
Evaluation and Comparison on the Techniques of
Vertex Chain Codes

Linghua Li

College of Computer Science and Engineering, Dalian Nationalities University, Dalian, China
Email: linghl@139.com

Yining Liu

College of Communication Engineering, Jilin University, Changchun, China
Email: 1337687488@qq.com

Yongkui Liu

College of Computer Science and Engineering, Dalian Nationalities University, Dalian, China
Email: ykliu@dlnu.edu.cn

Borut Žalik

Computer Science, University of Maribor, Maribor, Slovenia
Email: borut.zalik@um.si

Abstract—This paper firstly describes the techniques of six
representative vertex chain codes, they are: original vertex
chain code, extended vertex chain code, variable-length
vertex chain code, variable-length compressed vertex chain
code, dynamic vertex chain code, and equal-length
compressed vertex chain code. The description includes the
main idea and encoding method of each vertex chain code.
Then the chain length, namely the code numbers, the
memory occupancy, namely the general binary bits, the code
average length of each code, namely bits per code of each
vertex chain code were compared respectively by large
numbers of experiments. In the end, the evaluation and
comparison were given from the view of chain code
efficiency. The goal of the paper is to provide convenience
and reference for the chain code researchers and users.

Index Terms—chain code, vertex chain code, comparison,
evaluation

I. INTRODUCTION

Chain code has been a research topic for more than
five decades. Since the pioneer work of Freeman in 1961,
different approaches of chain coding have been proposed
to improve the various aspects involved in chain code [1-
5]. Because of the comprehensive applicability of chain
code in many parts of pattern recognition and image
processing [6-12], the techniques of chain code increase
rapidly. Chain code is an efficient representation of
binary images composed of contours [13-15]. The idea of
a chain code is based on identifying and storing the
directions from each pixel to its neighbor pixel on each
contour. The technique of chain code includes two
aspects: the chain codes based on pixel and the chain
codes based on edge. For the former, some representative
pixel-based chain codes include 8-direction Freeman

chain code proposed by Freeman, 4-direction Freeman
chain code commonly used by people, angle differences
Freeman chain code (ADFCC) proposed by Y. K. Liu et
al. [1], enhanced relative 8-direction Freeman chain code
(ERDFCC) proposed by S. Zahir et al. [2], orthogonal
three-direction Freeman chain code (3OT) proposed by H.
Sánchez-Cruz et al. [14], arithmetic coding applied to
3OT chain code (Arith_3OT) proposed by H. Sánchez-
Cruz et al. [3], and modified directional Freeman chain
code in eight directions by a set of nine symbols (MDF9)
proposed by H. Sánchez-Cruz et al. [4], etc. For the latter,
the six vertex chain codes introduced in the paper are all
edge-based chain codes. Viewing from the compression
of the information, there are two kinds of compression:
with loss of information and with lossless of information.
The six vertex chain codes evaluated and compared in the
paper are all lossless-compression chain codes.

II. OVERVIEW OF TECHNIQUES OF VERTEX CHAIN CODES

We mainly describe the techniques of six
representative vertex chain codes including the original
vertex chain code (VCC), the extended vertex chain code
(E_VCC), the variable-length vertex chain code
(V_VCC), the variable-length compressed vertex chain
code (VC_VCC), the dynamic vertex chain code
(D_VCC), and the equal-length compressed vertex chain
code (EC_VCC).

A. Original Vertex Chain Code (VCC)
In 1999, E. Bribiesca first introduced the original

vertex chain code (VCC) [16]. The VCC is based on the
numbers of cell vertices which are in touch with the
bounding contour of the shape. This code determines the
number of pixels of the binary shape that are in touch
with the observed vertex of the shape’s boundary contour.

2840 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.12.2840-2848

The latter represents a connected sequence of edges and
vertices on the border between the shape and its exterior.

In the VCC, the boundaries or contours of any discrete
shape that are composed of regular cells can be
represented by chains. Therefore, these chains represent
closed boundaries. The minimum perimeter of closed
boundary corresponds to the shape composed only of one
cell. An element of a chain indicates the number of cell
vertices, which are in touch with the bounding contour of
the shape in that element position.

