
Estimation of the Number of Distinct Values over
Data Stream Based on Compound Sliding

Window

Yingli Zhong1, 2
1School of Computer Science and Technology, Heilongjiang University, Harbin, China, 150080

2Key Laboratory of Database and Parallel Computing Heilongjiang Province, Harbin, China, 150080
Email: zhongylmy@yahoo.com.cn

Jinghua Zhu1, 2, Meirui Ren1, 2*and Yan Yang1, 2

1School of Computer Science and Technology, Heilongjiang University, Harbin, China, 150080
2Key Laboratory of Database and Parallel Computing Heilongjiang Province, Harbin, China, 150080

Email: renmeirui1972@sina.com

Abstract—Estimating the number of distinct values in a data
stream is a vital problem with many applications such as
complex join query over multiple data streams. In this
paper, we focus on the continuous and periodic distinct
values estimation over sliding windows. We propose a
compound sliding window model to compute the distinct
values over basic sliding windows in an incremental way.
LDV, HDV and AHDV are the three algorithms that are
based on compound sliding windows. The basic idea behind
the compound sliding windows is to organize the basic
windows into a Hash table according to distinct values.
Whenever a new data arrives at the data stream, it is
inserted into a basic window. Once the basic window is full,
a scan using distinct values is executed and the distinct
values number is updated incrementally. Theoretical
analysis and experiment results show that the distinct values
estimation algorithms based on compound sliding windows
have a great performance benefits.

Index Terms—data stream, basic window, compound sliding
window, distinct values estimation

I. INTRODUCTION

In recent years, data stream are widely applied in
application domains such as sensor network, network
monitor and control, correspondence data management
and stock analysis. Data stream is a new model of data
processing. Data do not take the form of persistent
relations, but rather arrive as a continuous, infinite, rapid,
and time-varying data stream in the model [1]. Estimating
the number of distinct values over data stream is an
important problem with many applications such as
complex join query over multiple data streams. Due to
the infinite characteristic of data stream and the limit
storage, it is impossible to maintain the whole data stream.

Hence, we count the number of distinct values over data
stream by scanning the data in the historical and can only
obtain the approximate statistical results. Sliding window
model is data sampling technique in nature; it is often
used in data stream query operation and approximate
result computation. A sliding window over a data stream
is a window that is set on a segment of the data stream,
and the segment only includes the latest coming data.
When the new data arrives, the sliding window moves
ahead by replacing the oldest data with the latest arriving
one. There are usually two types of sliding window
according to the updating granularity: continuously
updating sliding window and periodically updating
sliding window [2]. Nearly all the existing sliding
window algorithms for the estimation of the number of
distinct values over data stream are designed for
continuously updating sliding window. Further, these
algorithms did not take into consideration the effect of
data structure on performance. However, in practical
applications, we often need to get the query result in a
time period. For example, when monitoring the operation
of internet, the network supervisors need to know the
statistic analysis result of the operation of the network in
the last two hours between two integral points. So the
data that arrives between the intervals cannot be inserted
into the sliding window until the time reaches an integer
point. In this paper, we propose a compound sliding
window model to compute the distinct values over basic
sliding windows in an incremental way. A compound
sliding window [3] consists of several equally sized basic
windows [4]. When the latest basic window is full, it is
inserted into the compound sliding window; the expired
basic window in the compound sliding window is deleted.
The basic idea behind the compound sliding windows is
to organize the basic windows into a Hash table
according to distinct values. Whenever a new data arrives
at the data stream, it is inserted into a basic window.
Once the basic window is full, a scan using distinct
values is executed and the distinct values number is

*To whom correspondences should be addressed.renmeirui1972@sina.com
Manuscript received January 25, 2012; revised June 19, 2012; accepted
June 23, 2012.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 19

© 2013 ACADEMY PUBLISHER
doi:10.4304/jsw.8.1.19-24

updated incrementally. We also propose three distinct
values estimation algorithms based on compound sliding
window: LDV, HDV and AHDV. Theoretical analysis
and experiment results show that the distinct values
estimation algorithms based on compound sliding
windows have a great performance benefits.

