
WS-mcv: An Efficient Model Driven
Methodology for Web Services Composition

Fayçal Bachtarzi
Department of Computer Science, University Mentouri, Constantine, Algeria

Email: bachtarzi@misc-umc.org
Allaoua Chaoui

Department of Computer Science, University Mentouri, Constantine, Algeria
Email: a chaoui2001@yahoo.com

Elhillali Kerkouche
Department of Computer Science, University of Jijel, Jijel, Algeria

Email: elhillalik@yahoo.fr

Abstract— Web services are available applications on the
Web which can be invoked by users to accomplish a poten-
tially business task. However, to meet user’s requirements, it
becomes necessary to dynamically organize existent services
and combine them, responding thus to a new purpose. In
this paper, we propose a methodology called WS-mcv (Web
Service Modeling, Composing and Verifying) that addresses
the main problems arising in Web service composition
area. WS-mcv represents an efficient and modular multistep
approach achieved by breaking service composition into
three processes: service modeling, automatic composition
and formal verification. The proposed methodology makes
use of the G-Net framework to allow an easiest modeling
of basic and existent services. We propose a collection of
expressive G-Net based operators that successfully solves
complex Web service composition. WS-mcv also defines
means to ensure composition correctness. All the processes
of WS-mcv have been successfully automated in a model
transformation based visual environment.

Index Terms— Web services composition, G-Nets, MDE,
Graph transformation, ATOM

3, G-Net Algebra

I. I NTRODUCTION

Web services are software components available on the
Web that implement business collaborations between cor-
porations. They can be invoked via Internet to accomplish
a potentially business task making possible interactions
between applications and e-customers. Programs or exter-
nal users can access Web services using standard Internet
protocols such as Universal Description, Discovery, and
Integration (UDDI) [1], Web Service Description Lan-
guage (WSDL) [2], and Simple Object Access Protocol
(SOAP) [3]. Web services have the particularity to provide
specific and general functionalities and, in most cases,
cannot respond to user’s requirements. To provide users
customized services, it becomes then necessary to com-
bine existent basic services. The process achieving this
task is called Web service composition. Current solutions
based on UDDI, WSDL and SOAP offer solutions for
description, publication, discovery and interoperability of
Web services but do not accomplish their complex com-
position. Research in the area of service composition has
focused on trying to provide models expressed in different

formalisms. Some of the propositions used different kinds
of Petri Nets, basic Petri nets [4], colored Petri Nets [5]
[6] and Object oriented Petri Nets [7]. Other proposals ex-
ploit semantic features offered by Ontologies [8] [9] [10].
In this paper, we address the Web service composition
problem by defining an efficient multistep methodology
called WS-mcv (Web Service Modeling Composing and
Verifying). WS-mcv has the advantage to resolve the
main problems arising in Web service composition area. It
breaks service composition process into several phases to
offer solutions for both 1) specifying services, 2) automat-
ically composing them and 3) ensuring their correctness.
For Web services specification, we have proposed a set
of modeling rules which allows modeling Web services
in a high level Petri Nets framework called G-Nets [11].
For services composition, we have defined a G-Net based
algebra that successfully solves complex composition.
The proposed algebra supports basic constructs as well as
more elaborate ones. All the operators within the algebra
are syntactically and semantically defined by means of
G-Nets. To ensure Web services correctness, we exploit
translation rules [12] which enables to transform G-Net
specifications into their equivalent Predicate/Transition
Nets (PrT-Nets) [13]. Unlike others approaches which
develop their own verification tools [14], we perform this
transformation in order to exploit existing tools with a
variety of analysis techniques for PrT-Nets. Each of the
underlying well-defined phases of our methodology is per-
formed by a different process which has been successfully
automated. As the main requirement of our approach is
to offer a high level of genericity and to make abstrac-
tion of a particular implementation, we propose to use
Model Driven Engineering (MDE) techniques that support
model evolution and manipulate models as instances of
meta-models. The modeling process is implemented as
a visual environment that allows designing the services
according to a G-Net meta-model. The composition and
verification processes, including the proposed operators,
are implemented by graph transformation techniques. The
remainder of this paper is organized as follows. In the next
section, we present some related work. Section 3 outlines

2874 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.12.2874-2885

the overall approach and presents the different phases of
WS-mcv methodology. We introduce modeling, compo-
sition and verification processes in Section 4, 5 and 6
respectively. For each of them, we describe the operating
mode and the solutions adopted for its implementation.
We finally conclude the paper by summarizing the main
contributions and identifying future research directions.

II. RELATED WORK

Various techniques for web service composition have
been suggested in the literature. Most of them try to
provide languages, semantic models and platforms in
order to propose efficient solutions to this problem.
Syntactic (XML-based) service composition [15] has a
limited ability to support automatic composition. This is
essentially due to the absence of semantic representations
of the available services. Indeed, composition languages
such as BPEL4WS [16] provide a set of primitives that
allows interaction between services being composed. In
these approaches, flow of processes and bindings between
ervices are specified in advance. On the contrary, semantic
approaches [8] [10] [5] [6] allow describing various
aspects of Web services using machine-understandable se-
mantics or solid mathematical basis. Semantic approaches
are mainly classified into two categories: ontology-driven
approaches and Petri Nets based approaches. In the fol-
lowing, we present some works related to each of the
identified classes.

