
Translation Algorithm for Negative Literals in
Conformant Planning

Weisheng Li, Jiao Du

College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing
400065, China

Email: liws@cqupt.edu.cn, Dujiao19880429@126.com

Lifang Zhou
College of Software, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Email: Zhoulifang160966@sina.com

Abstract—The encoded negative literals in a conformant
planning task will result in increasing state spaces. Getting a
compact representation of state spaces is one of the most
important issues in conformant planning. In this paper, a
translation algorithm for negative literals is proposed to
reduce the state spaces in a conformant planning task. The
relationship between encoded literals is analyzed in detail.
Based on the one-of relaxation technique in domain
language, the algorithm is used to express the uncertain
initial states and action effects in conformant planning. It
converts formula one-of into a set of mutually exclusive
literals with the relationship of mutual. The experiment
study shows the efficiency of the proposed algorithm in
pruning the state space in conformant planning tasks.

Index Terms—negative literals, domain language,
conformant planning, formula one-of, mutually exclusive
literals

I. INTRODUCTION

Conformant planning refers to solve the planning
problems with incomplete information in an initial state
and in state transitions. It decides whether there exists a
linear sequence of actions for achieving the goal states
from any initial belief state and resolution of the non-
determinism in a planning problem [1]. Considering all
possible initial states and transitions, the problem of
conformant planning is more complex than that of
classical planning as even under polynomial restrictions
on plan length and the verification of plans is intractable
in the worst case. Meanwhile, compared with the
classical planning, a conformant planning task with
uncertainty in initial states and action effects has greater
state spaces [2].

The standard language for conformant planning is
PPDDL (Probabilistic Planning Domain Definition
Language) [3]. PPDDL is an extension to the Planning
Domain Definition Language (PDDL) [4] and a standard
for expressing the non-deterministic planning problems.

The formal definition of the PPDDL is extended with an
additional non-deterministic one-of statement. Because
the one-of statement is defined for representing uncertain
initial states and action effects, the number of literals in
conformant planning is larger than that of the classical
planning. It can also result in increasing the state spaces
for conformant planning.

Getting a compact representation of state spaces is one
of the most important issues in a conformant planning
task. To decrease the state spaces of conformant planning,
many conformant planners try to reduce the sum of
encoded literals. Literals can be classified into positive
and negative literals. Classical planning is based upon the
closed world assumption: the atoms which do not exist in
the states are false. The method of translating positive
literals is as the same as that in classical planning.
However, the translation of negative literals is a novel
work. There is a Multi-valued Conformant Planning
Tasks (MCPT) [5] algorithm which extends the Multi-
valued Planning Tasks (MPT) [6] transform algorithm. In
MCPT, when translating negative literals in conditions as
¬p, if the condition contains also some positive literals
represented by the same variable v as p, there is no
necessary to encode them at all. Otherwise a new derived
variable not-p is introduced, and an axiom for each
valued d∈Dv\{p} is generated. This is reasonable in the
classical planning. However, in conformant planning the
atoms that do not exist in the state are false or unknown.
We improved the algorithm in the MCPT and noted as
CPT-FDR [7]. Based our earlier work, a novel algorithm
for translating negative literals is proposed to reduce the
state spaces in a conformant planning task in this paper.
The algorithm deals with the formula one-of in domain
language to express the uncertain initial states and action
effects in conformant planning. The algorithm converts
formula one-of into a set of mutually exclusive literals
with the relationship of mutual. The experiment study
shows that the proposed algorithm is capable to translate
most of the negative literals in a conformant planning
task.

II. CONFORMANT PLANNING

Corresponding author: Weisheng Li.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 39

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.1.39-46

Conformant planning involves generating plans under
the condition that the initial states and action effects are
nondeterministic and sensing is unavailable during plan
execution.