Figure 1 is an illustration of VCC which presents a
shape. It is previous that there are only three numbers of
0, 1, and 2 which are needed to present a boundary
composed with pixels of quadrate grids.

 In order to digitally represent these numbers of cell
vertices, two bits are needed for each number. The
element 1, 2, 3 of VCC can be represented by their 2-bit
binary equivalents, as shown in Table I.

TABLE I.

ENCODING OF THE ELEMENT OF ORIGINAL VCC

VCC 1 2 3
Binary code 01 10 11

As an illustration, consider the shape of Figure 1, when

starting at the left-top point and walking along the
boundary in a counter-clockwise direction, the VCC of
the contour is

1 2 3 1 2 2 1 2 2 2 1 3 1 2 2 1 3 1 2 2,
as shown in Figure 1, or in binary form,

01 10 11 01 10 10 01 10 10 10 01 11 01 10 10 01 11
01 10 10.

Figure 1. Obtaining the original VCC from the shape.

As we can see from the above, the numbers of chain
code of VCC for the shape of Figure 1 are 20, and the
numbers of binary bit of it are 40.

The VCC is invariant under translation and rotation.
Using this concept of chain code it is possible to relate
the chain length to the contact perimeter, which
corresponds to the sum of the boundaries of neighboring
cells of the shape; also, to relate the chain nodes to the
contact vertices, which correspond to the vertices of
neighboring cells. So, in this way, these relations among
the chain and the characteristics of interior of the shape
allow you to obtain interesting properties [16].

Since the VCC was proposed, it has obtained a lot of
applications. For example, in [17], VCC was used for
image recognition. In [18], VCC was used in neural
network corner detection. In [19], VCC was used in skew

detection for form document. In [20], VCC was used for
calculating the compact and posture ratio of an image
region.

B. Extended Vertex Chain Code (E_VCC)
Considering the compression efficiency of chain code,

in 2007, Y.K. Liu et al. proposed extended vertex chain
code (E_VCC) which is developed based on the original
VCC [21]. Considering that the original VCC uses 2 bits
to represent only three code elements 1, 2, and 3, E_VCC
is introduced to add an element 0 without increasing the
average bits per code. In E_VCC, the element “0” is
added according to the experiments which show that the
combination of element 1 and 3 is the most often
occurring combination. Then the combination of element
1 and 3 is substituted by code 0.

In order to digitally represent these codes, two bits are
needed for each code, and the binary bits of each code are
not increased according to the original VCC. Table II
shows the code relationship between E_VCC and original
VCC and the binary form of E_VCC which consists of
four code symbols.

TABLE II.

RELATIONSHIP BETWEEN E_VCC AND ORIGINAL VCC

E_VCC 0 1 2 3
VCC 1 and 3 1 2 3

Binary of
E_VCC 00 01 10 11

As an illustration, consider the previous shape of

Figure 1, when starting at the left-top point and walking
along the boundary in a counter-clockwise direction, the
E_VCC of the contour is

1 2 3 1 2 2 1 2 2 2 0 1 2 2 0 1 2 2,
as shown in Figure 2, or in binary form,

01 10 11 01 10 10 01 10 10 10 00 01 10 10 00 01 10
10.

Figure 2. Obtaining the E_VCC from the shape.

As we can see from the above, the numbers of chain
code of E_VCC for the shape of Figure 1 are 18 which
are less than the original VCC, and the numbers of binary
bit of it are 36 for the same condition.

From the example it is clear that the length of the
E_VCC is less than the original VCC because of the two
code symbols in original VCC are substituted by one
code symbol in E_VCC but with the same symbol length
with the E_VCC.

C. Variable-Length Vertex Chain Code (V_VCC)
Reference [21] also proposed a new vertex chain code

named variable-length vertex chain code (V_VCC) which

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2841

© 2012 ACADEMY PUBLISHER

is also developed based on the original VCC. The
V_VCC also uses the codes of VCC which has three
elements 1, 2, and 3. The difference between them is that
the definition of the V_VCC considers the probability of
three codes occurring. The experiments showed that the
probability of code 2 is greater than the other two.
Therefore, in V_VCC, the one bit binary digit 0 is used to
represent for code 2, the two bits binary digit 10 and 11 is
used to represent respectively for code 1 and code 3
which is with variable-length coding by applying the
concept of Huffman coding concept.

