
Data Modeling of Knowledge Rules: An Oracle
Prototype

Rajeev Kaula

Computer Information Systems Department, Missouri State University, Springfield, MO 65897 (USA)
E-Mail: RajeevKaula@missouristate.edu

Abstract—Knowledge rules are outlined declaratively in a
knowledge base repository. Each rule is created
independently for storage in the repository. This paper
provides an approach to apply the techniques of traditional
entity-relationship data modeling to structure the
knowledge rules for storage as a database schema in a
relational database management system. Utilization of entity
relationship model and relational database for modeling
knowledge rules provides for a more standardized
mechanism for structuring knowledge rules. Storage of
knowledge rules in a relational database shall also bring
about improved integration with business applications,
besides having the availability of services provided for
transactional database applications. The paper utilizes the
Oracle database for illustrating the application of the
concepts through a sample set of knowledge rules. The
approach is explained through a prototype in Oracle's
PL/SQL Server Pages.

Index Terms—Data Modeling, Knowledge Rules, Expert
Systems, Knowledge Base, Entity-Relationship Diagram,
Relational model.

I. INTRODUCTION

Knowledge rules (or production rules) are the primary
mechanisms to define knowledge in rule based systems
like expert systems or knowledge-based systems [4, 5, 10,
11, 12, 13, 17, 21, 25, 27, 28, 32]. Such rules typically
express decision-making guidelines. Each knowledge rule
is written declaratively in constraint-action terminology
represented as IF constraint THEN action statements. A
constraint is some condition, while the action clause
reflects the decision or advice. Figure 1 shows an
example of a knowledge rule that describes a set of
constraints applicable for approving a loan application.

Figure 1. Sample Knowledge Rule

Each rule is independently outlined in the knowledge

base repository. In general the structuring and storage of
knowledge rules is done through special programming
languages like Prolog or Lisp [26, 29] or some
proprietary development environments like CLIPS [9],

and JESS [7]. This paper outlines an approach to
structure knowledge rules as a database schema for
storage in relational databases using traditional entity
relationship (ER) modeling techniques. As relational
database and the associated language SQL are widely
considered the ANSI/ISO standard for data storage and
manipulation (viz. SQL:2008), data modeling of
knowledge rules for storage as a relational database
schema provides a more standardized structure for
knowledge base (repository). Besides, representation of
the knowledge rules as a relational database schema
enables utilization of SQL for rule definition,
maintenance, and manipulation.

Even though there have been attempts toward
integration of knowledge base and database, such
attempts have traditionally focused on (i) improving the
database working in the form of intelligent databases [1,
2, 18, 20, 22, 23, 30, 31], or (ii) using knowledge based
techniques to extract meaningful data from databases in
the form of knowledge discovery [6, 8, 15, 24]. Whereas
intelligent databases deal with the utilization of artificial
intelligence techniques to capture the heuristics needed to
control data in databases, the knowledge discovery
approach involves utilization of artificial intelligence
techniques to discover new knowledge in the form of data
mining. Modeling of knowledge rules as a knowledge
repository in relational database is an alternative
approach to structure knowledge rules and enhance its
utilization or integration with application development.

The modeling of knowledge rules as relational
database schema is now outlined in the following sections.
First the entity relationship concepts for modeling
knowledge rules are outlined. This is followed by a
prototype that illustrates the entity relationship modeling
through a sample set of knowledge rules, along with their
transformation and retrieval from an Oracle database. The
approach is illustrated on an Oracle 11g database through
a prototype in PL/SQL Server Pages [3, 14]. PL/SQL
server pages is a server-side scripting approach for
developing database driven dynamic Web pages. The
PL/SQL server page uses Oracle's primary database
language PL/SQL as a scripting language along with
HTML to generate database driven Web pages. Even
though the prototype utilizes Oracle technology, due to
the standardization of relational database concepts, such
modeling and manipulation can be accomplished through

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2857

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.12.2857-2865

any other relational database product like MySQL, SQL
Server, etc.