A. Development
In 1998, Smith and Weld [8] gave a definition of

conformant planning as in the case of all possible world
states to develop valid plans without sensory information.
In 2004, Brafman and Hoffmann [9] proposed that a task
of uncertain initial states and action effects to generate
plans without any sense capabilities during plan
execution is conformant planning. The valid plan should
be successful regardless of which particular initial world
starting from and which action effects occur while
executing an action. In 2006, conformant planning [10]
was joined in IPPC (International Probabilistic Planning
Competition) as conformant track for the first time. In
2008, conformant planning tracks [11] were partitioned to
the part of uncertainty in IPPC secondly joined in this
international competition. Conformant track is renamed
as NOND (non-observable non-deterministic) track.
NOND task is one without sensory information from
agents and without certain initial belief states and action
effects. In 2011, conformant track [12] continued to be a
part of IPPC. In this time, it has been renamed as
POMDPs (Partially-observable Markov Decision
Processes) track and NOMDPs (No-Observation Markov
Decision Processes). A conformant planner [13] can
handle with NOMDPs and POMDPs problems. A
conformant plan is a sequence of actions which will lead
to the goal states with at least some probability p, which
is predetermined before the planning task. Conformant
planning problem [14] is the path-finding problems over
a directed graph G = <V, E> where V is the nodes in the
graph and E = <v1, v2> is the directed edges in the graph.
The nodes are the sets of all belief states, which express
the states of the world that are assumed possible to the
agent. The edges illustrate that executing action has
changed the current state v1 to the next state v2.

The first conformant planner CGP (Conformant
Graphplan) was based on the classical planner Graphplan.
This planner was designed to deal with the problem with
uncertainty in the initial states and certainty in action
effects. The valid plan of CGP is distributed into two
phases: build planning graph and extract the valid plans.
Then Brafman and Hoffmann designed CFF (Conformant
Fast Forward) planner to handle the initial states with
uncertainty. CFF is a domain independent planning
system. It extends the classical planner FF (Fast Forward)
which handles uncertain planning task expressed in the
form of a CNF formula. It defines known propositions as
the proposition is always true in all possible belief states
and replaces CNF with 2-CNF projection of the formula
that captures the true belief state semantics. Next a large
number of conformant planners are springing up since
2006 [10]. Most of conformant planners are to translate
the conformant problem into classical problem, such as
CGP, CFF, CMBP and t0.

In Probabilistic-FF conformant planner, the
conformant problem is that the initial belief state with

uncertainty and uncertain action effects. Especially it
used the Bayesian networks to present all belief states in
the planning task. In t0 planner [15], it used some
algorithm in classical planning for solving conformant
problems with incomplete information. Finding sequence
of actions between belief states is the vital part in
planning under no observations. Planner t0 use
propositional logic, like in SATPLAN. The search is to
construct a CNF with all possible plans. It introduced the
function K (p), meaning that translating from conformant
problem p into classical problem K (p). All the literals in
the conformant problem are changed into conjunctive
formula of KL and ¬ KL. KL is known literal L while
¬KL is unknown literal L.

B. Conformant Planning Tasks in PPDDL
In [7], an approach to translating the PPDDL-based

conformant planning tasks into FDR (Finite Domain
Representation) state variable is described. The approach
extends the FDR algorithm to settle uncertain initial
conditions and the non-deterministic operator effects, is
introduced to reduce the size of belief states.

A PPDDL task for conformant planning can be
described by a 4-tuple:

∏ = <I0, IG, A, O> (1)

The components in (1) are described as follows.
1) I0 is the set of all initial belief states. It is composed

of conjunction and disjunction of ground atoms over the
object named the initial belief state. The conjunction
formula represents for the sets of atoms in the same belief
states, while the disjunction formula is the relationship
between different possible belief states.

As the initial belief state is uncertain, some new
operators, including or and one-of operators, are defined
as follows.

Operator or (l1, l2, …, ln) is defined in the PPDDL and
it is equal to the sets {l1, l2, …, ln }. One has

{l1, l2, …, ln} = l1U l2 U …U ln (2)

Operator one-of (l1, l2, …, ln) is defined in PPDDL and
it is used to represent for the uncertain initial states. The
one-of statement has the form:

one-of (e1, e2, …, en) (3)

where ek (k=1, 2, …, n) are the PPDDL effects.
2) IG is the closed formula called the goal formula. It is

the conjunction formula of atoms or negative atoms.
3) A is a finite stratified set of the PPDDL axioms. A

PPDDL axiom is a pair ,ϕ ψ〈 〉 such that ϕ is a first-order
atom and ψ is a first order formula with free (ψ) ⊆ free
(ϕ). The axiom formula ,ϕ ψ〈 〉 is the same asϕ ψ← ,
where ϕ is the head of this formula and ψ is the body of
this formula.

The set A of PPDDL axioms is stratifiable only if there
is a total preorder −

p on the predicate symbols of A such
that for each axiom where predicate Q occurs in the head,

having P −
p

 Q for all predicates P occurring in the body,

40 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

and P −
p

 Q for all predicates P occurring in a negative in
the transition of the body to negation normal form.