Table III shows the code relationship between V_VCC
and original VCC and their binary form of each code
symbol are also listed.

TABLE III.

RELATIONSHIP BETWEEN V_VCC AND ORIGINAL VCC

V_VCC 1 2 3
VCC 1 2 3

Binary of VCC 01 10 11
Binary of
V_VCC 10 0 11

As an illustration, consider the previous shape of

Figure 1, when starting at the left-top point and walking
along the boundary in a counter-clockwise direction, the
V_VCC of the contour is the same as the original VCC, it
is

1 2 3 1 2 2 1 2 2 2 1 3 1 2 2 1 3 1 2 2,
as shown in Figure 1, but the binary form of the V_VCC
(shown in figure 3) is different from the original VCC, it
is

10 0 11 10 0 0 10 0 0 0 10 11 10 0 0 10 11 10 0 0.

Figure 3. Obtaining the V_VCC from the shape.

As we can see from the above, the numbers of chain
code of V_VCC for the shape of Figure 1 are 20 which
are as same as the original VCC, and the numbers of
binary bit of it are 30 because that the numbers of binary
bit for code 2 are decreased.

From the example it is clear that the function of the
V_VCC is the same as the original VCC, but the length
of the V_VCC is less than the original VCC.

D. Variable-Length Compressed Vertex Chain Code
(VC_VCC)

Reference [21] also proposed a third new vertex chain
code named variable-length compressed vertex chain
code (VC_VCC) which is developed based on the
original VCC and Huffman coding concept by
considering the different probabilities of the codes. The
VC_VCC is constructing by taking account the E_VCC

and V_VCC and it consists of five codes: Code 1, Code 2,
Code 3, Code 4 and Code 5. The two new codes added
for representing respectively for two combinations, one is
the combination with first code 1 and second code 3, the
other is the combination with first code 3 and second
code 1. The probabilities of the codes were obtained
experimentally [21]. From the experiments, it gets that
the probability of the two combinations are equal.
According to the statistical probabilities, the binary
Huffman codes 0, 10, 110, 1110, and 1111 are assigned
to the code values of Code 1, Code 2, Code 3, Code 4 and
Code 5 respectively. Table IV shows the relationship
between VC_VCC and original VCC and the probability
and binary form of each code.

TABLE IV.

RELATIONSHIP BETWEEN VC_VCC AND ORIGINAL VCC

VC_VCC Code 1 Code 2 Code 3 Code 4 Code 5
VCC 2 1 and 3 3 and 1 1 3

Probability 0.657 0.138 0.138 0.034 0.033
Binary of
VC_VCC 0 10 110 1110 1111

As an illustration, consider the previous shape of

Figure 1, when starting at the left-top point and walking
along the boundary in a counter-clockwise direction, the
VC_VCC of the contour is

c4 c1 c3 c1 c1 c4 c1 c1 c1 c2 c4 c1 c1 c2 c4 c1 c1,
as shown in Figure 4, where the c1, c2, c3, c4 and c5 are
the respective abbreviations for Code 1, Code 2, Code 3,
Code 4 and Code 5, or in binary form

1110 0 110 0 0 1110 0 0 0 10 1110 0 0 10 1110 0 0.

Figure 4. Obtaining the VC_VCC from the shape.

As we can see from the above, the numbers of chain
code of VC_VCC for the shape of Figure 1 are 17 which
are the least one in the vertex chain codes among the
above, and the numbers of binary bit of it are 33 which
are not the least among the above for the reason that the
advantage of Huffman coding relies in the conditions
where the length of the shape contours which will be
described is more longer. Namely, the more the length of
the shape, the less the numbers of binary bit required by
VC_VCC compared to the chain codes without Huffman
coding.

Within all of the vertex chain codes described above,
the result of the comparison shows that the VC_VCC is
the most efficient [21]. Up to now, VC_VCC remains one
of the most efficient to compress binary objects. In [22],
VC_VCC was further compressed by applying the
concept of segment on it.