A. Ontology-driven approaches

Ontology-driven approaches for Web services com-
position [8] [9] [17] [10] use terms from pre-agreed
ontologies to declare preconditions and effects of the
concerned services. Works of [10] lead to OWL-S, which
is a particular ontology for declaring and describing
services. OWL-S provides a standard vocabulary that can
be used together with the other aspects of the OWL
description language to create service descriptions. Sim-
ilarly, SAWSDL [8] defines a set of extension attributes
useful to annotate WSDL interfaces and operations. These
latter are used to publish a web service in a registry.
The proposal of [17] is different as it makes use of
semantic graph transformations to model web services.
In the proposed model, each web service operation is
associated with a semantic annotation that describes the
input and output messages specifications using RDF graph
patterns. The main difference here is that in [10] and
[8] the inputs and outputs are expressed by concepts,
while [17] describe them in terms of instance-based graph
patterns. If these approaches present the advantage of
clearly understanding the meaning of the messages, their
main drawback remains the difficulty to discover the
explicit goal of the services. This latter constitutes a key
element when composing by AI planners [18]. WSML [9]
also provides a formal syntax for web service modeling
based on Description Logics, First-Order Logic and Logic
Programming. It allows specifying axioms with variables
in the pre- and post-conditions of a service capability.

However, it does not have an explicit model to define
the components of a message and their semantics. In all
these works, the composition problem is modeled as a
planning problem based on a reasoning process which
uses semantic descriptions of services. Composing by
reasoning is a challenging task as it is time consuming
and it relies on a set of goals, plans, and rules to design
complex processes.

B. Petri-nets based approaches

Existing web service composition works also uses Petri
nets framework, simple Petri nets [4] [19] as well as High
level Petri nets [7] [5] [6]. In [4] the authors propose
a Petri net-based algebra for modeling Web services
control flows. Their model is suitably expressive to make
possible the creation of dynamic and temporary rela-
tionships among services. However, the main drawback
is that the data types cannot be distinguishable because
an elementary Petri net model is used. The work of [6]
also deals with this problem by modeling and composing
Web services using Colored Petri nets (CPN) [20]. Their
proposal offers semantic support improving the reliability
and maintainability of composite services. It also allows
analyzing availability, confidentiality and integrity of the
composite services. CPN framework is also exploited
by [5] where an efficient algebra is suggested to model
Web service composition. Algorithms to construct and
execute a composite service are also delivered. These
two works seems especially connected, even if in [5]
the service composition sequence cannot be generated
automatically because pre-defined conditions are required.
In the Object-Oriented Petri Nets (OOPN) based approach
[7], the Web service composition relies on mapping a
service as the collaborative objects. Therefore, describing
their behavior and communications is easily performed
using the OOPN model. Their approach is much interest-
ing since they offer a Web process design tool (WPDT)
allowing to graphically doing the composition. The behav-
ior and performances of a system can be checked when
studying the process in action. This survey highlights
the challenges and the proposed solutions for integrating
existing services to create new value-added ones. Due
to solid theoretical basis of semantic methods, they are
well suited for not only modeling and composing Web
services, but also verifying their behavioral correctness.
Ontologies are not expressive enough to accomplish this
task, because they are better to describe the features of
a system rather than its behavior. In our work, we use
a kind of object-oriented Petri-Nets for the specification
of complex Web services, namely the G-Net framework
which is powerful enough to capture the semantics of Web
services combinations. The following section outlines the
proposed methodology along with the involved phases and
technologies.

III. WS-MCV METHODOLOGY OVERVIEW

Our approach aims to achieve Web service composition
through a simple yet powerful methodology. WS-mcv

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2875

© 2012 ACADEMY PUBLISHER

Figure 1. WS-mcv methodology

breaks the composition process into four phases:

1) Modeling of Web services using the basic concepts
of the G-Net framework,

2) Pre-verification of each modeled Web service,
3) Composition of the verified Web services using the

G-Net algebra, and
4) Post-verification of the resulting service.

The separation of the Web service composition process
into a number of well-defined phases has several advan-
tages. First, it simplifies the composition process, since
each phase has a specific goal. Second, it facilitates the
verification process, since it becomes easier to target
the potential errors. Third, if offers more flexibility for
automating the whole composition process, since each
phase can be independently implemented. The complete
composition process based on the proposed methodology
is illustrated by UML activity diagram of Fig. 1. We can
see the execution order of the different phases as well
as the interactions between them. We specify that each
phase uses the results of the previous one and achieved
by an independent process. In the following, we give more
details about each phase.

A. Modeling phase

The modeling phase is the first step of WS-mcv. Its role
is to translate the services specifications into G-Nets. The
basic concepts of G-Nets are: the interface and the internal
structure. These two concepts are used for designing
the component services while taking into account the
modeling constraints imposed by the G-Net framework.
The intention is to gain benefits of the modularity and the
flexibility offered by this formalism on the one hand and
to exploit its ease of conceptual modeling on the other
hand. This phase is achieved by the modeling process
which will be wholly described in Section 4.

B. Composition phase

The composition phase takes as input G-Nets represent-
ing the services to compose, together with a composition
formula and generates a new value added service as a
G-Net. To perform this operation, we propose a G-Net
based algebra. This algebra offers a representative set
of operators that can be applied to the G-Net services.
The composition formula provided as input is in fact
an algebraic expression where operands are the handled
services and operators are graph manipulating operations

performed on them. The complete composition process
accomplishing this phase is presented in detail in Section
5.

C. Pre/Post-verification phases

These two phases represent in WS-mcv the second
and the fourth phases respectively and are both achieved
by the verification process. Accomplishing verification
before and after the composition has the main advantage
to facilitate this operation. Traditional approaches don’t
accomplish verification at all or only verify the resulting
service. In doing so, it becomes difficult to localize the
potential errors. Unlike other approaches, ours detects if
the anomalies occur in the component services or in the
composite one. Pre-verification phase is carried out before
composition. It intends to verify whether the obtained
G-Net models will be executing as expected and don’t
contain behavioral inconsistencies such as deadlock or
livelock. It is convenient to detect and correct possible
errors as early as possible. If necessary, steps (1) and (2)
are repeated until the specification of the modeled services
passes the verification. Post-verification phase is applied
after composition in order to check the correctness of the
resulting composition; i.e. the integration of the partner
services correctly runs. Hence, steps (3) and (4) may
also be repeated until the composition of the concerned
services passes the verification.