Stratifiability of a set of axiom formulas is with the
purpose for making sure that the outcome of axiom
evolution is well-defined. Suppose that if the axiom
formula is not stratifiable, it would be possible to specify
rules of the form as P (x) is true if P (x) is false. P

−
p Q

means that the truth value of atoms over Q must be
determined after the truth value of atoms over P.

4) O is a finite set of operators. A schematic operator
o1 is showed as , eχ〈 〉 , where χ the first-order formula is
defined as precondition of the operator o1 and e is the
conjunction or disjunction sets of first-order formula
defined as effect of the operator o1. Especially, the
PPDDL effects of operator are recursively defined by
finite application of the following rules:

a) A literal l is a first-order formula. The effect is
expressed by l is called a simple effect.

b) If e1…en are the effects of one operator, then
e1 Λ e2 Λ … Λ en is called a conjunctive effect.

c) e>χ is called a conditional effect if χ is a first-
order formula and e is the effect of one operator.

d) If v1, v2, …, vn are the variables in the first-order
formula and e is an effect of one operator, then
∀ v1, v2, …, vn: e is called a universally
quantified effect or a universal effect.

e) If e1…en with ei (1≤i≤n) is simple effect as
described in the first rule are the effects in the
formula one-of (e1, e2, …, en), then every effect
ei (1≤i≤n) is in one-of formula is called a non-
deterministic effect.

Free variable is the parameter of one operator. The free
variables of simple effects are defined as for literals in
first-order logic. Free variables of other effects are
defined with following rules which are shown in (4), (5)
and (6).

free (e1, e2…en) =

free (e1)U free (e2)U …U free (en) (4)

free (e>χ) = free (χ)U free (e) (5)

free (∀ v1, v2, …, vn: e) = free (e)\{ v1, v2, …, vn } (6)

In the definition of the PPDDL task for conformant
planning, the operator O defines the translation of the
world state. If the current state satisfies the precondition
of one operator, then the operator may be executed and
meanwhile it has renamed as action. The executing action
leads to a new state which is like the old one except that it
is modified in certain ways specified by the effect of the
action. An operator with parameters cannot be applied
directly. It must be grounded by substituting concrete
objects for the parameters.

C. Conformant Planning Tasks in FDR
Conformant planning task in a finite-domain

representation is given by a 5-tuple:

∏ = <V, I0, IG, A, O> (7)

The components in (7) are described as follows.
1) V is a finite set of FDR state variables. Every

variable v ∈ V owns an associated finite domain
represented by sets of values, DV. The state variable is
portioned into two kinds: fluent and derived variable. The
fluent is affected by operators or occurring in I0. The
value of the fluent is changed from value1 to value2. The
derived variable is computed by evaluating axioms. The
domain of derived variables must contain the undefined
value ⊥ . The undefined value means the value of this
variable is unknown or does not matter. As the planning
problem is the reasoning problem of a totally or partially
ordered set of operators that achieves a specified goal
from a given initial state. So a total world state assigns
defined values to all state variables, while a partial world
state is to assign the undefined value. The undefined
value is for representing the partial world state.

2) I0 is a set of completely specified all possible initial
world, called the initial belief state. Every initial world is
consisted of the conjunctions of state variables
assignment over V.

3) IG is a finite set of DNF formula, called the goal of
the task. Each goal is composed of the conjunction of
state variables assignment over V.

4) A is a finite set of axioms over V. It is explained as
a triple , ,cond v d〈 〉 , where cond is the condition or the
body of the axiom, and pair ,v d〈 〉 is the head of the
axiom. In the pair ,v d〈 〉 , v is a derived variable named an
affected variable, and d ∈Dv is the new value for V.

5) O is a set of operators with the form <pre, post, prv>,
where it is denoting the pre-, post and prevail-condition
respectively. In the form <pre, post, prv>, pre and prv is
the precondition of the operator and post is the effect of
the operator. The variable in pre is affected variable
while the variable in prv is unaffected variable. The effect
post is defined as a tripe , ,cond v d〈 〉 , where cond is a
partial variable assignment, v is a fluent affected by the
operator and d is a new value for V. For every operator o
= <pre, post, prv> ∈ O, it must satisfy two restrictions
shown as follows.

