of literals is a key part consisting of state 
space for the conformant planning task. Translating 
positive literals of the form P (t1, t2, …, tn) in classical 
planning is to encode into Boolean variables and numeric 
variables. While translating negative literals of the form 
﹁P (t1, t2, …, tn) is a hard work. As whether the atom is 
true or not in the states of conformant planning, known 
true atoms and known false atoms are important for 
computing conformant plan. However, classical planning 
is based on closed world assumption that the atoms which 
do not exist in the current state are always false. Thus it is 
unnecessary to encode the negative literals directly in 
classical planning. Conformant planning is the task with 
uncertain initial states and action effects and large 
number of negative literals exists in the conformant 
planning. In the first conformant planner CGP which is 
dealing with the problem with uncertainty in the initial 
states and certainty in action effects. The valid plan of 
CGP is parted into two phases: build planning graph and 
extract the valid plans. Firstly, to build planning graphs 

for all possible world states and then prune planning 
graphs into only a planning graph by connecting the 
nodes in graphs. Secondly, if all goal states in the sets of 
currently nodes it can generate the valid plan. The 
negative literals in CGP are converted into the node of 
the planning graph for representing all possible world 
states. In 2006, conformant planner CFF transforms the 
conformant planning into a search problem in the state 
space of all possible belief states and distinguishes 
between the belief states and world states. In this 
conformant planning system, it defines known 
propositions as the proposition is always true in all 
possible belief states. By defining the known literals, the 
atom in the process of find solution is known true or false. 
A known literal a is true, so the literal a is true in all 
states for computing valid plan for conformant planning.  

The standard definition language of conformant 
planning is PPDDL (Probabilistic Planning Domain 
Definition Language) added with the one-of formula 
proposed in the first conformant track completion, 5th 
International Planning Competition: Non-deterministic 
Track. In IPPC2008 the standard definition language is 
unchanged. However, RDDL (Relational Dynamic 
Influence Diagram Language) [17], a new language, is 
proposed by Sanner. As PDDL or PPDDL cannot 
represent some domain models such as CTM (cell 
transition model), RDDL is coming up. RDDL is 
integrated by PDDL family, PPDDL, stochastic programs, 
influence diagrams, etc. Initial belief states, actions, goal 
states are parameterized variables and the evolution of the 
planning problem is specified via functions over the next 
state variable that can be obtained in the case of a 
particular problem instance defining possible domain 
objects. In sum the new language is just a factored MDP 
(Markov Decision Processes) or POMDP. However most 
of domains can be expressed by PPDDL + one-of, 
defined in IPPC2006.  

PPDDL is an extension to PDDL (Planning Domain 
Definition Language) for expressing planning domains 
with probabilistic effects. PPDDL1.0 [3] is the input 
language for the probabilistic track of the 4th 
International Planning Competition. The semantics of 
PPDDL1.0 is (probabilistic p1e1…pkek) where effect ei 
occurs with probability pi (pi≥0 &&∑i=1-n pi = 1). For 
example, the effect (probabilistic 0.05 (toilet-clogged)) 
means that with probability 0.05 the state variable toilet-
clogged turns into true after executing this probabilistic 
effect, whereas with probability 0.95 the state is 
unchanged in the next state. To express the conformant 
planning the IPC puts forward new standard domain 
language. The new language is PPDDL+ one-of formula. 
It is extended the PPDDL1.0 with an additional non-
deterministic statement, the counterpart of the 
probabilistic statement for non-deterministic models. The 
origin form of PPDDL1.0 is (probabilistic p1e1, …, pkek) 
while the changed form is one-of  (l1, …, ln) where li  
(1≤i≤n) is initial belief state or action effect. On account 
of translating the form, many negative literals exist in 
conformant planning task. The one-of formula can be 
expressed as one-of  (s1, s2, …, sn) where si  (1≤i≤n) is the 
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initial belief state especially n is the total number of 
initial belief states or one-of  (a1, a2, …, an) where ai  
(1≤i≤n) is one of action effects especially n is the total 
number of action effects. The former is standing for 
uncertain initial states and the latter is for uncertain action 
effects.  