II. STRUCTURE OF THE COMPOUND SLIDING WINDOW

There are two ways to define a sliding window in data
stream [5]: one is to define the sliding window based on
sequence order; and the other is to define the sliding
window based on time. In this paper, we will investigate
the sliding window based on time; the related definitions
are as follows.

Definition 1 (Data Stream) A data stream is an
infinite time sequence that is arranged in an ascending
time order S={<s1,t1>,<s2,t2>,…,<si,ti>,…},here si is the
sequence element that appears at time ti.

Definition 2 (Sliding Window) Let T be a time
interval, and t > T is a moment of change. We call S[t-T: t]
a sliding window of S within time interval T, here t and T
have the same units, and t is the time delay with respect
to the starting point of S.

Definition 3 (Basic Window) Let BT be a time
interval, t1, t2 are changing time points, BT=t1-t2. We call
S[t1: t2] a basic window of S within time interval BT, here
t1, t2 and BT have the same units, and t1, t2 are the time
delays with respect to the starting point of S.

Definition 4 (Compound Sliding Window) Let S[t-ST:
t] be a sliding window of data stream S at time t, and BT
is the time interval of a basic window, let ST=nBT. If S[t-
ST: t] only changes at the end of each time interval BT,
and at the end of the kth time interval of BT, it changes to
S[t+kBT-ST: t+kBT], then we call S[t-ST: t] a compound
sliding window, noted as SBT[t-ST: t]. Here t, ST and BT
have the same units.

The compound sliding window structure is shown in
Figure1.

Generally speaking, BT has two meanings. The first
one is time period of the periodic continuous queries. The
second one is to identify the upper bound of the time to
calculate the query result on the compound sliding
window. The users can choose different BT values for
specific applications; generally, BT value should be much
smaller than the size of the compound sliding window.

Figure 1.Compound Sliding Window Structure

.Ⅲ ESTIMATION ALGORITHMS BASED ON COMPOUND
SLIDING WINDOW

In this section, we propose three distinct values
estimation algorithms over data stream based on
compound sliding window: LDV, HDV and AHDV. LDV

algorithm puts the basic windows of compound sliding
window into chained lists, HDV algorithm and AHDV
algorithm put the basic windows into hash tables. In
addition, AHDV algorithm uses the Nth number of distinct
values to calculate the N+1th number of distinct values.
For the convenience of description, the symbols used in
this paper are listed in Table 1.

TABLE I
DEFINITION OF TERMS

Symbol definition

Tcswr Size of the compound sliding window of data stream R

Tbw Size of the basic windows of data stream R

λr Arriving speed of data stream R

Cn Cost of accessing a tuple in chained algorithm

Ch Cost of accessing a tuple in Hash algorithm

A. LDV Algorithm
Since the distinct values estimation algorithm based on

the compound sliding window is implemented over basic
windows periodically, we can assign the same
timestamps to all elements of a basic window. LDV
algorithm uses the timestamp of the first-arriving element
as the elemental timestamp for all the elements in a basic
window. The algorithm uses a global counter as the
timestamp of the arrival of an element. The data structure
of the compound sliding window is a chain queue. The
queue is divided into Tcsw/Tbw blocks. Every block is a
basic window. Because the data rate of a data stream is
constantly changing, the size of the memory occupied by
the basic windows is changing too. Therefore, the data
structure of the basic windows is a chained list. When a
new element arrives, a new node will be requested and
attached to the rear of the chained list. The basic window
structure stores a head node which consists of one time
stamp and two pointers. One pointer points to the element
of that basic window, and the other points to the head
node of the next basic window.