II. RELATIONAL MODEL SCHEMA FOR KNOWLEDGE
RULES

The relational model schema for knowledge rules
begins by modeling the structure of knowledge rules
through entity relationship modeling followed by their
transformation into a relational model. The modeling and
transformation process consists of the following elements:
(i) subject area schema specification, (ii) entity type
structure specification, (iii) entity relationship
specification, (iv) relational table representation, and (v)
sharing of subject area schemas. Each element builds on
one another.

A. Subject Area Schema Specification
Modeling of knowledge rules begins with the concept

of categorizing organizational knowledge into subject
areas. A subject area is the decision making area of
business. Each subject area contains knowledge rules
specific to its domain of working. For example, there
could be customer loan subject area, sales analysis
subject area, and so on.

While the collection of knowledge rules within a
subject area provide the action or decision support for
that area, from a data modeling perspective such rules
define the schema of knowledge belonging to the subject
area. In other words, each subject area is a database
schema supporting the knowledge as defined through its
knowledge rules. So, for instance, there could be a
database schema for customer loan subject area
knowledge rules, another one for sales analysis subject
area knowledge rules, and so on. The specification of
entity types within a subject area schema is outlined now.

B. Entity Type Structure
The knowledge rules within a subject area are

represented through a collection of entity types. Such
entity types essentially follow the abstract structure of a
knowledge rule statement as shown in Figure 2. In the
figure each “constraint-i operator value” clause is some
constraint, the “AND/OR” entries are logical operators
joining constraint clauses, and the “subject area action”
clause is some action representing the decision when the
constraint conditions are true.

Figure 2. Abstract Structure of Knowledge Rule

Each constraint clause is represented through

individual constraint entity types. Each constraint entity
type will consist of three attributes as shown in Figure 3.
The “Constraint Name” entry that defines the name of the
constraint clause entity type is the name of the constraint
entry in the constraint clause of the knowledge rule
statement. The “Constraint ID” attribute is the primary

key, the “Operator” attribute is the condition operator in
the constraint clause, while the “Constraint Value”
attribute is the value assigned to the constraint condition.

Figure 3. Constraint Entity Type

Instances of the constraint entity type are the

individual constraint clauses in an associated knowledge
rule statement. For example, consider two knowledge
rules pertaining to subject area “customer loan” as shown
in Figure 4.

Figure 4. Sample Customer Loan Knowledge Rules

The modeling of the constraint clause is shown in

Figure 5. In the figure, part (a) shows the structure
(definition) of constraint entity type, while part (b) shows
the entity instances pertaining to the different clauses for
the constraint in the two knowledge rule statements.

Figure 5. Constraint Entity Instances for Customer Loan Example

The subject area action clause is represented through a

subject entity type. This entity type consists of two
attributes as shown in Figure 6. To ensure symmetry
within the modeling process, the subject entity type is
named after the subject area. The “Action ID” attribute is
the primary key, while the “Action Value” attribute is the
value assigned to the subject area action entry in the

2858 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

associated knowledge rule statement. So, for instance if
the knowledge rule belongs to “customer loan” subject
area, then the subject entity type would be titled
“customer loan.”

Figure 6. Action Entity Type

Instances of the subject entity type are the subject area

action clauses within different knowledge rule statements.
For example, consider the knowledge rules of Figure 4 to
outline the details of subject entity type. Since the subject
area for the knowledge rules is “customer loan” the
subject entity type is also named “customer loan.” Figure
7 shows the modeling of the subject area action clauses
for these knowledge rules. Part (a) of the figure shows the
structure (definition) of subject (Customer Loan) entity
type. Part (b) of the figure shows the entity instances
pertaining to the different clauses for the subject area
action values in the associated knowledge rule statements.

Figure 7. Action Entity Instance for Customer Loan Example

C. Entity Relationship Specification
The various entity types of a knowledge rule will have

binary relationship with the subject entity type. The
binary relationship will be one-to-many (1:N) as shown
in Figure 8. The logical operator binding the constraint
clauses within a knowledge rule shall become the
relationship attribute of the binary relationship between
the constraint entity type and the subject entity type. The
minimum cardinality is optional to mandatory from the
constraint entity type to subject entity type. Each instance
of constraint entity type now will be associated with one
or more subject entity instances. On the other hand, the
subject entity instances may optionally be associated with
different constraint entity instances.