IV. TRANSLATION ALGORITHM 

The one-of formula leads in many literals because of 
one-of (l1, l2…ln) =>li, ∑j=1～n ¬ lj (j≠i). When executing 
such initial state or effect, one of the li is chosen and 
applied to the current state. The numbers of negative 
literals are augments with the number of the one-of 
formula. Supposing that there is a formula stating as one-
of (l1, l2, …, ln) and the number of negative literals is n-1. 
The count of negative literals is computed n× (Dn-1) 
where n is the number of one-of formulas and Dn is sum 
of literals in one-of formula. Converting negative literals 
is complex. In CFF [9], it adopts a new derived variable 
not-p with domain values { Δ , ⊥ } and generates an 
axiom  (v = d) →  (not-p: = Δ ) for each value d ∈  Dv\ 
(p). not-p = Δ  can serve as a translation of the literal ﹁p. 
The new derived variable not-p is introduced for 
representing the negative literal in the planning task. For 
this reason the state space of planning task with n 
negative literals is increased by 2n. Negative literals 
appear in initial states, action precondition, action effects 
and goal states. And these literals are mostly in initial 
states, action effects and goal states. Negative literals in 
initial states can be classified into real negative literals 
and negative literals implied by the positive literals. Such 
as Initial states= {ontable (a), handempty (), clear (a), 
ontable (a), clear (b), ¬ on (b, a), ¬ holding (b), ¬ on (a, 
b)}, a variable with domain values represents set {clear 
(a), holding (a)} which is mutually exclusive. And 
holding (a), ¬ holding (a) are mutually exclusive, 
positive literal clear (a) impliedly present negative literal 
¬ holding (a). The rest literals are real negative literals. 
Negative literals in goal states are also two kinds: 
impliedly presented by positive literals and need not 
encode the negative literals. Especially the second kind 
means the planning task with the negative literals is not 
solvable. The negative literals mostly in these two parts 
as the two forms of one-of are defined for uncertain 
initial states and action effects. Experiments with the 
domains in IPPC2006 [10], IPPC2008 [11] show that the 
negative literals are in the initial states except for the btuc 
and bmtuc. The negative literals in btuc and bmtuc are 
from the uncertainty in initial states and action effects and 
the negative literals from action effects is only one. In 
this paper, the algorithm only handles with the negative 
literals in initial states. Formula one-of1 (l11, l22, …, l1n), 
one-of2  (l21, l22, …, l2n), described in section II means that 
{l11, l22, …, l1n} or {l21, l22, …, l2n} are mutually exclusive 
while ∀ l1i, l2j  (l1i∈one-of1, l2j∈one-of2) &&  (1≤i, j≤n) 
are mutually compatible. Based on the relationship 
between literals in initial states, the algorithm for 
translating negative literals is explained as follows. 
 

Algorithm 1. Algorithm for translating negative literals:  
Input: sets of formula one-of F, sets of invariant I 
Output: sets of state variables S 
F =  (one-of1…one-ofn) 
Si= {} 
i= 0 
Repeat 
i = i + 1 
F = {li1…lin | one-ofi  (li1…lin)} 
Build new variable v= {0: li1, 1: li2…n-1: lin} 
For each invariant in I 
v= v- (v∩invariant) 
    if v≠ ∅  
      Insert v in Si 
 End of for 
 Until Si ＝＝Si-1 

  Return Si 
 
Algorithm 1 is divided into three steps. Firstly, find the 

entire formula one-of in the input file problem. As most 
of the one-of statements exist in the initial states, we just 
change all the formula one-of (s1, s2, …, sn) into sets of 
{s1, s2, …, sn} where si (1≤i≤n)is the literal represents one 
of the uncertain initial belief states. Secondly, every set of 
literals in each formula one-of is encoded as a state 
variable. Such as one-of (s1, s2, s3, s4) is encoded into a 
state variable var0 (0: s1, 1: s2, 2: s3, 3: s4). Supposing the 
initial states holds m formulas one-of, the total number of 
new state variables is m. The number of new state 
variables equals to the number of formulas one-of. The 
state space of conformant planning is n × Dn, where n is 
the number of state variables and Dn is the range of state 
variable n’s domain values. To reduce the state space of 
this planning, decrease the factor n can be a valid method. 
The second step has created large number of state 
variables. With the purpose of getting rid of these new 
variables, the third step of the algorithm is to simplify the 
state variable. The process of simplify is to delete the 
domain value which is the interests of the new state 
variable of the formula one-of and the invariant state 
variable of the whole action effects. If the literals in new 
state variable are all in the invariant state variables, delete 
this new state variable. Otherwise retain the literals in 
new state variable.  