The basic idea of LDV algorithm is to store the distinct
values over a data stream in a compound sliding window
in a chained list leading by Estimate. When the newly
arriving element fills up the newest basic window, the
basic window is inserted into the current sliding window,
and the outdated element in the basic window is deleted
from the compound sliding window. Using the distinct
values of the elements in the current compound sliding
window to scan the chained list led by Estimate, if the
value of the elements does not exist in the current
compound sliding window, the element value will be
inserted into the chained list led by Estimate. If the
element value already existed in the chained list, the
corresponding element value will be updated. In the end,
the chained list led by Estimate is scanned through and the
effective number of the distinct values in the compound
sliding window is counted out.
 Now we will analyze the time complexity of LDV
algorithm. Cn indicates the cost of accessing an element.
LDV algorithm first inserts the newest basic window into

Compound sliding window structure

The oldest basic window The newest basic window

A basic window

20 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

the rear of the compound sliding window, the time cost of
this step is the time of an address assignment, and we let
it be Cn. The algorithm deletes elements in the expired
basic windows of the compound sliding window of data
stream R, we here make an assumption that the data
stream has constant data rate, so there are λrTbw elements
to be deleted. Since the compound sliding window is
arranged in a time order, the time cost should be λrTbw×Cn.
Then a scan of the compound sliding window is executed
to count the number of the distinct values. The time cost
of scan depends on the length of the chained list led by
Estimate. We assume that the length of the chained list is
n, the average searching length to determine the exists of
the value is (n+1)/2, so the time cost is
λrTcswr×((n+1)/2)×Cn. The last step is to output the number
of the distinct values which has a cost of n×Cn. To sum up,
the average time cost of LDV algorithm is
 Cn+λrTbw×Cn+λrTcswr×((n+1)/2)×Cn+n×Cn (1).

B. HDV Algorithm
The basic idea of HDV algorithm is similar to that of

LDV algorithm. The data structure of basic window in
HDV algorithm is Hash table, but the data structure of
compound window in LDV algorithm is chain list which
are sorted by distinct values.

 Now we will analyze the time complexity of HDV
algorithm. Ch indicates the cost of accessing an element
in HDV algorithm. HDV algorithm first attaches the
newest basic window to the rear of the compound sliding
window, the time cost of this step is the time of an
address assignment. We assume that the data rate of the
data stream is a constant, so there are λrTbw outdated
elements to be deleted in a compound sliding window.
Because the compound sliding window is arranged in
time order, the time cost is λrTbw×Ch. In order to calculate
the number of distinct values, HDV algorithm needs to
scan the compound sliding window of data stream R.
Here we use Bucket (Tbw) to indicate the number of Hash
buckets in the basic window structure of data stream R, so
the average number of elements in a bucket is
λrTbw/Bucket (Tbw). There is an element in every Hash
bucket in the Hash table led by Estimate. Hence the time
cost above is
 Bucket(Tbw)×(Tcswr/Tbw)×(λrTbw/Bucket(Tbw))×Ch=
λrTcswr×Ch. (2).

Then the number of distinct values is output. Because
the Hash table with distinct values needs to be scanned,
here we assume its length to be n, so the time cost is n×Ch.
Based on the above analysis, the time cost of HDV
algorithm is

Ch+λrTbw×Ch+λrTcswr×Ch+n×Ch. (3).

C. AHDV Algorithm
The main idea of AHDV algorithm is to count the

number of distinct values in an incremental way. When a
new element arrives at data stream R, AHDV algorithm
first inserts it into the Hash table of the basic window
according to its distinct values, and then makes a
judgment of whether or not each value in the Hash table
led by Estimate is expired. If not, AHDV algorithm
compares each value of the new basic window with that of

the Hash table led by Estimate. If the value already exists
in the Hash table, AHDV algorithm updates its timestamp.
If not, AHDV algorithm inserts it into the Hash table and
calculates the number of non existing value. After that,
AHDV algorithm scans each value of the Hash table led
by current Estimate to count the number of outdated
distinct values, and adds the number of non existing value
to the number of distinct values of the current compound
sliding window, besides subtracts the number of the
expired distinct values, it then obtains the number of
distinct values at the current refresh moment. In the end,
AHDV algorithm inserts the newest basic window into the
compound sliding window of data stream R. In order to
determine whether the current element value is outdated,
AHDV algorithm assigns the same timestamp to the
distinct value of the basic windows. The AHDV algorithm
is described as follows.