D. WS-mcv realization

As we have defined above, WS-mcv methodology in-
tends to accomplish Web service composition into several
steps, each one achieved by a specific process. Our pro-
posal, as we will see in the next sections, doesn’t remain at
the descriptive level. We propose to describe not only the
operating mode of each process, but also the techniques
adopted for its implementation. To implement the WS-
mcv processes, we have identified three requirements that
must be met by our system:

1) It shall support the evolution of the used modeling
language, i.e. possible extensions of the G-Net
framework.

2) It shall be convivial, to allow users designing and
manipulating models (G-Net specifications) in a
direct and intuitive way.

3) It shall offer a high level of genericity that allows
users to make abstraction of a particular implemen-
tation.

To meet these requirements, we propose to:
1) Use the syntax of the visual modeling language (G-

Net) by means of meta-modeling.
2) Exploit a visual environment that allows designing

the services according to the G-Net meta-model.
3) Express model manipulation (i.e. composition) by

means of graph-transformation.
4) Use MDE (Model Driven Engineering) techniques

to provide a generic approach that manipulates
models as instances of meta-models.

2876 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

IV. M ODELING USING G-NET FRAMEWORK

In this section, we first present the G-Net framework,
and then we give formal definitions of G-Net services
and web service together with some modeling rules. We
finally describe the operating mode and the implementa-
tion of the modeling process.

A. The G-net framework

G-Net is a Petri Net based framework introduced by
[11]. It is used for the modular design and specification
of complex and distributed information systems. This
framework provides a formalism that extensively adopts
object oriented structuring into Petri Nets. The intention
is to take advantages from the formal treatment and the
expressive comfort of Petri Nets and at the same time
to gain benefits from object-oriented approach (reusable
software, extensible components, encapsulation, etc...). A
system designed by the G-Net framework consists of a
set of autonomous and loosely coupled modules called
G-Nets. Similarly to an object in the object oriented
programming concept, a G-Net satisfies the property of
encapsulation i.e. a module can only access another one
throw a well defined mechanism called G-Net abstraction.
A G-Net is composed of two parts: the Generic Switch
Place (GSP) and the Internal Structure of the G-Net (IS).
The GSP is a special place and represents the visible
part of the G-Net i.e. the interface between a G-Net and
other ones. The Internal structure is the hidden part of
the G-Net; it represents the internal realization of the
designed system. The notation used for IS specification
is very close to the Petri Net notation [21]. For more
elaborate introduction to G-Nets, the reader is referred
to [11] [22]. Like a G-Net system, Web services are
assimilated to a distributed system that consists of a set
of loosely coupled modules which communicate throw
messages exchange. Thus, modeling Web services using
G-Net is straightforward.

B. Web services as G-nets

In order to reduce the specification ambiguity and to
help designers to understand description and possible be-
haviors of Web services, we give some formal definitions
about G-Net service and Web service.

Definition 1. (G-Net Service)A G-net service is a
G-NetS(GSP, IS) where:

• GSP (MS,AS) is a special place that represents the
abstraction of the service where:

– MS is a set of executable methods in the
form of < MtdName >< description >=
{[P1 : description, ..., Pn : description](<
InitPL >)}
where< MtdName > and < description >

are the name and the description of the method
respectively.
< P1 : description, ..., Pn : description >

is a set of arguments for the method and<

InitP l > is the name of the initial place for
the method.

– AS is a set of attributes in the form of<
attribute − name >= {< type >} where<
attribute−name > is the name of the attribute
and< type > is the type of the attribute.

• IS(P, T,W, l) is the internal structure of the service,
a modified predicate/transition net [13], where:

– P = NP ∪ ISP ∪ GP is a finite and non-
empty set of places where NP is a set of normal
places denoted by circles, ISP is the set of
instantiated switch places denoted by ellipses
used to interconnect G-Nets, GP is the set of
goal places denoted by double circles used to
represent final state of method’s execution.

– T is a set of transitions
– W is a set of directed arcsW ⊆ (P ×T)∪(T ×

P) (the flow relation)
– l : P → O ∪ {τ} is a labeling function where

O is a set of operation names andτ is a silent
operation.

Definition 2. (Web Service)A Web service is a tuple
S = (NameS,Desc, Loc, URL,CS, SGN) where:

• NameS is the name of the service used as its unique
identifier

• Desc is the description of the provided service. It
summarizes what functionalities the service offers

• Loc is the server in witch the service is located
• URL is the invocation of the Web service
• CS is a set of the component services of the Web

service, ifCS = {NameS} then S is a basic service,
otherwise S is a Composite service

• SGN = (GSP, IS) is the G-Net modeling the
dynamic behavior of the service

Since Web service designer may be unfamiliar with G-
Nets, we present modeling rules of a Web service into
G-Net concepts.

1) Each Web service is represented by a different G-
Net.

2) A service operation is modeled by a method in the
G-Net. Then each method is associated a piece of
Petri Net in the IS of the G-Net.

3) Messages exchanged by the service and its cus-
tomers are modeled by tokens.

4) The state of the service is modeled by the position
of the tokens in the G-Net.

5) Synchronization and coordination of information
exchange between places is modeled by a transition
associated with input and output arcs.

6) Interconnection between different G-Nets is carried
by the ISP notation that represents the primary com-
munication mechanism (for example, integrating the
ISP of a server in the IS of a customer service
specifies a client/server relation).

C. Operating mode

MDE approach is founded on the massive use of mod-
els during all the steps of an application life cycle. It en-

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2877

© 2012 ACADEMY PUBLISHER

sures model stability by using meta-models as structuring
elements. For designer’s applications, using these tech-
niques prevents them to hardly encode their applications
when creating custom modeling environments (domain-
specific tools), as MDE raises the level abstraction from
source code to models. Once the meta-model is defined, it
is easy to make small modifications to obtain customized
variations of the modeling formalism for specific use.