Figure 8. Knowledge Rule Entity-Relationship Model

The 1:N relationship between the constraint and
subject entity types binds the constraint entity instances
with the subject entity instances to represent a complete
knowledge rule statement. Further, as knowledge rules
are structured into distinct entity types, the entity
relationship model of a subject area represents a database
schema of entity types. For example, there can be a
schema of entity types for the customer loan subject area
representing its various knowledge rules. The
transformation of entity relationship model of a subject
area into a relational model is outlined now.

D. Relational Table Representation
Each constraint entity type is represented as a separate

table in a relational database. For example, Figure 9
which is an extension of Figure 5 shows the table
structure of the credit risk and loan requested constraint
entity types.

Figure 9. Database Tables for Customer Loan Example Constraints

Similarly the subject entity type will be represented as

a separate table in the relational database. For example,
Figure 10 extends Figure 7 through the table structure of
the Customer Loan subject entity type. The
CreditRisk_Logical attribute represents the logical
operator value that binds credit risk constraint with loan
requested constraint for this rule. The
loanrequested_logical attribute being associated with the
last constraint clause within the rule structure will be null.
Part (a) of the figure shows the 1:N relationship between
the subject (Customer Loan) entity type with the
constraint Credit Risk and Loan Requested, while part (b)
shows the table structure of the Customer Loan entity
type. The foreign key CreditRisk_ID and
LoanRequested_ID in Customer Loan table represents the
1:N relationship with the CreditRisk and LoanRequested
tables respectively. Included in the CustomerLoan table is
also the value of the logical operators.

The database schema of constraint entity types tables
and subject entity type table represents a collection of

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2859

© 2012 ACADEMY PUBLISHER

knowledge rules for the subject area in a relational
database.

Figure 10. Database Tables for Customer Loan Example

E. Sharing of Subject Area Schemas
Subject area database schemas’ can share entity types

among each other. Such sharing represents the chaining
of knowledge among knowledge rules belonging to
different subject areas. First type of sharing occurs when
the constraint in one subject area set of knowledge rules
is also a constraint in another subject area knowledge
rules. For example, consider two knowledge rules in two
subject areas. The first rule belongs to the credit risk
subject area with three constraint clauses as shown below:

IF credit score is less than 600 AND

 debt to income is greater than 40% OR
 house is investment

THEN Credit Risk is High

The second rule belongs to the customer loan subject

area with three constraint clauses as shown below.

IF credit score is less than 600 AND
 loan to value is less than 80% OR
 loan requested is less than $40,000

THEN Approve with 5% APR

The first constraint “credit score is less than 600” in

both rules is the same. From a modeling perspective, the
entity type representing this constraint is defined once in
either of the two subject area schema, and then shared
between the two subject area schemas. Such sharing of
constraint entity types across subject area schemas can be
viewed symbolically in Figure 11.

Figure 11. Sharing Constraints Entity Types among Subject Areas

Second type of sharing occurs when action value in

one subject area set of knowledge rules serves as a
constraint clause in another subject area set of knowledge
rules. For example, consider two knowledge rules in two

subject areas. The first rule belongs to the credit risk
subject area with three constraint clauses as shown below:

IF credit score is less than 600 AND

 debt to income is greater than 40% OR
 house is investment

THEN Credit Risk is High

The second rule belongs to the customer loan subject

area with three constraint clauses as shown below.

IF credit risk is High AND
 loan to value is less than 80% OR
 loan requested is less than $40,000

THEN Approve with 5% APR

The action clause in credit risk subject area value is

referred as a constraint “credit risk is High” in customer
loan subject area. This reference in the customer loan
subject area helps in the validation of the constraint value
associated with a separate set of knowledge rules in credit
risk subject area. From a modeling perspective, such
reference is represented through the relationship between
the subject entity types between the involved subject
areas as shown symbolically in Figure 12.

Figure 12. Sharing Action Entity Types among Subject Areas

III. KNOWLEDGE RULES MODELING PROTOTYPE

A prototype for modeling knowledge rules based on
two subject areas belonging to finance discipline is
outlined in this section. The proposed entity relationship
model is transformed for storage in an Oracle database
through the SQL language. The prototype also shows the
retrieval of database stored knowledge rules in
declarative format through a database procedure using the
Oracle’s PL/SQL database language.