V. EXPERIMENTAL STUDY 

To prove the efficiency of the proposed algorithm in 
this paper, we list some experimental results with some 
problems of standard domain in IPPC2006. 

The red line labeled with unchanged shows the number 
of encoded negative literals without the algorithm while 
the green line labeled with changed shows the number of 
encoded negative literals with the algorithm in Fig. 1, Fig. 
2, Fig. 3 and Fig. 4, respectively. 

Fig. 1 shows the result of the number of encoded 
negative literals with 3 problems from blocksworld 
domain in IPPC2006. The algorithm, described in 
Figure1, reduces the number of encoded literals from 3, 5 
and 6 to 0, 0, and 0. The algorithm translates the negative 
literals in formula one-of efficiently. Problems in blocks 
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world are the task with uncertain initial belief states and 
certain action effects. Formula one-of exists in initial 
states. 

 
Figure 1. The number of encoded negative literals in blocksworld 

problem. 

Fig. 2 shows that the result of number of encoded 
negative literals in uts problem in IPPC2006. 

 
Figure 2. The number of encoded negative literals in uts. 

7 problems in uts problem are chosen in the 
experiments and the algorithm changed the number from 
3, 4, 5, 6, 7, 8 and 9 to 0, 0, 0, 0, 0, 0 and 0, respectively. 
These problems are as same as the problems in 
blocksworld problem and they are the tasks with only 
uncertainty in initial states. 

Take one problem in uts in IPPC2006 to explain the 
algorithm in detail as follows. 

 
Problem: uts_cycle_3 
 (one-of  (and  ( at_node n0) (visited n0)) 
 (and  (at_node n1) (visited n1)) 
 (and  (at_node n2) (visited n2))),  
 (one-of  (and  (edge_label n0 n1 l1) (edge_label n0 n2 l2)) 
 (and  (edge_label n0 n1 l2) (edge_label n0 n2 l1))),  
 (one-of  (and  (edge_label n1 n2 l1) (edge_label n1 n0 l2)) 
 (and  (edge_label n1 n2 l2) (edge_label n1 n0 l1))),  
 (one-of  (and  (edge_label n2 n0 l1) (edge_label n2 n1 l2)) 
 (and  (edge_label n2 n0 l2) (edge_label n2 n1 l1))). 
1)f = {{ Atom at_node  (n0), Atom at_node  (n1), Atom 

at_node  (n2)},  
{Atom edge_label  (n0 n1 l1), Atom edge_label  (n0 n2 

l2),  
Atom edge_label  (n0 n1 l2), Atom edge_label  (n0 n2 l1),  

{Atom edge_label  (n1 n2 l1), Atom edge_label  (n1 n0 
l2),  

Atom edge_label  (n1 n2 l2), Atom edge_label  (n1 n0 l1),  
{Atom edge_label  (n2 n0 l1), Atom edge_label  (n2 n1 

l2),  
Atom edge_label  (n2 n0 l2), Atom edge_label  (n2 n1 l1). 
2)I = {{Atom at_node  (n0), Atom at_node  (n1), Atom 

at_node  (n2)},  
{Atom edge_label  (n0 n1 l1), Atom edge_label  (n0 n2 

l2),  
{Atom edge_label  (n0 n1 l2), Atom edge_label  (n0 n2 

l1),  
{Atom edge_label  (n1 n2 l1), Atom edge_label  (n1 n0 

l2),  
{Atom edge_label  (n1 n2 l2), Atom edge_label  (n1 n0 

l1),  
{Atom edge_label  (n2 n0 l1), Atom edge_label  (n2 n1 

l2),  
{Atom edge_label  (n2 n0 l2), Atom edge_label  (n2 n1 

l1). 
3)S = ∅  
state variable = S + I 
 
The Problem uts_cycle_3 explains one problem of 

domain uts in Fig.1. The initial states hold 18 negative 
literals and by the algorithm the number of encode 
negative literals has changed into 0. The algorithm is 
parted into three and using 1), 2) and  (3) to represents 
these three steps.  