2842 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

E. Dynamic Vertex Chain code
To decrease the chain length of the vertex chain code,

in 2010, G. F. Yu et al. proposed dynamic vertex chain
code (D_VCC) which is developed based on the original
VCC [23]. The main idea of D_VCC is to change the
means of original VCC in which each code expresses the
numbers of cell vertices, and assigns new code value for
the elements of chain code. There are ten elements in
D_VCC, from the decimal number 0 to 9. The decimal
number 0 (or 9) represents code “1” of original VCC, the
decimal number 9 (or 0) represents code “3” of original
VCC, and the decimal number 1 to 8 represent code “2”
and the numbers of sequential code “2” directly. For
instance, the decimal number 1 represents the one code
“2”, the decimal number 2 represents the two sequential
codes “22” of VCC, and so on. Table V shows the
relationship between D_VCC and original VCC.

TABLE V.

RELATIONSHIP BETWEEN D_VCC AND ORIGINAL VCC

D_VCC VCC
0 1 or 3
1 2
2 22
3 222
4 2222
5 22222
6 222222
7 2222222
8 22222222
9 3 or 1

As an illustration, consider the shape of Figure 5, when

starting at the left-top point and walking along the
boundary in a counter-clockwise direction, the VCC of
the contour is

1 2 3 1 3 1 1 3 2 2 2 2 2 1 1 3 2 2 2 2 2 2 2 1 1 2 3 1 3
1 3 1 3 3 2 2 2 2 1 2 1 2 3 1 1 2 3 3 2 1 3 1 2 2,
as shown in Figure 5, or in binary form,

01 10 11 01 11 01 01 11 10 10 10 10 10 01 01 11 10
10 10 10 10 10 10 01 01 10 11 01 11 01 11 01 11 11 10
10 10 10 01 10 01 10 11 01 01 10 11 11 10 01 11 01 10
10.

Figure 5. Obtaining the VCC from the shape.

In the same conditions, when expressing with D_VCC,
the chain code of the contour is

0 1 9 0 9 0 0 9 5 0 0 9 7 0 0 2 9 0 9 0 9 0 9 9 4 0 1 0 1
9 0 0 1 9 9 1 0 9 0 2,
as shown in Figure 6, where the code “0” and “9” of
D_VCC represent the code “1” and “3” of VCC
respectively. When expressing in binary form, it is

0000 0001 1001 0000 1001 0000 0000 1001 0101
0000 0000 1001 0111 0000 0000 0010 1001 0000 1001
0000 1001 0000 1001 1001 0100 0000 0001 0000 0001
1001 0000 0000 0001 1001 1001 0001 0000 1001 0000
0010.

Figure 6. Obtaining the D_VCC from the shape.

As we can see from the above, the numbers of chain
code of D_VCC for the shape of Figure 5 are 40 which
are less than the original VCC with 54 for the reason that
the codes of D_VCC apply the method of arithmetic
coding, but the numbers of binary bit of it are 160 which
are more than the original VCC with 108 because of the
coding for the codes of D_VCC are also with equal
length. Moreover, from the above description, we can see
that D_VCC has ten codes but uses four binary bits for
each code. It is obviously that four binary bits can encode
for sixteen codes at most, it generates redundancy among
the rest.

So, it is obviously that the ultimate goal of D_VCC is
to reduce the general numbers of chain code by
overlooking the memory capability occupied by the chain
code. In other word, the general numbers of binary bits
are increased largely.

F. Equal-Length Compressed Vertex Chain Code
(EC_VCC)

To further decrease the chain length of the vertex chain
code, in [23], another vertex chain code named equal-
length compressed vertex chain code (EC_VCC) was
proposed, which is developed based on E_VCC. The
main idea of EC_VCC is to replace the minimum unit bit
of other vertex chain code with byte. EC_VCC utilizes
one byte (eight binary bits) for one code, and it divides
the eight bits into two parts: two high bits and six low bits.
The encodings of two high bits represent for four code
values of EC_VCC, and the encodings of six low bits
represent for the numbers of sequential codes indicated
by the two high bits. For the six binary bits can encode

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2843

© 2012 ACADEMY PUBLISHER

for 64 codes at most, if the numbers of sequential codes
exceed 64, there will start a new byte.