A. Modeling Subject Area Knowledge Rules
The subject areas for the prototype are customer loan

and credit risk. The credit risk knowledge rules are listed
first, followed by the entity relationship diagram for the
credit risk subject area as shown in Figure 13.

Credit Risk
Rule 1:
IF credit score is less than 600 AND

 debt to income is greater than 40% OR
 house is investment

THEN High

Rule 2:
IF customer credit score is more than 600 AND

2860 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

 debt to income is less than 40% OR
 house is primary

THEN Low

Figure 13. Credit Risk Knowledge Rules Entity-Relationship Model

The customer loan knowledge rules are listed now,

followed by the entity relationship diagram for the
customer loan subject area as shown in Figure 14.

Customer Loan
Rule 1:
IF credit risk is High AND

 loan to value is greater than 80% OR
 loan requested is greater than $40,000

THEN Reject

Rule 2:
IF credit risk is High AND

 loan to value is less than 80% OR
 loan requested is less than $40,000

THEN Approve with 5% APR

Rule 3:
IF credit risk is High AND

 loan to value is 100% OR
 loan requested is greater than $75,000

THEN Reject

Rule 4:
IF credit risk is Low AND

 loan to value is less than 80% OR
 loan requested is greater than $150,000

THEN Approve with 4.5% APR

Figure 14. Customer Loan Knowledge Rules Entity-Relationship Model

The prototype also illustrates the second type of

sharing between the two subject areas. The credit risk

constraint entity type within the customer loan schema is
itself a separate subject area. Consequently, there is
sharing of credit risk subject entity type with customer
loan subject entity type. The composite entity relationship
model for the two subject area schemas is shown in
Figure 15.

Figure 15. Sharing among Customer Loan and Credit Risk Subject

Areas

B. Relational Model Representation
The entity relationship model of the two subject area

schemas is transformed into a relational model for storage
in a relational database. The table structure along with the
row values for the various entity types is now outlined.
To facilitate understanding of the concepts, the credit risk
schema tables are outlined first, followed by the customer
loan schema tables.

TABLE I.
CREDITSCORE TABLE

CreditScore_ID Operator Value

1 is less than 600

2 is more than 600

TABLE II.

DEBTTOINCOME TABLE
DebtToIncome_ID Operator Value

1 is less than 40%

2 is greater than 40%

TABLE III.
HOUSE TABLE

House_ID Operator Value

1 is Investment

2 is Primary

TABLE IV.
CREDITRISK TABLE (PART 1)

CreditRisk_I
D Value CreditScore

_ID
CreditScore_

Logical
DebtToIn
come_ID

1 High 1 AND 2

2 Low 2 AND 1

TABLE V.
CREDITRISK TABLE (PART 2)

CreditRisk
_ID DebtToIncome_Logical House_ID House_Logical

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2861

© 2012 ACADEMY PUBLISHER

TABLE V.
CREDITRISK TABLE (PART 2)

CreditRisk
_ID DebtToIncome_Logical House_ID House_Logical

1 OR 1

2 OR 2

where CreditScore_ID is foreign key to CreditScore table;
DebtToIncome_ID is foreign key to DebtToIncome table;
and, House_ID is foreign key to House table.

TABLE VI.
LOANTOVALUE TABLE

LoanToValue_ID Operator Value

1 is greater than 80%

2 is 100%

3 is less than 80%

TABLE VII.
LOANREQUESTED TABLE

LoanRequested_ID Operator Value

1 is greater than 40000

2 is less than 40000

3 is greater than 75000

4 is greater than 150000

TABLE VIII.
CUSTOMERLOAN TABLE (PART 1)

Customer
Loan_ID Value CreditRisk_

ID
CreditRisk_L

ogical
LoanToV
alue_ID

1 Reject 1 AND 1

2 Approve with
5% APR 1 AND 3

3 Reject 1 AND 2

4 Approve with
5% APR 2 AND 3

TABLE IX.
CUSTOMERLOAN TABLE (PART 2)

CustomerLoan
_ID LoanToValue_Logical LoanReque

sted_ID
LoanRequested

_Logical
1 OR 1

2 OR 2

3 OR 3

4 OR 4

whereCreditRisk_ID is foreign key to CreditRisk table;
LoanToValue_ID is foreign key to LoanToValue table;
and, LoanRequested_ID is foreign key to LoanRequested
table.