For all v∈V, if pre[v] ≠ ⊥ , then

pre[v] ≠ post[v] ≠ ⊥ (8)

For all v∈V,

 post[v] = ⊥ (9)

or

prv[v] = ⊥ (10)

Thirdly, the state space of the conformant planning
task in a finite-domain representation ∏ = <V, I0, IG, A,
O> is denoted as P (∏). The formula P (∏)is a directed
graph:

G = <V, E> (11)

where V is the sets of state variable V. E = <v1, v2> if
exists one operator with the formula <pre, post, prv> or

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 41

© 2013 ACADEMY PUBLISHER

axiom with the formula , ,cond v d〈 〉 , such that pre ⊆ s (a
state of conformant planning task) and s’ (v) = d for all
effects or axiom , ,cond v d〈 〉 such that cond ⊆ s and s’ (v)
= s (v) for all other fluent.

Finally, the conformant planning task is the problem of
planning with the following definition.

Given a conformant planning task by 5-tuple: ∏ = <V,
I0, IG, A, O> with initial belief state I0 and goal set IG, the
planning computes some paths in directed graph of P (∏),
or proves that IG cannot be achieved in the task. The paths
which all encode the same action sequence, should reach
one of goals in IG respectively, regardless of which initial
world the planning start from and which action effects
occur.

In [7], the difference among FDR, MCPT and CPT-
FDR in a finite-domain representation is summarized,
which is shown in Table I.

TABLE I.
THE DIFFERENCE AMONG FDR, MCPT AND CPT-FDR

Property FDR MCPT CPT-FDR
Fluents
in state
variables

affected by
operators

affected by
operators

affected by operators
or occurring in initial
belief state

Initial
state

complete
information uncertain uncertain

Operator
effects deterministic deterministic non-deterministic

others extended
states - extended belief

states
In Table I, “-” means nothing.

III. LITERALS AND ONE-OF FORMULA

Literals in planning task are the atoms or negate atoms
for representing the propositions in the real world. The
atom in literals is well formed formula including
antecedent and consequent. Literals can be classified into
two kinds. First one is the positive literal a is of the form
P (t1, t2, …, tn), while another is the negative literal ¬ a is
of the form ¬ P (t1, t2, …, tn) where P is a predicate and
the terms ti in formula are constants or variables.

The number of literals is a key part consisting of state
space for the conformant planning task. Translating
positive literals of the form P (t1, t2, …, tn) in classical
planning is to encode into Boolean variables and numeric
variables. While translating negative literals of the form
﹁P (t1, t2, …, tn) is a hard work. As whether the atom is
true or not in the states of conformant planning, known
true atoms and known false atoms are important for
computing conformant plan. However, classical planning
is based on closed world assumption that the atoms which
do not exist in the current state are always false. Thus it is
unnecessary to encode the negative literals directly in
classical planning. Conformant planning is the task with
uncertain initial states and action effects and large
number of negative literals exists in the conformant
planning. In the first conformant planner CGP which is
dealing with the problem with uncertainty in the initial
states and certainty in action effects. The valid plan of
CGP is parted into two phases: build planning graph and
extract the valid plans. Firstly, to build planning graphs

for all possible world states and then prune planning
graphs into only a planning graph by connecting the
nodes in graphs. Secondly, if all goal states in the sets of
currently nodes it can generate the valid plan. The
negative literals in CGP are converted into the node of
the planning graph for representing all possible world
states. In 2006, conformant planner CFF transforms the
conformant planning into a search problem in the state
space of all possible belief states and distinguishes
between the belief states and world states. In this
conformant planning system, it defines known
propositions as the proposition is always true in all
possible belief states. By defining the known literals, the
atom in the process of find solution is known true or false.
A known literal a is true, so the literal a is true in all
states for computing valid plan for conformant planning.

The standard definition language of conformant
planning is PPDDL (Probabilistic Planning Domain
Definition Language) added with the one-of formula
proposed in the first conformant track completion, 5th
International Planning Competition: Non-deterministic
Track. In IPPC2008 the standard definition language is
unchanged. However, RDDL (Relational Dynamic
Influence Diagram Language) [17], a new language, is
proposed by Sanner. As PDDL or PPDDL cannot
represent some domain models such as CTM (cell
transition model), RDDL is coming up. RDDL is
integrated by PDDL family, PPDDL, stochastic programs,
influence diagrams, etc. Initial belief states, actions, goal
states are parameterized variables and the evolution of the
planning problem is specified via functions over the next
state variable that can be obtained in the case of a
particular problem instance defining possible domain
objects. In sum the new language is just a factored MDP
(Markov Decision Processes) or POMDP. However most
of domains can be expressed by PPDDL + one-of,
defined in IPPC2006.