To implement the modeling process, we exploit the
powerful features of a tool calledATOM3, A Tool
for Multi-formalism and Meta-Modeling [23].ATOM3

allows describing (or meta-modeling) different kinds of
formalisms used to model systems. InATOM3, En-
tity Relation-ship (ER) formalism extended with con-
straints is available at the meta-meta-level. Therefore,
the designer must use the ER formalism when mod-
eling new meta-formalisms. Given the meta-model of
the G-Net formalism,ATOM3 can automatically gen-
erate a visual modeling tool to create and edit mod-
els in this formalism. In the context of our work,
we make use of the G-Net meta-model defined by
[12]. As shown in Fig. 2, the meta-model con-
tains four classes(G − NetsGSP,G − NetsIS,G −
NetsP lace,G − NetsT ransition) and five relations
(GNetsRealisation,G− Nets− hasP laceInsid,G−
Nets − hasT ransitionInsid,G − NetsP l2Tr,G −
NetsT r2Pl). To ensure a correct appearance of G-
Nets models, the G-Nets meta-model associates graphical
constraints to each G-Net entity. For example, a place
is associated to a circle and a transition is associated
to a rectangle. These constraints are specified when
creating the meta-model inATOM3. Once the tool is
generated (according to the meta-model), the user in-
terface buttons allow the designer to create entities of
his model defined in the G-Nets meta-model. He then
applies the modeling rules defined above to conceptualize
any service in the G-Net formalism. The created G-
Net services can be stored, edited and modified. Fig.
3 illustrates the complete modeling process. After the
compilation of the G-Net meta-model,ATOM3 only
accepts syntactically correct models in this formalism.
The right window in the figure shows an example of a
modeled service edited by the generated tool. The G-
Net service reproduces the behavior of a checkout system
service. The GSP of the service contains one method
(mtd.Collect[Bill : data](PMC)(GP)) which receives
the attribute ’Bill’ and have PMC and GP as initial and
goal places respectively. The Checkout service checks the
payment mode that the client invokes (PMC). According
to the payment mode, the service performs the necessary
operations.

V. COMPOSING USING THEG-NET ALGEBRA

This section first presents the G-Net based algebra that
allows combining G-Net services and then shows how
the proposed set of operators is implemented using Graph
transformation techniques.

Figure 2. The G-Nets meta-model

A. The G-net based algebra

WS-mcv allows combining existing G-Net services to
obtain a new value added one that best meets end users’
requirements. For example, a service of hotel booking
can collaborate with a Web mapping service like Google
Maps API Web Service [24] to inform customers about
the location of hotels. The collaboration of these services
generates a composed Web service which performs the
original individual tasks as well as a new one. Various
constructs for Web service composition were discussed
in later works [4] [25] [26]. Based in these works, we
present an algebra that combines existing Web services
for building more complex ones. We will take Sequence,
Parallel, Alternative, Iteration and Arbitrary Sequence as
basic constructs. We also define three more developed
constructs which are Discriminator, Delegation and Selec-
tion. The BNF-like notation below describes the grammar
defining the set of services that can be generated using
our algebra’s operators.
S ::= ǫ | X | S ◮ S | S ◭◮ S | 	 S | S ⇔ S |

S�S | (S ⊡ S) ≫ S | Deleg(S1, o, S2) |
Select[S1 : Sn]

In what follows, we first give an informal definition of
each operator and then we define its syntax and formal
semantics in terms of G-Nets.

The Empty service (ǫ) is the Zero Service; i.e. it per-
forms no operation. It is used for technical and theoretical
reasons.

The Sequence operator (S1 ◮ S2) allows the construc-
tion of a service composed of two services executed one
after the other. This construction is used when a service
should wait the execution result of another one before
starting its execution. For example when subscribing to
a forum, the service Registration is executed before the
service Confirmation.

The Alternative operator or Mutual Exclusion operator
(S1 ◭◮ S2) is a composite service. When applied to
a pair of services S1 and S2, it reproduces either the

2878 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 3. Customized modeling tool withATOM3

behavior of S1 or S2, but not both. For example the
service Identification is followed either by the service
Allow-access or the service Deny-access.

The Iteration operator (S) represents a composite
service where one service is successively executed multi-
ple times in a row. An example of use of this construct is
when a customer orders from a service, a good a certain
number of times.

The Arbitrary Sequence operator (S1 ⇔ S2) is an
unordered operator that performs the execution of two
services that must not be executed concurrently. This con-
struct is useful when there is no benefit to execute services
in parallel. For example when there is no deadline to
accomplish the global task and the parallelism generates
additional costs.

The Parallel Operator (S1�S2) builds a composite
service. Given two services S1 and S2, it performs S1
and S2 at the same time and independently (without
communication and without interaction between them).
The accomplishment of the resulting service is achieved
when the two services are completed. This construct is
useful when a service executes multiple atomic services
completely independent.

The Discriminator operator ((S1 ⊡ S2) ≫ S3) is a
composite service built on three services S1, S2 and S3. It
submits redundant orders to different services performing
the same task (S1 and S2 for example) and waits the

outputs from S1 and S2. The first service (among S1 and
S2) which responds to the request activates the service S3.
All other late responses will be ignored. Note that S1 and
S2 are performed in parallel and without communication.
The main goal of this operator is to increase reliability and
delays of the services through the Web. For customers,
best services are those which respond in optimal time
and are constantly available.

The Delegation operator (Deleg(S1, o, S2)), where o
is an operation (o ∈ O1, O1 being the set of operations
of S1) which is replaced by the ISP of another more
specialized service (S2). In a given service, this operator
is used to delegate a task to another service that has
more abilities to execute it. This operator contributes to
increase quality of service, enhances cooperation between
enterprises and decreases the development efforts.