Table VI shows the relationship between EC_VCC and
original VCC. The four codes of the two high bits of a
byte are “00”, “01”, “10”, and “11”, which represent code
0, 1, 2, 3 of E_VCC respectively. The six low bits are
indicated by “b5b4b3b2b1b0”, in which “b” means bit
and the number from 5 to 0 indicates the location of each
bit of the byte. The binary code of the six low bits is from
“00000” to “1111111”, which represents the decimal
value from 0 to 63. So the decimal number 0 indicates the
number of sequential codes is one, the decimal number 1
indicates the numbers of sequential codes are two, and so
on, until the decimal number 63 indicates the numbers of
sequential codes are 64. When the numbers of sequential
codes exceed 64, there will start a new byte.

TABLE VI.

RELATIONSHIP BETWEEN EC_VCC AND ORIGINAL VCC

EC_VCC (eight binary bits) E_VCC

00 b5b4b3b2b1b0 Code 0 and its sequential
number/numbers

01b5b4b3b2b1b0 Code 1 and its sequential
number/numbers

10 b5b4b3b2b1b0 Code 2 and its sequential
number/numbers

11 b5b4b3b2b1b0 Code 3 and its sequential
number/numbers

As an illustration, consider the shape of Figure 5, in

the same conditions, when encoding by EC_VCC, the
binary form of the chain code is

01000000 10000000 11000000 00000000 01000001
11000000 10000100 01000001 11000000 10000110
01000001 10000000 11000000 00000010 11000000
10000011 01000000 10000000 01000000 10000000
11000000 01000001 10000000 11000001 10000000
00000000 01000000 10000001.

As we can see from the above, the numbers of chain
code of EC_VCC for the shape of Figure 5 are 28 which
are less than the original VCC with 54 for the same
reason with D_VCC that the codes of them apply the
method of arithmetic coding, but the numbers of binary
bit of it are 224 which are more than the D_VCC with
160 and the original VCC with 108 because of the same
reason with D_VCC that the coding for the codes of them
are also with equal length. Moreover, from the above
description, we can see that EC_VCC uses 64 codes to
represent code "1" of VCC which only needs two code in
deed because the sequential numbers of code "1" are only
two at most. It is obviously that the code values of
EC_VCC generate more redundancy than the D_VCC.

It is obviously that the ultimate goal of EC_VCC is
also to reduce the general numbers of chain code by
overlooking the memory capability occupied by the chain
code, which is as same as D_VCC. Each code of
EC_VCC has eight binary bits, and the whole numbers of
codes in EC_VCC are 256.

III. COMPARISON AND EVALUATION

A. Method of Evaluation for Chain Codes
In [21], a method for evaluating the efficiency of chain

codes is proposed. The efficiency E of the chain code was
defined as:

E = C / L (1)
where C is the average expression ability per code, and

L represents the average number of bits per code (the
average code length). In other words, the efficiency of a
chain code is proportional to the average expression
ability per code, and with inverse ratio to the average
number of bits per code. It means the average length of
contours which represented by each binary bit.

The expression ability per code C refers to the average
length of contours (or digital curves) which can be
represented by every code of the chain code (measured in
pixel units). When a code represents the relationship
between two edge-adjacency pixels, such as the code “1”,
“2” and “3” of E_VCC, the expression abilities of them
become 1, and when a code represents the relationship
between two corner-adjacency pixels, such as the code
“0” of E_VCC, the expression ability of it becomes 2.

B. Comparison of Chain Codes
Figure 7 shows ten sample shapes we used to apply

vertex chain codes, as taken from black-and-white raster
images, whose sizes and numbers of pixels are shown in
Table VII. We compared them from two aspects with the
six vertex chain codes we described above. One is from
the way of experiment results; the other is from the way
of theoretic analysis. All these contours were
counterclockwise oriented in the process of experiments.

Figure 7. Sample shapes utilized to apply vertex chain codes.

TABLE VII.