However, some problems shown in Fig. 3 hold no 
negative literals. And the algorithm does not translate any 
negative literals at all. These 7 problems are from domain 
coins. The reason for this is that no formula one-of exists 
in the input file.  

 
Figure 3. The number of encoded negative literals in coins. 

Finally, the problems in Fig. 4 indicate that the number 
of encoded negative literals has converted from 2, 3, 4, 5 
and 6 to 2, 3, 4, 5 and 6. The algorithm does not convert 
any negative literals. Why.  

Take one of problems in comm to resolve this question. 
 
Problem: comm_5_2 
one-of  (noisy p0, not  (noisy p0)) 
one-of  (noisy p1 not  (noisy p1) 
1) f = {{ Atom noisy  (p0), NegatedAtom noisy  (p0)},  

       {Atom noisy  (p1), NegatedAtom noisy  (p1)}. 
2) I = {{ Atom current-stage  (s0), Atom current-stage 

(s1),  
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Atom current-stage  (s2), Atom current-stage  (s3), 
Atom current-stage  (s4)}, {Atom read  (p0), Atom in-
channel  (p0)}, {Atom read  (p1), Atom in-channel  (p1}. 

3) S = {{Atom noisy  (p0), NegatedAtom noisy  (p0)},  
          {Atom noisy  (p1), NegatedAtom noisy  (p1)}. 

state variable = S + I 
 
Based on the above comm._5_2 problem, it is shown 

that the negative literals existing in literals of one-of 
statements are real negative literals. Thus, they are 
needed to be encoded.  

VI. CONCLUSIONS 

A new translation algorithm for negative literals in 
conformant planning is introduced in the paper. The 
paper firstly gives an overview of the development of 
conformant planning. The definition of conformant 
planning is that of deciding whether there exists a linear 
sequence of actions for achieving the goal states from any 
initial belief state and resolution of the non-determinism 
in the problem. Then it lists some planners for solving 
problems in conformant planning tasks. Secondly, it 
defines conformant planning tasks from four aspects: 
PPDDL tasks, conformant tasks in FDR, the state space 
of the conformant tasks in FDR and the process of 
planning for conformant tasks in FDR. The conformant 
planning tasks is the basis of the algorithm as described 
in part: translation algorithm. Next, the literals in the 
conformant planning tasks and one-of formula existing in 
the standard domain language PPDDL are explained. 
Based on the analysis of the relationship between literals 
defined with PPDDL, the literals are divided into some 
kinds by the relationship between them. A translation 
algorithm is proposed in view of the theories stating in 
the front of this part. The translation algorithm is 
consisting of three steps. This algorithm builds a 
connection between literals in one-of formula and 
invariants computing by the algorithm proposed by 
Helmert. It not only considers every literal in one-of 
formula but also the literal in invariants with the purpose 
of finding mutually exclusive literals. There exists 
intersection between the literals in one-of formula and 
invariants. By using this intersection, it can ensure that 
the state variable computing by the algorithm is the finite 
state variable representing maximum literals. It can 
reduce the state space of the conformant planning tasks. 

 
Figure 4. The number of encoded negative literals in comm problem. 

The translation algorithm in this paper was proposed 
on the basis of PPDDL which is the standard domain 
definition languages of conformant planning added with 
one-of relaxation technique. . Two forms of formula one-
of are one-of  (s1, s2, …, sn) and one-of  (a1, a2, …an). The 
former is for the uncertain initial belief states however the 
latter is for the uncertain action effects. The algorithm is 
to translate the negative literals in the former form. 
Experiments with the 22 problems of conformant track in 
IPPC2006 show that the algorithm can translate most of 
the negative literals in initial world states. But 
conformant planning is the task with uncertainty in initial 
states and action effects. The algorithm in this paper can 
only handle with the uncertainty in initial states. To 
analyze the form of one-of on the latter, negative literals 
also exist in action effects. In order to translate all the 
negative literals, one can combine the uncertain action 
effects with the invariant synthesis inferred by Helmert. 
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