The Selection operator (Select[S1 : Sn]) is a complex
operator that is applied to n services (S1,,Sn); it sends
requests to different services through messages passed by
their ISPs. According to the responses and rank criteria,
the Selection operator chooses the best service between
its competitors for performing a particular task that a
company would to subcontract. This operator provides
ways to maintain relationships with different suppliers
which can offer different prices and provide different level
of quality of service. It contributes then to increase the

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2879

© 2012 ACADEMY PUBLISHER

independency of a company against its suppliers.
The proposed algebra verifies the closure property. This

property ensures that the product of any operation on
services is itself a service to which we can apply algebra
operators. We are thus able to build more complex ser-
vices by aggregating and reusing existing services through
declarative expressions of service algebra. Semantics of
the composition operators is characterized by description
of the GSP and IS parts of the component services.
We also focus on the dynamic behavior of the resulting
service and this to address the Web service composition
problem. Table 1 summarizes the G-Net algebra operators;
in particular, it gives their syntax and formal semantics.
The notations which are common to all the operators are:

• NameS is the name of the new service,
• Desc is the description of the new service,
• Loc is the location of the new service. It can be in

the same server as one of the component service (s)
or in a new server,

• URL is the invocation of the new service.

B. Operator’s implementation

For the implementation of the composition process, we
make use of meta-modeling and model transformation
techniques based on the G-Net modeling language. The
syntax of the class of models (G-Net) is graphically
meta- modeled in an appropriate formalism, the Entity-
Relationship Diagrams. Since the abstract syntax of the
used models is graph-like, graph rewriting can be used
to perform model transformation. Regarding to existing
classification criteria, the kind of transformation that is
applied in our approach is:

• Endogenous (in contrast with exogenous model
transformation), since the meta- model used to ex-
press both the source and target models is the same
and,

• Horizontal (in contrast with vertical model transfor-
mation), since the source and target models reside
on the same level of abstraction.

To implement the G-Net algebra’s operators, we have
defined a graph grammar which consists in a set of
transformation rules. The complete grammar includes
twelve rules which can be applied to perform any operator
present in a submitted composition formula. When the
graph grammar execution finishes, we obtain a new G-
Net service that models the composite service. Due to
page limitations we show in Fig. 4 only three rules. In
all of these rules, the nodes and different connections are
labeled by numbers that identify them. These identifiers
are used during the application of the rules.

If an identifier is present in both the left hand side
(LHS) and right hand side (RHS) of a rule, the corre-
sponding element (node or connection) will be preserved
in the result. If this identifier appears only in LHS, the
corresponding element will be deleted. If this identifier
appears only in RHS, the corresponding element will be
created. As we will see, the identifiers are also used

Figure 4. Some rules of the graph grammar for G-nets services
 composition

in the python code to compute the attributes values
′ < SPECIFIED >′. The elements attributes values
in LHSs of the rules are compared with the elements
attributes values of the host graph during the matching
process. The first rule aims to implement the working
of the Sequenceoperator. The LHS of the rule corre-
sponds to the GSPs of the two G-Net operands. When
representing only the G-Net interface (GSP), we make
abstraction of the internal structure. In LHS, we have
set all the attributes values to< ANY >. The RHS
represents the resulting G-Net service. In this latter, the
attributes of the nodes 3, 4 and 6 have the additional
label ′ < SPECIFIED >′. This label specifies that
the attribute value is computed by python code defined
in the ′Actions′. The code is executed only if the rule is
applied and the computation of the value is based on the
attributes’ nodes of the LHS. For example, in the first
rule, the action:nodeWithLabel(4).InvokedGnet =
LHS.nodeWithLabel(1).name.getV alue() assigns the
value of the attribute’name’ of the node (1) to the value
of the attribute’InvokedGnet’ of the node (4). The two
other rules are based on the same reasoning to perform
Arbitrary SequenceandDiscriminator operators.

Like the modeling process, the composition process
is also performed withAToM3, since this tool offers
capabilities for model manipulation by graph transforma-
tion. The graph grammar presented above is stored in the

2880 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

TABLE I.
THE G-NETS BASED ALGEBRA FOR WEB SERVICE COMPOSITION

Operator Syntax Semantic

Sequance S1 ◮ S2 = (NameS,
Desc,Loc, URL,CS, SGN)

CS = CS1 ∪ CS2. SGN = (GSP, IS) where GSP = (MS,AS)|MS =
Mtd.seq{[...](p1)}, AS = ∅ ; IS = (P, T,W,L)|P = {p1, p2, p3},
T = {t1, t2}, W = {(p1, t1), (t1, p2), (p2, t2), (t2, p3)}, L = {(P1, Isp(S1)),
(P2, Isp(S2)), (P3, goal)}.

Alternative S1 ◭◮ S2 = (NameS,
Desc,Loc, URL,CS, SGN)

CS = CS1 ∪ CS2. SGN = (GSP, IS) where GSP = (MS,AS)|MS =
Mtd.Alt{[...](p1)}, AS = ∅ ; IS = (P, T,W,L) where P = {p1, p2, p3, p4},
T = {t1, t2, t3, t4}, W = {(p1, t1), (t1, p2), (p2, t3), (t3, p4), (p1, t2),
(t2, p3), (p3, t4), (t4, p4)}, L = {(P1, τ), (P2, Isp(S1)), (P3, Isp(S2)), (P4, goal)}

Iteration 	 S1 = (NameS,
Desc,Loc, URL,CS, SGN)

CS = CS1. SGN = (GSP, IS) where GSP = (MS,AS)|MS =
Mtd.iter{[...](p1)}, AS = ∅ ;IS = (P, T,W, l) whereP = {p1, p2}, T = {t1, t2},
W = {(p1, t1), (t1, p1), (p1, t2), (t2, p2)}, l = {(P1, Isp(S1)), (p2, goal)}