SIZE AND NUMBER OF PIXELS OF EACH SAMPLE SHAPE

Shape Size Pixels
Tiger 133×129 17157
Dragon 127×143 18161
Gun 557×258 143706
Mouse 508×466 236728
Flower 484×478 231352
Handwriting 352×335 117920
Angel wings 654×315 206010
Moon cake 504×463 233352
Table 364×400 145600
Cuttlefish 396×376 148896

1) Comparison on Experiment Results
First, we calculated the chain lengths of each contour

shape in terms of the numbers of chain code with the six

2844 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

vertex chain codes described as above, which are showed
in Table VIII.

As it can be seen in Table VIII, the longest chain
length comes from VCC and V_VCC with 29600 codes
of total length following by E_VCC with 24124. On the
other hand, the shortest chain length comes from
EC_VCC with 14241 codes of total length following by

D_VCC with 22310 and then VC_VCC with 22265
which is very near to the D_VCC.

Then, we calculated the memory capability of each
contour shape in terms of the numbers of binary bit with
the six vertex chain codes described as above, which are
showed in Table IX.

TABLE VIII.

CHAIN LENGTH, IN NUMBERS OF CHAIN CODE, FOR THE SAMPLE SHAPES

 VCC E_VCC V_VCC VC_VCC D_VCC EC_VCC
Tiger 868 698 868 648 666 424
Dragon 1134 939 1134 843 876 608
Gun 1884 1462 1884 1401 1346 766
Mouse 4140 3235 4140 2992 3334 2085
Flower 4602 3801 4602 3468 3599 2419
Handwriting 4112 3389 4112 3175 3414 2344
Angel wings 3454 2760 3454 2485 2780 1745
Moon cake 2026 1640 2026 1476 1532 956
Table 3288 3031 3288 2913 1336 819
Cuttlefish 4092 3169 4092 2864 3427 2075
Total 29600 24124 29600 22265 22310 14241

TABLE IX.

MEMORY CAPABILITY, IN NUMBERS OF BINARY BIT, FOR THE SAMPLE SHAPES

 VCC E_VCC V_VCC VC_VCC D_VCC EC_VCC
Tiger 1736 1396 1364 1120 2664 3392
Dragon 2268 1878 1784 1481 3504 4864
Gun 3768 2924 2884 2131 5384 6128
Mouse 8280 6470 6642 5183 13336 16680
Flower 9204 7602 7206 6149 14396 19352
Handwriting 8224 6778 6606 6378 13656 18752
Angel wings 6908 5520 5566 4413 11120 13960
Moon cake 4052 3280 3172 2410 6128 7648
Table 6576 6062 4100 3626 5344 6552
Cuttlefish 8184 6338 6700 5109 13708 16600
Total 59200 48248 46024 38000 89240 113928

As it can be seen in Table IX, the most number of

binary bits produced by EC_VCC with 113928 bits of
total memory capability following by D_VCC with 89240
bits of total memory capability. On the other hand, the
least number of binary bits produced by VC_VCC with
38000 bits of total memory capability following by
V_VCC with 46024 bits of total memory capability.

And then, based on the chain lengths of each contour
shape shown in Table VIII and the memory capability of
each contour shape shown in Table IX, we calculated the
average length in terms of bits per symbol with the six
vertex chain codes described as above, which are showed
in Table X. In Table X, the numbers of symbols of each
vertex chain code are also listed.

TABLE X.

AVERAGE LENGTH OF EACH CODE, IN NUMBERS OF BITS PER SYMBOL

 VCC E_VCC V_VCC VC_VCC D_VCC EC_VCC
Numbers of symbols 3 4 3 5 10 256
Bits/symbol 2 2 1.55 1.71 4 8

As it can be seen in Table X, the longest average

length in bits per symbol is produced by EC_VCC with 8
bits per symbol following by D_VCC with 4 bits per
symbol. On the other hand, the shortest average length in
bits per symbol is produced by V_VCC with 1.55 bits per
symbol following by VC_VCC with 1.77 bits per symbol.

At the same time, it can be seen in Table X, the
numbers of symbols of EC_VCC are the most with 256
symbols following by D_VCC with 10 symbols, and the
numbers of symbols of VCC and V_VCC are the least
with 3 symbols following by E_VCC with 4 symbols and
then the VC_VCC with 5 symbols.