PPDDL is an extension to PDDL (Planning Domain
Definition Language) for expressing planning domains
with probabilistic effects. PPDDL1.0 [3] is the input
language for the probabilistic track of the 4th
International Planning Competition. The semantics of
PPDDL1.0 is (probabilistic p1e1…pkek) where effect ei
occurs with probability pi (pi≥0 &&∑i=1-n pi = 1). For
example, the effect (probabilistic 0.05 (toilet-clogged))
means that with probability 0.05 the state variable toilet-
clogged turns into true after executing this probabilistic
effect, whereas with probability 0.95 the state is
unchanged in the next state. To express the conformant
planning the IPC puts forward new standard domain
language. The new language is PPDDL+ one-of formula.
It is extended the PPDDL1.0 with an additional non-
deterministic statement, the counterpart of the
probabilistic statement for non-deterministic models. The
origin form of PPDDL1.0 is (probabilistic p1e1, …, pkek)
while the changed form is one-of (l1, …, ln) where li
(1≤i≤n) is initial belief state or action effect. On account
of translating the form, many negative literals exist in
conformant planning task. The one-of formula can be
expressed as one-of (s1, s2, …, sn) where si (1≤i≤n) is the

42 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

initial belief state especially n is the total number of
initial belief states or one-of (a1, a2, …, an) where ai
(1≤i≤n) is one of action effects especially n is the total
number of action effects. The former is standing for
uncertain initial states and the latter is for uncertain action
effects.

IV. TRANSLATION ALGORITHM

The one-of formula leads in many literals because of
one-of (l1, l2…ln) =>li, ∑j=1～n ¬ lj (j≠i). When executing
such initial state or effect, one of the li is chosen and
applied to the current state. The numbers of negative
literals are augments with the number of the one-of
formula. Supposing that there is a formula stating as one-
of (l1, l2, …, ln) and the number of negative literals is n-1.
The count of negative literals is computed n× (Dn-1)
where n is the number of one-of formulas and Dn is sum
of literals in one-of formula. Converting negative literals
is complex. In CFF [9], it adopts a new derived variable
not-p with domain values { Δ , ⊥ } and generates an
axiom (v = d) → (not-p: = Δ) for each value d ∈ Dv\
(p). not-p = Δ can serve as a translation of the literal ﹁p.
The new derived variable not-p is introduced for
representing the negative literal in the planning task. For
this reason the state space of planning task with n
negative literals is increased by 2n. Negative literals
appear in initial states, action precondition, action effects
and goal states. And these literals are mostly in initial
states, action effects and goal states. Negative literals in
initial states can be classified into real negative literals
and negative literals implied by the positive literals. Such
as Initial states= {ontable (a), handempty (), clear (a),
ontable (a), clear (b), ¬ on (b, a), ¬ holding (b), ¬ on (a,
b)}, a variable with domain values represents set {clear
(a), holding (a)} which is mutually exclusive. And
holding (a), ¬ holding (a) are mutually exclusive,
positive literal clear (a) impliedly present negative literal
¬ holding (a). The rest literals are real negative literals.
Negative literals in goal states are also two kinds:
impliedly presented by positive literals and need not
encode the negative literals. Especially the second kind
means the planning task with the negative literals is not
solvable. The negative literals mostly in these two parts
as the two forms of one-of are defined for uncertain
initial states and action effects. Experiments with the
domains in IPPC2006 [10], IPPC2008 [11] show that the
negative literals are in the initial states except for the btuc
and bmtuc. The negative literals in btuc and bmtuc are
from the uncertainty in initial states and action effects and
the negative literals from action effects is only one. In
this paper, the algorithm only handles with the negative
literals in initial states. Formula one-of1 (l11, l22, …, l1n),
one-of2 (l21, l22, …, l2n), described in section II means that
{l11, l22, …, l1n} or {l21, l22, …, l2n} are mutually exclusive
while ∀ l1i, l2j (l1i∈one-of1, l2j∈one-of2) && (1≤i, j≤n)
are mutually compatible. Based on the relationship
between literals in initial states, the algorithm for
translating negative literals is explained as follows.