Arbitrary Se-
quence

S1 ⇔ S2 = (NameS,
Desc,Loc, URL,CS, SGN)

CS = CS1 ∪ CS2. SGN = (GSP, IS) where GSP =
(MS,AS)|MS = Mtd.ar.seq{[...](p1)}, AS = ∅ ; IS =
(P, T,W,L) where P = {p1, p2, p3, p4, p5, p6, p7, p8, p9}, T =
{t1, t2, t3, t4, t5, t6}, W = {(p1, t1), (t1, p2), (t1, p3), (t1, p4), (p2, t2),
(t2, p5), (p5, t4), (t4, p7), (t4, p3), (p7, t6), (t6, p9), (p3, t3), (p3, t6), (p4, t3), (t3, p6),
(p6, t5), (t5, p3), (t5, p8), (p8, t6)} L = {(P1, τ), (P2, τ), (P3, τ), (P4, τ), (P7, τ),
(P8, τ), (P5, Isp(S1)), (P6, Isp(S2)), (P9, goal)}

Parallel S1�S2 = (NameS,
Desc,Loc, URL,CS, SGN)

CS = CS1 ∪ CS2. SGN = (GSP, IS) where GSP = (MS,AS)|MS =
Mtd.par{[...](p1)}, AS = ∅ ; IS = (P, T,W, l) whereP = {p1, p2, p3, p4}, T =
{t1, t2}, W = {(p1, t1), (t1, p2), (t1, p3), (p2, t2), (p3, t2), (t2, p4)} l =
{(P1, τ), (P2, Isp(S2)), (P3, Isp(S2)), (p4, goal)}

Discriminator
(S1 ⊡ S2) ≫ S3 =
(NameS,Desc,Loc, URL,
CS, SGN)

CS = CS1 ∪ CS2 ∪ CS3. SGN = (GSP, IS) where GSP =
(MS,AS)|MS = Mtd.disc{[...](p1)}, AS = ∅ ; IS = (P, T,W, l)
where P = {p1, p2, p3, p4, P5, P6, p7}, T = {t1, t2, t3, t4, t5}, W =
{(p1, t1), (t1, p2), (t1, p3), (t1, p5), (p2, t2), (p3, t3), (t2, p4), (t3, p4), (p4, t4),
(p5, t4), (t4, p6), (p6, t5), (t5, p7)} l = {(P1, τ), (P4, τ), (P5, τ), (P2, Isp(S1)),
(P3, Isp(S2)), (P6, Isp(S3)), (p7, goal)}

Delegation
Deleg(S1, o, S2) =
(NameS,Desc,Loc, URL,
CS, SGN)

CS = CS1 ∪ CS2, SGN = (GSP, IS) where GSP = (MS,AS)|MS =
MS1, AS = AS1; IS = (P, T,W,L)| P = P1\L−1(o) ∪ Isp(S2), T = T1,
W = W1 ∪ {(t, Isp(S2))|t ∈ •L−1(o)} ∪ {(Isp(S2), t)|t ∈ L−1(o)•}\{(p, t)|p ∈
L−1(o)}\{(t, p)|p ∈ L−1(o)} L = L1 ∪ {(Px, Isp(S2))}

Selection
Select[S1 : Sn] =
(NameS,Desc,Loc, URL,
CS, SGN)

CS =
⋃

n

i=1
CSi, SGN = (GSP, IS) where GSP = (MS,AS)|MS =

Mtd.Select[](p1), AS = ASn+1; IS = (P, T,W,L)| P = p1, ..., p2n+3,

T = t1, ..., t2n+2, W = (p1, t1) ∪
⋃

n+1

i=2
(t1, pi) ∪

⋃
n+1

i=2
(pi, t2) ∪

(t2, pn+2) ∪
⋃

n

i=1
(pn+2, ti) ∪

⋃2n+2

i=3
(ti, pn+i) ∪

⋃2n+2

i=n+3
(pi, ti) ∪

⋃2n+2

i=n+3
(pi, t2n+3), L = {(P1, τ)}∪ {(p2, Isp(S1.req)), ..., (pn+1, Isp(Sn.req))}

∪{(pn+2, SelectService)}∪ {(pn+3, Isp(S1.mtd)), ..., (p2n+2, Isp(Sn.mtd))} ∪
{(p2n+2, goal)}

user area ofATOM3. The actions associated to each
rule are specified by Python code. Fig. 5 illustrates the
implementation of the first rule inAToM3. The reader
can see the LHS and RHS of the rule as well as the
python code (in the top of the figure) which specifies the
action discussed above. The composition process starts
by the importation of G-Net services previously modeled.
The user enters the composition formula according to the
defined algebra. Since the formula may involve several
operators, the corresponding rule(s) of each operator is
(are) applied to the imported operand services. Consider
the example composition scenario that occurs when a
customer wants to get a product as soon as possible.
The customer submits redundant orders to two Provider
services. Once he obtains a response from the fastest
service, he starts the payment procedure. This scenario
can be performed using theDiscriminator operator. The
payment is achieved by theCheckout G-Net service
presented above and the providers are modeled by the
G-Net servicesProvider1and Provider2. The Provider1
and Provider2 services start by checking availability of
the required product (CA). If the product is available, they
make a bill and send it to the customer. In the case where

the product is not available, they trigger their respective
restock procedure and recheck availability.

In Fig. 6, we present the services composition using
our graph transformation based tool. The three services
being modeled and imported in the tool, the user enters
the formula (Provider1⊡ Provider2) ≫ Checkout .
ATOM3 applies our graph grammar. At the end of
grammar execution, we obtain the composite service Disc
shown in the right side of Fig. 4. We can see that Disc
invokes Provider1 and Provider2 through their ISPs. The
first service which responds to the request activates the
Checkout service.