The results of chain codes of D_VCC and EC_VCC
above show that the more the numbers of symbols, the
more bits per symbol of the chain code. And the results of
chain codes of V_VCC and VC_VCC above show that
the use of Huffman encoding concept can decrease the
bits per symbol by contrast them to the chain codes of
VCC and E_VCC.

The next, we calculated the average expression ability.
Analyzing the above six vertex chain codes, for VCC and
V_VCC, the expression ability of each code is 1 because
each code represents the relationship between two edge-

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2845

© 2012 ACADEMY PUBLISHER

adjacency pixels. Namely, the average expression
abilities of VCC and V_VCC are 1.

For E_VCC and VC_VCC, the expression ability of
some codes is 1 because they represent the relationship
between two edge-adjacency pixels such as code 1, 2 and
3 of E_VCC and code c1, c4 and c5 of VC_VCC, and the
expression ability of the other codes is 2 because they
represent the relationship between two corner-adjacency
pixels such as code 0 of E_VCC and code c2 and c3 of
VC_VCC. So, we calculated the probabilities of the
codes with expression ability of 1 and 2 respectively, and
then calculated the average expression abilities of
E_VCC and VC_VCC.

For D_VCC and EC_VCC, some codes represent the
relationship between two edge-adjacency pixels such as
code 0, 1 and 9 of D_VCC and code 01000000,
10000000, and 11000000 in binary form of EC_VCC,
and the others represent the relationship between two
corner-adjacency pixels such as code 00000000 in binary
form of EC_VCC. So, some codes have the expression
ability of 1 and the others have the expression ability of 2.
At the same time, because some codes are generated
based on calculation, they represent the relationship not
only between two pixels but a number. For instance, the
expression ability of code 2 to code 8 of D_VCC is from
2 to 8, because they represent the sequential numbers of
code 2 are from 2 to 8; the expression ability of some
codes of EC_VCC such as code “01000001”,
“01000010”, and so on, until code “01111111” in binary
form, and code “10000001”, “10000010”, and so on, until
code “10111111” in binary form, and code “11000001”,

“11000010”, and so on, until code “11111111” in binary
form can be from 2, 3 up to 64 respectively; and the
expression ability of some codes of EC_VCC such as
code “00000001”, “00000010”, and so on, until code
“00111111” in binary form can be from 4, 6, up to 128
respectively. To sum up, we calculated the probabilities
of different codes with different expression ability
respectively, and then calculated the average expression
abilities of D_VCC and EC_VCC.

Table XI shows the number of chain symbols, different
chain symbols with same expression ability and
probabilities for each, and the average expression ability
of each vertex chain codes calculated by applying to the
above ten sample shapes. In Table XI , the chain symbols
of EC_VCC are represented in decimal form, namely the
symbols from 0 to 255 are represented for the codes from
“00000000” to “11111111” in binary form of one byte
respectively.

For the last row of Table XI, it only provided the
average expression ability of EC_VCC. Considering that
the symbols of EC_VCC are very large (from 0 up to
256), and the expression ability for each symbol is vary
(from 1 up to 128), it did not list different chain symbols
with same expression ability and probabilities
respectively, but only represent the total probabilities of
1.000 for all symbols. Nevertheless, the result of average
expression ability of EC_VCC is also calculated based on
the experiments on the same ten sample shapes with the
same method applied to other vertex chain codes, the
difference lies in the amount of calculation is very large.

TABLE XI.

AVERAGE EXPRESSION ABILITY CALCULATED BASED ON THE SAMPLE SHAPES

 Number of
symbols Chain symbols Expression ability probabilities Average expression ability

VCC 3 1,2,3 1 1.000 1.00
V_VCC 3 1,2,3 1 1.000 1.00
E_VCC 4 1,2,3 1 0.769 1.23 0 2 0.231
VC_VCC 5 c1,c4,c5 1 0.664 1.34 c2,c3 2 0.336
D_VCC

10

0,1,9 1 0.869

1.40

2 2 0.047
3 3 0.028
4 4 0.015
5 5 0.008
6 6 0.004
7 7 0.004
8 8 0.025

EC_VCC 256 0~255 1~128 1.000 2.08

Synthesizing the above analysis and data, we
calculated the efficiency E of the six vertex chain codes
based on the average code length L obtained from the
above Table X and the average expression ability per
code C obtained from the above Table XI, as shown in
Table XII.