Algorithm 1. Algorithm for translating negative literals:
Input: sets of formula one-of F, sets of invariant I
Output: sets of state variables S
F = (one-of1…one-ofn)
Si= {}
i= 0
Repeat
i = i + 1
F = {li1…lin | one-ofi (li1…lin)}
Build new variable v= {0: li1, 1: li2…n-1: lin}
For each invariant in I
v= v- (v∩invariant)
 if v≠ ∅
 Insert v in Si
 End of for
 Until Si ＝＝Si-1

 Return Si

Algorithm 1 is divided into three steps. Firstly, find the

entire formula one-of in the input file problem. As most
of the one-of statements exist in the initial states, we just
change all the formula one-of (s1, s2, …, sn) into sets of
{s1, s2, …, sn} where si (1≤i≤n)is the literal represents one
of the uncertain initial belief states. Secondly, every set of
literals in each formula one-of is encoded as a state
variable. Such as one-of (s1, s2, s3, s4) is encoded into a
state variable var0 (0: s1, 1: s2, 2: s3, 3: s4). Supposing the
initial states holds m formulas one-of, the total number of
new state variables is m. The number of new state
variables equals to the number of formulas one-of. The
state space of conformant planning is n × Dn, where n is
the number of state variables and Dn is the range of state
variable n’s domain values. To reduce the state space of
this planning, decrease the factor n can be a valid method.
The second step has created large number of state
variables. With the purpose of getting rid of these new
variables, the third step of the algorithm is to simplify the
state variable. The process of simplify is to delete the
domain value which is the interests of the new state
variable of the formula one-of and the invariant state
variable of the whole action effects. If the literals in new
state variable are all in the invariant state variables, delete
this new state variable. Otherwise retain the literals in
new state variable.

V. EXPERIMENTAL STUDY

To prove the efficiency of the proposed algorithm in
this paper, we list some experimental results with some
problems of standard domain in IPPC2006.

The red line labeled with unchanged shows the number
of encoded negative literals without the algorithm while
the green line labeled with changed shows the number of
encoded negative literals with the algorithm in Fig. 1, Fig.
2, Fig. 3 and Fig. 4, respectively.

Fig. 1 shows the result of the number of encoded
negative literals with 3 problems from blocksworld
domain in IPPC2006. The algorithm, described in
Figure1, reduces the number of encoded literals from 3, 5
and 6 to 0, 0, and 0. The algorithm translates the negative
literals in formula one-of efficiently. Problems in blocks

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 43

© 2013 ACADEMY PUBLISHER

world are the task with uncertain initial belief states and
certain action effects. Formula one-of exists in initial
states.

Figure 1. The number of encoded negative literals in blocksworld

problem.

Fig. 2 shows that the result of number of encoded
negative literals in uts problem in IPPC2006.

Figure 2. The number of encoded negative literals in uts.

7 problems in uts problem are chosen in the
experiments and the algorithm changed the number from
3, 4, 5, 6, 7, 8 and 9 to 0, 0, 0, 0, 0, 0 and 0, respectively.
These problems are as same as the problems in
blocksworld problem and they are the tasks with only
uncertainty in initial states.

Take one problem in uts in IPPC2006 to explain the
algorithm in detail as follows.

Problem: uts_cycle_3
 (one-of (and (at_node n0) (visited n0))
 (and (at_node n1) (visited n1))
 (and (at_node n2) (visited n2))),
 (one-of (and (edge_label n0 n1 l1) (edge_label n0 n2 l2))
 (and (edge_label n0 n1 l2) (edge_label n0 n2 l1))),
 (one-of (and (edge_label n1 n2 l1) (edge_label n1 n0 l2))
 (and (edge_label n1 n2 l2) (edge_label n1 n0 l1))),
 (one-of (and (edge_label n2 n0 l1) (edge_label n2 n1 l2))
 (and (edge_label n2 n0 l2) (edge_label n2 n1 l1))).
1)f = {{ Atom at_node (n0), Atom at_node (n1), Atom

at_node (n2)},
{Atom edge_label (n0 n1 l1), Atom edge_label (n0 n2

l2),
Atom edge_label (n0 n1 l2), Atom edge_label (n0 n2 l1),

{Atom edge_label (n1 n2 l1), Atom edge_label (n1 n0
l2),

Atom edge_label (n1 n2 l2), Atom edge_label (n1 n0 l1),
{Atom edge_label (n2 n0 l1), Atom edge_label (n2 n1

l2),
Atom edge_label (n2 n0 l2), Atom edge_label (n2 n1 l1).
2)I = {{Atom at_node (n0), Atom at_node (n1), Atom

at_node (n2)},
{Atom edge_label (n0 n1 l1), Atom edge_label (n0 n2

l2),
{Atom edge_label (n0 n1 l2), Atom edge_label (n0 n2

l1),
{Atom edge_label (n1 n2 l1), Atom edge_label (n1 n0

l2),
{Atom edge_label (n1 n2 l2), Atom edge_label (n1 n0

l1),
{Atom edge_label (n2 n0 l1), Atom edge_label (n2 n1

l2),
{Atom edge_label (n2 n0 l2), Atom edge_label (n2 n1

l1).
3)S = ∅
state variable = S + I

The Problem uts_cycle_3 explains one problem of

domain uts in Fig.1. The initial states hold 18 negative
literals and by the algorithm the number of encode
negative literals has changed into 0. The algorithm is
parted into three and using 1), 2) and (3) to represents
these three steps.