C. Web Prototype
The relational schema tables of the two subject areas

are installed in an Oracle 11g database. Once the subject
area schema is in the database, it can be queried for

decision support. The prototype at this stage performs a
simple retrieval of knowledge rules. The results of the
retrieval in the form of selected knowledge rules is
displayed in declarative format. The prototype consists of
two Web pages. The interaction of the two Web pages
within the Web architecture is shown in Figure 16.

Figure 16. Prototype Web Architecture

The user requests for the first Web page titled “input

rule.” This page displays a Web form with text boxes to
input data needed to search for valid knowledge rule in
the database (knowledge) repository. Figure 17 shows a
view of the input rule Web page.

Figure 17. input_rule Web Form

The input rule Web page is generated through a Web

procedure titled "input_rule_web." Once the user
completes the Web form, the “Provide Advice” button in
clicked which enables the browser to forward the form
input data to the second Web page in the database
through the Web (HTTP) Server.

The second Web page is titled “select rule.” This Web
page receives the form input data, completes the database
processing for searching the valid knowledge rule, and
returns the outcome to the Web server, which in turn
forwards the page to the Web browser. Figure 18 shows a
view of the output using the inputs entered in the first
Web page.

2862 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 18. Select rule Web output

The select rule Web page is generated through two

Web procedures. The first Web procedure titled
“select_rule_web” searches for the valid knowledge rule,
while the second Web procedure titled
“cust_loan_output_web” formats the selected knowledge
rule in declarative format for display in the Web browser.
Figure 19 shows the pseudocode logic for knowledge rule
search strategy. The select_rule_web Web procedure is
listed in Appendix-A, while the cust_loan_output_web
Web procedure is listed in Appendix-B.

Figure 19. Select rule Web page logic

IV. CONCLUSION

Entity relationship model is generally utilized to model
data in a transactional database or data warehouse [13,
16]. However, modeling of knowledge rules through an
entity relationship model and storing them in a relational
database provides for a standard based mechanism for
structuring knowledge rules. Storage of knowledge rules
as a knowledge base in a relational DBMS allows for the
utilization of services similar to those provided for
transactional database like conceptually centralized
management, access optimization, recovery and
concurrency controls, and so on.

The knowledge rules representation as a relational
database schema can facilitate some additional features
like:

1. Any access to knowledge can be restricted to
only those rules that are pertinent to that user.
This is similar to how access is restricted to data
in a transactional database.

2. Rules shall be queryable and updatable through
widely known SQL language in the form of (i)
new rules can be added or dropped to keep the
nature of knowledge rules current (ii) new
constraints can be added or existing constraints
can be dropped or modified, and (iii) even
individual attributes can be modified since now
the knowledge rules are stored as relational
tables.

3. Rule consistency can be maintained with regard
to its format and relationships.

4. Rules may be integrated with business or
enterprise applications, wherein such
applications shall always get current knowledge
from the database.

As the relational database SQL concepts are
standardized since SQL was adopted as a standard by the
American National Standards Institute (ANSI) in 1986
and International Organization for Standardization (ISO)
in 1987 (the current standard is SQL:2008), the data
model (relational database schema) can be easily ported
to all major enterprise DBMS like Oracle, SQL Server,
DB2, MySQL, and so on. The manipulation of the
schema through a database language as illustrated
through the prototype will vary, even though the nature of
such manipulations will be conceptually similar.

Further research is in progress to extend the modeling
of knowledge rules. This involves (i) developing rule
engine mechanisms to query rules for specific constraints,
(ii) incorporate additional complexity in rule specification,
(iii) techniques to link constraint values with transactional
database, and (iv) exploring the notion of inferencing rule
chains.