AHDV algorithm
Input: Estimate, BWRhead, CSWRfront,CSWRrear
Output: m
1. Temp = CSWRfront; m=c;
2. WHILE (CurrentTimestamp-(Temp -> timestamp) >TCSW/TBW)
3. CSWRfront = Temp -> next;
4. Delete every outdated element in the Hash table of

basic window led by Temp;
5. Temp = CSWRfront;
6. END WHILE
7. FOR (Every Hash bucket A led by BWRhead)
8. Compare the Hash table led by Estimate with every

Hash bucket A led by BWRhead;
9. IF the value exists in the Hash table
10. updates the timestamp;
11. ELSE inserts the value into the Hash table; m++;
12. END IF
13. END FOR
14. FOR (Every Hash bucket A led by Estimate)
15. IF (CurrentTimestamp-A.timestamp ≥ Tcswr／Tbw)
16. m--;
17. END IF
18. END FOR
19. CSWRrear -> next = BWRhead;
20. output m.

Theorem 1: The AHDV algorithm can calculate the
number of distinct values correctly and terminate in finite
steps.

Proof
Correctness: Step 1 assigns the number of distinct

values of the previous moment to a temp variable m. In
step 2 to 6, WHILE loop deletes the outdated elements of
the compound sliding window, and thus there will be no
outdated element in the compound sliding window at the
current moment. In step 7 to 13, FOR loop calculates the
number of distinct values m at the current moment by
comparing the Hash table pointed by Estimate with the
new elements, and determines whether the number of
distinct values changes. Note that the distinct values and
timestamp of the previous moment are stored in the Hash
table. In step 9 to 12, we check whether the new arrival

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 21

© 2013 ACADEMY PUBLISHER

elements already exist in the Hash table. If so, updates the
timestamp. Otherwise, we insert the new arrival elements
into the Hash table and update the number of distinct
values m. Therefore, we can guarantee that the new
distinct values are stored in the Hash table, and the
number of distinct values is counted correctly. In step 14
to 18, FOR loop checks whether there are outdated
distinct values in the Hash table. When some value
expires, it will be deleted from the Hash table and the
statistical count m will be updated. Step 19 inserts the
newest basic window into the compound sliding window
in order to correctly count the number of the distinct
values at the next moment. In a word, the AHDV
algorithm can calculate the number of distinct values in
the current compound sliding window correctly.

Termination: The data arrives at the compound sliding
window at a fix time interval and the size of the
compound sliding window is finite. Furthermore, our
algorithm counts the number of distinct values in the
compound sliding window, so the number of distinct
values is also limited in this time range. Therefore
WHILE loop and FOR loop can be executed in finite
steps, that is to say our algorithm can terminate in finite
steps.

We analyze the time complexity of AHDV algorithm.
Step 1 to 6 in AHDV algorithm aim at deleting all the
elements in the outdated basic window of the compound
sliding window. Here the data stream is assumed to have a
constant data rate, so there are λrTbw elements to be deleted.
Because the compound sliding window is arranged in time
order, the time cost in Step 1 to 6 is λrTbw×Ch. Here we
use Bucket (Tbw) to indicate the number of the Hash
buckets that store the distinct values of the elements, there
is one element in each bucket. So there are Bucket (Tbw)
loops in Step 7. The step 8 to 13 aim at comparing the
Hash table led by Estimate with every Hash bucket A led
by BWRhead, so the time cost is one comparison and one
assignment, we set it to be 2 Bucket (Tbw) ×Ch. Because
the Hash table led by Estimate, which stores distinct
values, needs to be scanned, the time cost depends on the
length of the Hash table led by Estimate. We assume that
the length of the Hash table is n, so there are n loops. The
step 14 to 18 is to make a judgment of whether or not
each value in the Hash table led by Estimate is expired,
the time cost is one comparison, we set it to be n×Ch. In
step 19, the newest basic window is attached to the rear of
the compound sliding window, that is implemented by
assigning the value of BWRhead to CSWRrear. In the end,
the number of distinct values is output, the time cost is
only an address assignment, and we set it to be Ch. To sum
up, the time cost of AHDV algorithm is
 λrTbw×Ch＋2 Bucket(Tbw) ×Ch＋n×Ch＋Ch. (4).