VI. V ERIFICATION PROCESS

WS-mcv methodology deals with the formal verifica-
tion in order to test and repair design errors even before
actual running of the (composed) service. The intention is
to raise reliability of Web service composition by ensuring
that a composite G-Net service will behave as required
by its specification and that the system and its compo-
nents contain no errors or behavioral anomalies (such as
deadlock and livelock). To perform formal verification on
systems modeled by Petri-Nets like languages, current

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2881

© 2012 ACADEMY PUBLISHER

Figure 5. The first rule inAToM3

Figure 6. G-nets services composition using our tool

researches exploit the powerful features of reachability
graph analysis techniques. Since there is no reachability
analyzer tool for the G-Net framework, we make use
of translation rules which enables to transform G-Net
specifications into their equivalent Predicate/Transition
Nets (PrT-Nets). This transformation is performed in
order to exploit an existing tool with a variety of anal-
ysis techniques for PrT-Nets namely PROD reachability
analyzer [27]. PROD creates a reachability graph of a
system modeled as PrT-Nets. From that graph, users can
search for terminal nodes, path leading to that terminal
nodes and path which satisfy some given properties.
The complete manual of PROD can be found in [28].
Unlike other approaches, WS-mcv methodology allows
performing verification before and after the composition
in order to detect if the anomalies occur in the component
services or in the composite one. The two phases of Pre
and Post verification occur in the same way except that
the former concerns the operand services and the latter

concerns the resulting service. In this way we guarantee
a correct Web service modeling and composition. The
verification process is then divided in two tasks: 1) the
transformation of a G-Net service into an equivalent PrT-
Net and 2) the translation of the obtained PrT-Net into
PROD description.

A. G-net/PrT-net transformation

To perform this task, we still use MDE techniques in
order to make model transformation. The works of [12]
present a graph transformation based framework that al-
lows transforming a G-Net specification into its equivalent
PrT-Net using a defined graph grammar. This latter has a
slight inconvenient as, when applied to a source model,
it progressively deletes it. As a consequence, we have
improved these grammar rules in order to preserve the
source model (G-Net model). We propose to exploit the
modified grammar inATOM3 environment. Once we
provide our tool the meta-model of the PrT-Net formalism

2882 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

[12] and the modified G-Net/PrT-Net grammar, it can then
support the two formalisms of G-Net and PrT-Net. It can
also automatically generate PrT-Net specifications from
G-Net ones. The verification process starts by specifying
the G-Net service the user wants to analyze. The transfor-
mation rules are then applied to the G-Net model. Once
it finishes, we obtain an equivalent PrT-Net specification.
This transformation is illustrated by the user interface of
ATOM3 in Fig. 7. In the left side of the figure, we
can see theProvider1 service in the G-Net formalism.
The right side of the same figure represents its equivalent
resulting PrT-Net.

B. Prt-net/PROD net description transformation

To perform the analysis using PROD, we need to con-
vert the PrT-Net specification into PROD’s Net descrip-
tion language. This language is C preprocessor language
extended with net description directives. PROD compiles
this net description and generates the full reachability
graph. However, at present time, this task is still manually
performed. Later, when the user interface of our tool
will be complete, the user doesn’t have to be familiar
with PROD. Using the reachability graph, we can verify
many important properties such as boundedness, liveness
and reachability which can be used as general criteria
of correctness of composition. The result of this trans-
formation is illustrated by Fig. 8. This figure represents
the resulting PROD net description file of the service
Provider1previously described in PrT-Net formalism.

VII. C ONCLUSION

In this paper, an efficient model-driven methodology
for Web service composition has been presented. The
proposed methodology offers solutions for both modeling
existent services, successfully composing them and ver-
ifying their correctness. The main contributions of this
paper are:

• The definition of a set of modeling rules for Web
service specification into G-Net concepts.

• The proposition of a G-Net based algebra that allows
combining G-Net services by means of basic and
complex operators.

• The formal definitions of G-Net services as well as
the introduced operators.

• The implementation of the proposed operators by an
efficient graph grammar.

• The specification of a verification method to ensure
composition correctness.

All the phases of our methodology have been realized
under different processes. The modeling and composition
processes have been implemented with a customized
visual tool which allows editing and manipulating models
in the G-Net formalism. The verification process, which
is partially automated, is based on model transformations
performed byATOM3 to produce models that can be
verified by PROD. To the best of our knowledge, WS-
mcv is the only approach that makes use of the G-
Net framework to provide a complete solution for Web

service composition. Compared to other Petri Nets based
approaches, ours presents several advantages. It requires
less effort when modeling complex services and produces
more reduced models. Furthermore it offers a visual tool
and deals with the formal verification. In future work,
we will propose to meta-model the WSDL description
language and to define a graph grammar which allows
translating Web services described in WSDL language
into equivalent G-Net services. Then we will extend our
tool with a new module that can import existing services
in WSDL and automatically model them into G-Net
concepts. We also plan to improve the verification process
by automating the transformation task from PrT-Nets to
PROD’s Net description language. This will avoid users
to be familiar with PROD Net descriptions.

REFERENCES

[1] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,
and S. Weerawarana, “Unraveling the web services web
an introduction to soap, wsdl, and uddi,”IEEE INTERNET
COMPUTING.

[2] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana, “Web services description language
(wsdl) 1.1,” Mar 2001, [Online]. Available:
http://www.w3.org/TR/wsdl.

[3] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, , H. F. Nielsen, S. Thatte, and D. Winer,
“Simple object access protocol (soap) 1.1,” May 2000,
[Online]. Available: http://www.w3.org/TR/2000/NOTE-
SOAP-20000508/.

[4] R. Hamadi and B. Benatallah, “A petri net based-model for
web service composition,” inproc. the 14th australasian
database conference, adelaide. Darlinghurst: Australian
Computer Society, 2003, pp. 191–200.