However, some problems shown in Fig. 3 hold no
negative literals. And the algorithm does not translate any
negative literals at all. These 7 problems are from domain
coins. The reason for this is that no formula one-of exists
in the input file.

Figure 3. The number of encoded negative literals in coins.

Finally, the problems in Fig. 4 indicate that the number
of encoded negative literals has converted from 2, 3, 4, 5
and 6 to 2, 3, 4, 5 and 6. The algorithm does not convert
any negative literals. Why.

Take one of problems in comm to resolve this question.

Problem: comm_5_2
one-of (noisy p0, not (noisy p0))
one-of (noisy p1 not (noisy p1)
1) f = {{ Atom noisy (p0), NegatedAtom noisy (p0)},

 {Atom noisy (p1), NegatedAtom noisy (p1)}.
2) I = {{ Atom current-stage (s0), Atom current-stage

(s1),

44 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

Atom current-stage (s2), Atom current-stage (s3),
Atom current-stage (s4)}, {Atom read (p0), Atom in-
channel (p0)}, {Atom read (p1), Atom in-channel (p1}.

3) S = {{Atom noisy (p0), NegatedAtom noisy (p0)},
 {Atom noisy (p1), NegatedAtom noisy (p1)}.

state variable = S + I

Based on the above comm._5_2 problem, it is shown

that the negative literals existing in literals of one-of
statements are real negative literals. Thus, they are
needed to be encoded.

VI. CONCLUSIONS

A new translation algorithm for negative literals in
conformant planning is introduced in the paper. The
paper firstly gives an overview of the development of
conformant planning. The definition of conformant
planning is that of deciding whether there exists a linear
sequence of actions for achieving the goal states from any
initial belief state and resolution of the non-determinism
in the problem. Then it lists some planners for solving
problems in conformant planning tasks. Secondly, it
defines conformant planning tasks from four aspects:
PPDDL tasks, conformant tasks in FDR, the state space
of the conformant tasks in FDR and the process of
planning for conformant tasks in FDR. The conformant
planning tasks is the basis of the algorithm as described
in part: translation algorithm. Next, the literals in the
conformant planning tasks and one-of formula existing in
the standard domain language PPDDL are explained.
Based on the analysis of the relationship between literals
defined with PPDDL, the literals are divided into some
kinds by the relationship between them. A translation
algorithm is proposed in view of the theories stating in
the front of this part. The translation algorithm is
consisting of three steps. This algorithm builds a
connection between literals in one-of formula and
invariants computing by the algorithm proposed by
Helmert. It not only considers every literal in one-of
formula but also the literal in invariants with the purpose
of finding mutually exclusive literals. There exists
intersection between the literals in one-of formula and
invariants. By using this intersection, it can ensure that
the state variable computing by the algorithm is the finite
state variable representing maximum literals. It can
reduce the state space of the conformant planning tasks.

Figure 4. The number of encoded negative literals in comm problem.

The translation algorithm in this paper was proposed
on the basis of PPDDL which is the standard domain
definition languages of conformant planning added with
one-of relaxation technique. . Two forms of formula one-
of are one-of (s1, s2, …, sn) and one-of (a1, a2, …an). The
former is for the uncertain initial belief states however the
latter is for the uncertain action effects. The algorithm is
to translate the negative literals in the former form.
Experiments with the 22 problems of conformant track in
IPPC2006 show that the algorithm can translate most of
the negative literals in initial world states. But
conformant planning is the task with uncertainty in initial
states and action effects. The algorithm in this paper can
only handle with the uncertainty in initial states. To
analyze the form of one-of on the latter, negative literals
also exist in action effects. In order to translate all the
negative literals, one can combine the uncertain action
effects with the invariant synthesis inferred by Helmert.

ACKNOWLEDGMENT

This work was supported in part by the National
Natural Science Foundation of China (No. 61142011, No.
61100114), and the Key Project of Chinese Ministry of
Education (No. 210184).