D. Comparison of Time Cost of LDV, HDV and AHDV
Algorithms

By comparing the time cost of the three algorithms, we
can conclude that the AHDV algorithm does not need to
scan the entire compound sliding window each time, it
only needs to count the newest basic window, so its
performance is the best among these three algorithms.

IV. EXPERIMENT RESULTS AND PERFORMANCE ANALYSIS

Because the main influencing factor to the performance
of LDV algorithm 、 HDV algorithm and AHDV
algorithm is whether there is duplicated elements over
data stream and domain of elements over data stream, two
type of data are used in the experiments. The first data is
non-duplicated data stream; and the other data is
duplicated data stream. Non-duplicated data stream refers
to the number of distinct values of data stream is equal to
the number of elements. If the number of distinct values of
data stream is less than the number of elements, we call it
duplicated data stream. The hardware setting for the
experiments is: T2370 1.73G, main memory 1G.

The elements in data stream R are duplicated in
Experiment 1, where the size of compound sliding
window is 100 seconds, the size of basic window is 10
seconds, and the data rate of the data stream is 1000
elements per second. The domain of elements is (0, 100).
The result of experiment is shown in Figure 2. Because
the size of compound sliding window is 100 seconds, in
the first 100 seconds, the size of compound sliding
window keeps growing. It can be seen from Figure 2 that,
in the first 100 seconds, the time cost of the algorithm
grows rapidly, this is because LDV algorithm needs to
scan the whole compound sliding window at every time.
Because the size of compound sliding window is fixed
after the first 100 seconds, the time cost of the algorithm
becomes stable. The basic windows of HDV algorithm
and AHDV algorithm are Hash tables formed according to
distinct values of elements, so the time costs are relatively
low. Because AHDV algorithm doesn’t need to scan the
whole compound sliding window every time, and in the
first 100 seconds, the elements of data stream won’t be
outdated, it has the lowest time cost among the three
algorithms. After the first 100 seconds, because the
elements may be outdated, a part of the compound sliding
window should be scanned, the time cost of the algorithm
increases, but it will never exceed the time cost of HDV
algorithm. If there are many elements in the basic window,
the elements seldom get outdated. Experiment 1 shows
that AHDV algorithm has the best performance among the
three algorithms.

The elements in data stream R are non-duplicated in
Experiment 2. The left parameters are the same as those in
Experiment 1; the results are shown in Figure 3. When the
elements in data stream R are non-duplicated, because of
the increase number of outdated elements, the total
performance of AHDV algorithm falls down, but it is still
better than the other two algorithms.

Because all the three algorithms need to scan the
structure of saving the distinct values over data stream,
the domain of the elements of data stream also has some
influences on the performance of algorithms. The value in
data stream R in Experiment 3, is also randomly
distributed, where the size of compound sliding window
is 100 seconds, the size of basic window is 10 seconds,
the data rate of the data stream is 1000 elements per
second. The result of the experiment is shown in Figure 4.

22 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

0

20

40

60
80

100

120

Ex
cu

tio
n

Ti
m

e(
Se

co
nd

s)

Time(Seconds)

LDValgorithm
HDValgorithm
AHDValgorithm

Figure 2. Performance comparison of LDV, HDV and AHDV on
duplicated data

0
1
2
3
4
5
6
7

Ex
cu

tio
n

Ti
m

e(
Se

co
nd

s)

Time(Seconds)

LDValgorithm
HDValgorithm
AHDValgorithm

 Figure 3. Performance comparison of LDV, HDV and AHDV on non-
duplicated data

0

2

4

6

8

10

0-100 0-1000 0-10000

Ex
cu

tio
n

Ti
m

e(
Se

co
nd

s)

The domain of element

LDValgorithm

HDValgorithm

AHDValgorithm

Figure 4. The influence of the domain of element on the performance of
the algorithm

As the expansion of the domain of elements in the data
stream, the length of the chained lists of LDV algorithm,
in which the distinct values are stored, increases rapidly,
the time cost of the algorithm increases significantly.
HDV algorithm and AHDV algorithm use Hash structure
to store the number of the distinct values, and this slightly
increased the time cost of the algorithm. For the three
algorithms, as the domain of elements of data stream
expands, the performance of the algorithm degrades.
However, the performance of AHDV algorithm is still
better than the other two algorithms.