APPENDIX A WEB PROCEDURE TO SEARCH VALID
KNOWLEDGE RULE

<%@ page language="PL/SQL"%>
<%@ plsql procedure="select_rule_web"%>
<%@ plsql parameter="cs_in" default="null"%>
<%@ plsql parameter="dti_in" default="null"%>
<%@ plsql parameter="h_in" default="null"%>
<%@ plsql parameter="ltv_in" default="null"%>
<%@ plsql parameter="lr_in" default="null"%>
<%@ plsql parameter="formsbutton1" default="null"%>
<%! cs_key integer; dti_key integer; h_key integer;

cr_key integer; cr_value creditrisk.value%type;
ltv_key integer; lr_key integer;
cl_key integer; cl_value customerloan.value%type; %>
<%

if cs_in < 600 then
select creditscore_id into cs_key
from creditscore
where operator = 'is less than' and value = 600;
else
select creditscore_id into cs_key
from creditscore
where operator = 'is more than' and value = 600;

end if;

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2863

© 2012 ACADEMY PUBLISHER

if dti_in < 40 then
select debttoincome_id into dti_key
from debttoincome
where operator = 'is less than' and value = '40%';

else
select debttoincome_id into dti_key
from debttoincome
where operator = 'is greater than' and value = '40%';

end if;
if h_in = 'Investment' then

select house_id into h_key
from house
where value = 'Investment';

else
select house_id into h_key
from house
where value = 'Primary';

end if;
select creditrisk_id, value into cr_key, cr_value
from creditrisk
where creditscore_id = cs_key and debttoincome_id = dti_key
and house_id = h_key;
if (ltv_in < 80) then

select loantovalue_id into ltv_key
from loantovalue
where operator = 'is less than' and value = '80%';

end if;
if ((ltv_in > 80) and (ltv_in < 100)) then

select loantovalue_id into ltv_key
from loantovalue
where operator = 'is greater than' and value = '80%';

end if;
if (ltv_in = 100) then

select loantovalue_id into ltv_key
from loantovalue
where operator = 'is' and value = '100%';

end if;
if (lr_in < 40000) then

select loanrequested_id into lr_key
from loanrequested
where operator = 'is less than' and value = 40000;

end if;
if ((lr_in > 40000) and (lr_in < 75000)) then

select loanrequested_id into lr_key
from loanrequested
where operator = 'is greater than' and value = 40000;

end if;
if ((lr_in > 75000) and (lr_in < 150000)) then

select loanrequested_id into lr_key
from loanrequested
where operator = 'is greater than' and value = 75000;

end if;
if (lr_in > 150000) then

select loanrequested_id into lr_key
from loanrequested
where operator = 'is greater than' and value = 150000;

end if;
select customerloan_id, value into cl_key, cl_value
from customerloan
where creditrisk_id = cr_key and loantovalue_id = ltv_key
and loanrequested_id = lr_key;
cust_loan_output_web(cr_key, cl_key); %>

APPENDIX B WEB PROCEDURE TO DISPLAY IN
DECLARATIVE FORMAT

<%@ page language="PL/SQL"%>
<%@ plsql procedure="cust_loan_output_web"%>
<%@ plsql parameter="cr_key" default="null"%>
<%@ plsql parameter="cl_key" default="null"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN">
<html>
<head>
<title>Select Rule</title>
</head>
<body>
<div align="left"><p><h1>Knowledge Rules Query
Prototype</h1></p>
<%!

cursor cr_curs is
select * from creditrisk
where creditrisk_id = cr_key;
cr_row cr_curs%rowtype;
cursor cl_curs is
select * from customerloan
where customerloan_id = cl_key;
cl_row cl_curs%rowtype;
creditrisk_val creditrisk.value%type;
loantovalue_op loantovalue.operator%type;
loantovalue_val loantovalue.value%type;
debttoincome_op debttoincome.operator%type;
debttoincome_val debttoincome.value%type;
loanrequested_op loanrequested.operator%type;
loanrequested_val loanrequested.value%type;
creditscore_val creditscore.value%type;
house_val house.value%type; %>