REFERENCES

[1] H. Palacios and H. Geffner. “From conformant into
Classical Planning: Efficient Translations That May be
Complete Too”, Proc. ICAPS-07, 2007.

[2] B. Bonet and R. Givan, 5th International Planning
Competition: Non-deterministic Track Call for
Participation, 2005.

[3] H. L. S. Younes, M. L. Littman, “PPDDL1.0: An
Extension to PDDL for Expressing Planning Domains with
Probabilistic Effects”, Technical Report CMU-CS-04-167,
Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, 2004.

[4] A. Gerevini, D. Long, “Plan Constraints and Preferences in
PDDL3”, Technical report, R.T. 2005-08-07, University of
Brescia, Brescia, Italy, 2005.

[5] J. Zhao, J. Sun, M. Yin, “Translating PDDL tasks into
multi-valued conformant planning tasks”, Proc. the 4th Int.
Conf. Fuzzy Systems and Knowledge Discovery, IEEE
Computer Society, Washington, DC, USA, pp. 204-208,
2007.

[6] M. Helmert, “The Fast downward planning system”,
Journal of Artificial Intelligence Research (JAIR), Vol.26,
pp.191-246, 2006.

[7] W. S. Li, Z. Zhang and W. X. Wang, “CPT-FDR: An
Approach to Translating PPDDL Conformant Planning
Tasks into Finite-Domain Representations”, Chinese
Journal of Electronics, vol. 21, pp. 53-58, 2012.

[8] D. E. Smith and D. S. Weld. “Conformant Graphplan”,
Proc. AAAI’ 98, 1998.

[9] R. I. Brafman and J. Hoffmann, “Conformant Planning via
Heuristic Forward Search: A New Approach”, Artificial
Intelligence, vol. 170, pp. 507-541, 2006.

[10] B. Bonet and B. Givan, “Results of Conformant Track in
the 5th International planning competition”, Proc. IPC
2006.

[11] D. Bryce and O. Buffet, “International Planning
competition Uncertainty Part: Benchmarks and Results”,
Proc. IPC, 2008.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 45

© 2013 ACADEMY PUBLISHER

[12] S. Sanner and S. Yoon., “IPPC Results Presentation”, Proc.
ICAPS 2011, pp. 16-17, 2011.

[13] A. Olsen. “Pond - Hindsight: Applying Hindsight
Optimization to Partially - Observable Markov Decision
Processes”, Utah State University, January 2011.

[14] B. Bonet, H. Geffner, “Planning with incomplete
information as heuristic search in belief space”, Proc.5th
Int. Conf. on Artificial Intelligence Planning and
Scheduling, AAAI-Press, pp.52-61, 2000.

[15] Hector Palacios and Hector Geffner, From Conformant into
Classical Planning: Efficient Transitions That May Be
Complete Too. Department de Technologia University
Pompeu Fabra, ICAPS-2007. 2007.

[16] M. Helmert, “Concise finite-domain representations for
PDDL planning tasks”, Artificial Intelligence, Vol.173,
No.5-6, pp.503-535, 2009.

[17] S. Sanner, “Relational Dynamic Influence Diagram
Language (RDDL): Language Description”, NICTA and
the Australian National University, pp. 1-4, 2011.

Weisheng Li was born in Anyue, Sichuan Province, China on
Dec. 30, 1975. He graduated from School of Electronics &
Mechanical Engineering at Xidian University in July 1997. He
received M.S. degree and Ph.D. degree from School of
Electronics & Mechanical Engineering and School of Computer
Science & Technology at Xidian University in July 2000 and

July 2004, respectively. Currently he is a professor of
Chongqing University of Posts and Telecommunications. His
research focuses on intelligent information processing and
pattern recognition.

Jiao Du was born in Changshou, Chongqing City, China on
Apr. 29, 1988. She graduated from Department of Computer
Science and Technology at Jinggangshan University in July
2010. She received B. Admin. (Bachelor of Administration)
from Jinggangshan University in July 2010. Currently she is a
postgraduate of Chongqing University of Posts and
Telecommunications. Her research focuses on intelligent
planning.

Lifang Zhou was born in Tianshui, Gansu Province, China on
Jul. 12, 1975. She received M.S. degree from School of
Computer Science & Technology at Chongqing University of
Posts and Telecommunications in July 2007. Currently she is a
PhD. candidate of College of Computer at Chongqing
University. Her research focuses on intelligent planning. Her
research focuses on pattern recognition and image processing.

46 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