V.CONCLUSIONS

The estimation of the number of distinct values over
data stream is vital for a variety of data stream
applications, such as complex join query over multiple
data stream. In this paper, incremental estimation
algorithm of the number of distinct values for periodical
updating is presented. The estimating algorithm is based
on a compound sliding window model which uses a
sliding window as a basic window period of updating.
The effect of data structure in the basic window in the
compound window on the performance of estimation
algorithms is taken into consideration. We propose both
non-incremental algorithm and incremental algorithm.
The latter uses the Nth estimation value to calculate the
N+1th estimation value. Theoretical analysis and
experiment results show that the incremental algorithms
that organize the basic windows in the compound sliding
window into hash tables have a better performance.

ACKNOWLEDGMENT

This work was supported by The Science and
technology research of Heilongjiang Education Office
under Grant No. 12511401. It was partly supported by the
Natural Science Foundation of Heilongjiang Province of
China under Grant No.F201011, the Science Foundation
of Heilongjiang University for Young Scholar under
Grant No.QL201029, the National Natural Science
Foundation of China under grant No. 61100048, the
Harbin technological innovation fund under grant
No.2011RFQXG028, 2012RFQXG096.

REFERENCES

[1] LUKASZ G, TAMER M, OZSU. Data Stream
Management Issues–A Survey[R]. University of Waterloo
Technical Report CS–2003–08 April 2003.

[2] Weiping Wang, Jianzhong Li,Dongdong Zhang,Longjiang
Guo. Periodically updating sliding window join algorithm
s over data streams[J].JOURNAL OF HARB IN
INSTITUTE OF TECHNOLOGY. 2005，37(6):756-759.

[3] Yingli Zhong,Weiping Wang,Longjiang Guo.Data Streams
Join Aggregate Algorithms Based on Compound Sliding
Window[C].International Workshop on Database
Technology and Applications.Wuhan,China,2009:426-430.

[4] ZHU Y, SHASHA D. StatStream: Statistical Monitoring of
Thousands of Data Streams in Real Time[C]. In Proc.28th
Int.Conf.on Very Large Data Bases. Hong Kong, China.
2002: 358-369.

[5] BABCOCK B, BABU S, DATAR .M, et al. Models and
Issues in Data Stream Systems[C]. In Proc. ACM SIGACT-
SIGMOD Symp. on Principles of Database Systems.2002:
1-16.

JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013 23

© 2013 ACADEMY PUBLISHER

Yingli Zhong was born in 1976.
Received the Master’s degree from
Heilongjiang University in 2004.
She has been associate professor of
Heilongjiang University since 2009.
Her main research interests are
database and wireless sensor
network.

Jinghua Zhu was born in 1976.
Received the Doctor’s degree from
Harbin Institute of Technology in
2009.She has been associate
professor of Heilongjiang University
since 2009. Her main research
interests are wireless sensor network
and Uncertain Database.

Meirui Ren was born in
HeiLongJiang province of China, on
July 3,1972. She achieved M.S. in
Computer Software and Theory from
HeiLongJiang university in 2002.
Now, she is an associate professor of
Computer Science and Technology
School in HeiLongJiang university.

Her research area is database, wireless sensor network.

Yan Yang, born in 1973. Received
the Doctor’s degree from Harbin
Institute of Technology in 2005. She
has been professor of Heilongjiang
University since 2010. She has the
membership of China Computer
Federation. Her main research
interests are database and parallel
computing.

24 JOURNAL OF SOFTWARE, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