<p>The appropriate knowledge rule for advice is:</p>
<table border="0" cellpadding="0" cellspacing="0">
<% for cr_row in cr_curs

loop %>
<tr><td>IF</td>
<% if cr_row.creditscore_id is not null then

select value into creditscore_val
from creditscore
where creditscore_id = cr_row.creditscore_id; %>

<td>Credit Score is <%=creditscore_val%> <%= '
'||cr_row.creditscore_logical %></td></tr>
<% end if;

if cr_row.debttoincome_id is not null then
select operator, value into debttoincome_op,

debttoincome_val from debttoincome
where debttoincome.debttoincome_id =

cr_row.debttoincome_id; %>
<tr><td></td><td>Debt to Income <%=debttoincome_op%>
<%=debttoincome_val%> <%= '
'||cr_row.debttoincome_logical %></td></tr>

<% end if;
if cr_row.house_id is not null then
select value into house_val
from house
where house_id = cr_row.house_id; %>

<tr><td></td><td>House is <%=house_val%></td></tr>
<% end if; %>

<tr><td>THEN </td><td>Credit Risk
<%=cr_row.value%></td></tr>

<% end loop; %>
<tr><td></td><td></td></tr>

<% for cl_row in cl_curs
loop %>

<tr><td>IF</td>
<% if cl_row.creditrisk_id is not null then
select value into creditrisk_val from creditrisk

2864 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

where creditrisk_id = cl_row.creditrisk_id; %>
<td>Credit Risk is <%=creditrisk_val %> <%= '
'||cl_row.creditrisk_logical %> </td></tr>

<% end if;
if cl_row.loantovalue_id is not null then

select operator, value into loantovalue_op, loantovalue_val
from loantovalue where loantovalue.loantovalue_id =
cl_row.loantovalue_id; %>
<tr><td></td><td>Loan to Value <%= loantovalue_op %>
<%=loantovalue_val%>
 <%= ' '||cl_row.loantovalue_logical %></td></tr>
<% end if;
if cl_row.loanrequested_id is not null then

select operator, value into loanrequested_op,
loanrequested_val from loanrequested
where loanrequested.loanrequested_id =

cl_row.loanrequested_id; %>
<tr><td></td><td>Loan Requested <%=loanrequested_op%>
<%=loanrequested_val%></td></tr>

<% end if; %>
<tr><td>THEN </td><td>Customer Loan

<%=cl_row.value%></td></tr>
<% end loop; %>
</table>
</body>

</html>

REFERENCES

[1] S. Antony, D. Batra, and R. Santhanam, “The use of a
knowledge-based system in conceptual data modeling,”
Decision Support Systems, vol. 41, pp. 176 - 188, 2005.

[2] E. Babiker, D. Simmons, R. Shannon, and N. Ellis, “A
Model for Reengineering Legacy Expert Systems to
Object-Oriented Architecture,” Expert Systems with
Applications, vol. 12, pp. 363-371, 1997.

[3] S. Boardman, M. Caffrey, S. Morse, and B. Rosenzweig,
Oracle Web Application Programming for PL/SQL
Developers, Upper Saddle River, NJ: Prentice-Hall, 2003.

[4] R.J. Brachman and H. J. Levesque, Knowledge
Representation and Reasoning, San Francisco, CA:
Morgan Kaufmann, 2004.

[5] Y. Duan and P. Burrell, “Some issues in developing expert
marketing systems,” Journal of Business & Industrial
Marketing, vol. 12, pp. 149-162, 1997.

[6] U. Fayyad and R. Uthurusamy, “Data Mining and
Knowledge Discovery in Databases,” Communications of
the ACM, vol. 39, pp. 24-26, 1996.

[7] E. Friedman-Hill, Jess in Action: Rule Based Systems in
Java, Greenwich, CT: Manning Publications, 2003.

[8] C. Gertosio and A. Dussauchoy, “Knowledge discovery
from industrial databases,” Journal of Intelligent
Manufacturing, vol. 15, pp. 29-37, 2004.

[9] J. C. Giarratano and G.D. Riley, Expert Systems:
Principles and Programming, Boston, MA: Course
Technology, 1998.

[10] F. Gomez and C. Segami, “Semantic interpretation and
knowledge extraction,” Knowledge-Based Systems, vol. 20,
pp. 51–60, 2007.