[5] G. Yubin, D. Yuyue, and X. Jianqing, “A cp-net model and
operation properties for web service composition,”Chinese
Journal of Computers (Chinese edition), vol. 29, Number
7, p. 10671075, 2006.

[6] Z. Zhang, F. hong, and H. xiao, “A colored petri net-based
model for web service composition,”Journal of Shanghai
University (English Edition), vol. 12, Number 4, pp. 323–
329, 2008.

[7] X. Feng, Q. Liu, and Z. Wang, “A web service composition
modeling and evaluation method used petri net,” inProc.
APWeb Workshops, 2006, pp. 905–911.

[8] R. Akkiraju and B. Sapkota, “Semantic annotations for
wsdl and xml schema usage guide,” (2007), [Online].
Available: http://www.w3.org/TR/sawsdl-guide/.

[9] J. Bruijn, D. Fensel, U. Keller, H. M Lausen, R. Krum-
menacher, A. Polleres, and L. Predoiu, “The web ser-
vice modeling language wsml,” 2005, [Online]. Available:
http://www.wsmo.org/wsml/.

[10] D. Martin, M. Burstein, J. Hobbs, and al, “Owl-s: Se-
mantic markup for web services,” [Online]. Available:
http://www.w3.org/Submission/OWL-S/.

[11] Y. Deng, S. K. Chang, J. C. A. De Figueiredo, and
A. Psrkusich, “Integrating software engineering methods
and petri nets for the specification and prototyping of
complex information systems,” inProc. The 14th Inter-
national Conference on Application and Theory of Petri
Nets, Chicago, June21–25, 1993, pp. 206–223.

[12] E. H. Kerkouche and A. Chaoui, “A formal framework and
a tool for the specification and analysis of g-nets models
based on graph transformation,” inproc. of International
Conference on Distributed Computing and Networking
CDCN09, India, January 2009, p. 206211.

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2883

© 2012 ACADEMY PUBLISHER

Figure 7. Provider1 G-net service and its equivalent PrT-Net

Figure 8. PROD net description for the Provider1 PrT-Net

[13] H. J. Genrich and K. Lautenbach, “System modeling with
high level petri nets,”Theorical Computer Science, vol. 13,
pp. 109–136, 1981.

[14] T. He and L. Li, “Research on verification tool for software
requirements,”JOURNAL OF SOFTWARE, vol. 07, Issue
7, pp. 1069–1616, JULY 2012.

[15] M. Ter Beek, A. Bucchiarone, and S. Gnesi, “Formal
methods for service composition,”Annals of Mathematics,
Computing and Teleinformatics, vol. 1, Issue 5, pp. 1–10,
2007.

[16] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller,
S. Thatte, and S. Weerawarana,. Business Process Execu-
tion Language for Web Service (BPEL4WS) 1.0. Published
on the World Wide Web by BEA Corp, IBM Corp and
Microsoft Corp, Aug 2002.

[17] Z. Liu, A. Ranganathan, and A. Riabov, “Modeling web
services using semantic graph transformations to aid auto-
matic composition,” inIEEE International Conference on
Web Services (ICWS 2007), Salt Lake City, Utah, July13–
19, 2007.

[18] B. Srivastava and J. Koehler, “Web service composition
- current solutions and open problems,” inICAPS 2003

workshop on Planning for Web Services, July22 2003.
[19] B. Li, Y. Xu, J. Wu, and J. Zhu, “A petri-net and qos based

model for automatic web service composition,”JOURNAL
OF SOFTWARE, vol. 07, Issue 1, pp. 149–155, JANUARY
2012.

[20] K. Jensen, “Coloured petri nets- a high level language for
system design and analysis,” inLecture Notes in Computer
Science 483. Advances in Petri Nets 1990 Springer-verlag,
1990.

[21] C. A. Petri, “Kommunikation mit automaten (in german),”
Ph.D. dissertation, University of Bonn, Germany, 1962.

[22] A. Perkusich and J. C. A. De Figueiredo, “G-nets: A
petri net based approach for logical and timing analysis
of complex software systems,”Journal of Systems and
Software, vol. 39, Issue 1, pp. 39–59, Oct 1997.

[23] J. De Lara and H. Vangheluwe, “Atom3: A tool for multi-
formalism modelling and meta-modelling,” inproc. of
European Conferences on Theory And Practice of Software
Engineering ETAPS02, 2002, p. 174 188.

[24] Google, “Google maps api web ser-
vice,” (2005), [Online]. Available: From:
http://code.google.com/intl/com/apis/maps/.

2884 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

[25] S. Narayanan and S. McIlraith, “Analysis and simulation
of web services,”Computer Networks, vol. 42, Number 5,
pp. 675–693, 2003.

[26] D. Zhovtobryukh, “Context-aware web service composi-
tion,” Ph.D. dissertation, University of Jyvaskyla, Finland,
2006.

[27] PROD, “Prod: An advanced tool for efficient reachabil-
ity analysis, version 3.4.01.” 1995, [Online]. Available:
http://www.tcs.hut.fi/Software/prod/.

[28] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo,
Helsinki University of technology, Tech. Rep.

Fayçal Bachtarzi is currently a Ph.D. candidate at Mentouri
University of Constantine, Algeria. He received his Masterin
computer science from the same University in 2010. His re-
search interests include web service compostion, model driving
engeneering, formal verification and distributed systems.

Allaoua Chaoui is full Professor with the department of
computer science, Faculty of Engineering, University Mentouri
Constantine, Algeria. He received his PhD degree in 1998 from
the University of Constantine (in cooperation with the CEDRIC
Laboratory of CNAM in Paris, France). His research interests
include Mobile Computing, formal specification and verification
of distributed systems, and graph transformation systems.

Elhillali Kerkouche is Associate Professor in the department
of Computer science, University of Jijel, Algeria. His research
field is Formal Methods and Distributed Systems.

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2885

© 2012 ACADEMY PUBLISHER