[11] Y. Guo, Z. Pan, and J. Heflin, “Choosing the best
knowledge base system for large semantic web
applications,” in Proceedings of the 13th international
World Wide Web conference, New York, NY, pp. 302 -
303, 2004.

[12] H. Hayes-Roth and N. Jacobstein, “The State of
Knowledge-Based Systems,” Communications of the ACM,
vol. 37, pp. 27-39, 1994.

[13] R.D. Hull and F. Gomez, “Automatic acquisition of
biographic knowledge from encyclopedic texts,” Expert
Systems with Applications, vol. 16, pp. 261–270, 1999 .

[14] R. Kaula, Oracle 11g: Developing AJAX Applications with
PL/SQL Server Pages, New York, NY: Mc-Graw-Hill,
2008.

[15] Y. Kim and W.N. Street, “An intelligent system for
customer targeting: a data mining approach,” Decision
Support Systems, vol. 37, pp. 215 - 228, 2004.

[16] R. Kimball, The Data Warehouse Toolkit, New York, NY:
John Wiley & Sons, 1996.

[17] S. Liao, “Expert system methodologies and applications—
a decade review from 1995 to 2004,” Expert Systems with
Applications, vol. 28, pp. 93-103, 2005.

[18] B. Lin, “An Overview of Intelligent Database,” Journal of
Computer Information Systems, vol. 33, pp. 8-12, 1993.

[19] M. Mannino, Database Design, Application Development,
and Administration , New York, NY: McGraw-Hill, 2006.

[20] F. Manola, “Object-Oriented Knowledge Bases,” AI Expert,
vol. 5, pp. 46 - 57, 1990.

[21] Y. Ma, B. Jin, and Y. Feng, “Dynamic evolutions based on
ontologies,” Knowledge-Based Systems, vol. 20, pp. 98–
109, 2007.

[22] B. Martin, A. Mitrovic, P. Suraweera, and A. Weerasinghe,
“DB-Suite: Experiences with Three Intelligent, Web-Based
Database Tutors,” Journal of Interactive Learning
Research, vol. 15, pp. 409-432, 2004.

[23] M.M.O. Owrang and F.H. Grupe, “Database Tools to
Acquire Knowledge for Rule-Based Expert Systems,”
Information and Software Technology, vol. 39, pp. 607-
616, 1997.

[24] S. K. Pal and P. Mitra, Pattern Recognition Algorithms for
Data Mining, Boca Raton, FL: CRC Press, 2004.

[25] J.B. Quinn, Intelligent Enterprise: A Knowledge and
Service Based Paradigm for Industry, New York, NY: The
Free Press, 1992.

[26] P. Seibel, Practical Common Lisp, New York, NY: Apress,
2005.

[27] Y.P. Shao, “The Infusion of Expert Systems in Banking:
An Exploratory Study,” Expert Systems with Applications,
vol. 12, pp. 429-440, 1997.

[28] J.F. Sowa, Knowledge Representation: Logical,
Philosophical, and Computational Foundations, New
York, NY: Brooks/Cole, 2000.

[29] L. Sterling and E. Shapiro, The Art of Prolog, Second
Edition: Advanced Programming Techniques (Logic
Programming), Boston, MA: The MIT Press, 1994.

[30] P. Suraweera and A. Mitrovic, “An Intelligent Tutoring
System for Entity Relationship Modelling,” International
Journal of Artificial Intelligence in Education, vol. 14, pp.
375-417, 2004.

[31] Z. Yuanhui, L. Yuchang, and S. Chunyi, “A Connectionist
Approach to Extracting Knowledge from Databases,” in
X.Liu, P. Cohen, and M. Berthold (ed.), Advances in
Intelligent Data Analysis, Berlin, Germany: Springer-
Verlag, pp. 465-475, 1997.

[32] O.M. Vasil’ev, D. P. Vetrov, and D. A. Kropotov,
“Knowledge Representation and Acquisition in Expert
Systems for Pattern Recognition,” Computational
Mathematics and Mathematical Physics, Vol. 47, pp.
1373–1397, 2007.

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2865

© 2012 ACADEMY PUBLISHER