TABLE XII.

EFFICIENCY OF VERTEX CHAIN CODES

 C L E
VCC 1 2.00 0.50
E_VCC 1.23 2.00 0.62
V_VCC 1 1.55 0.65
VC_VCC 1.34 1.71 0.78
D_VCC 1.40 4.00 0.35
EC_VCC 2.08 8.00 0.26

As it can be seen in Table XII, the highest efficiency is
produced by VC_VCC with 0.78 following by V_VCC
with 0.65 and then E_VCC with 0.62. On the other hand,

2846 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

the lowest efficiency is produced by EC_VCC with 0.26
following by D_VCC with 0.35 and then VCC with 0.50.

2) Comparison on Theoretic Analysis
Analyzing the reason of the generation of different

efficiencies, the two highest efficiency produced by the
two vertex chain codes with not much symbols of chain
code and variable length produced by Huffman coding.
Namely, the numbers of bits per symbol is varying with
optimum coding. On the other hand, the two lowest
efficiency produced by the two vertex chain codes with
equal length and much symbols. Even so, D_VCC and
EC_VCC apply the idea of arithmetic encoding which
can be referenced in producing new methods of chain
code. Although D_VCC and EC_VCC produced the
lowest efficiency, but for the reason that there are
redundancy codes in them, and the number of symbols is
too large with unnecessarily.

To enhance the efficiency of vertex chain code, we can
consider from the selection of numbers of symbols, the
coding of chain code symbols with variable-length
encoding and arithmetic encoding, etc.

IV. CONCLUSION

The methods of vertex chain code discussed thus far
are by no means the all. In the paper, we described the
techniques of six vertex chain codes. The techniques are
discussed from two aspects: the description of techniques
of vertex chain code and the comparison and evaluation
of them.

The main reason for the popularity of vertex chain
codes is their compression capabilities with more and
more economical in their uses of memory capacity. We
hope our research in the paper can provide convenience
and reference for the chain code researchers and users.
Although not mentioned in this paper, there have been
other approaches of vertex chain code. The goal of the
research related to pattern recognition and image
processing, but there are some problems such as
extending some new algorithm about vertex chain code,
which are the work we need to do in the future.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation of China (60675008) and the Natural
Science Foundation of Liaoning Province (201102042).

REFERENCES
[1] Y.K. Liu, B. Zalik, “An Efficient Chain Code with

Huffman Coding,” Pattern Recognition, 2005, 38 (4):553–
557.

[2] S. Zahir, K. Dhou, “A new chain coding based method for
binary image compression and reconstruction,” PCS,
Lisbon, Portugal, 2007, pp. 1321–1324.

[3] H. Sánchez-Cruz, M.A. Rodríguez-Díaz, “Coding Long
Contour Shapes of Binary Objects,” 14th Iberoamerican
Congress on Pattern Recognition, CIARP, 2009, pp. 45–52.

[4] H. Sánchez-Cruz, “Proposing a new code by considering
pieces of discrete straight lines in contour shapes,” J. Vis.
Commun. Image R. 2010, 21: 311–324.

[5] S. Priyadarshini1, G. Sahoo, “A new lossless chain code
compression scheme based on substitution,” International
Journal of Signal and Imaging Systems Engineering, 2011,
4 (1):50–56.

[6] H. Sun, J.Y. Yang, M.W. Ren, “A fast watershed algorithm
based on chain code and its application in image
segmentation,” Pattern Recognition Letters, 2005, 26(9):
1266–1274.

[7] F. Arrebola, F. Sandoval, “Corner detection and curve
segmentation by multiresolution chain-code linking,”
Pattern Recognition, 2005, 38(10): 1596–1614.

[8] S. Zhao, Y. Xu, H. Li, H. Yang, “A Comparison of
Lossless Compression Methods for Palmprint Images”,
Journal of Software, 2012, 7(3): 594–598.

[9] Z. Zeng, W. Yang, “Design Patent Image Retrieval Based
on Shape and Color Features”, Journal of Software, 2012,
7(6): 1179-1186.

[10] R.K. Gupta, B. Gurumoorthy, “Automatic extraction of
free-form surface features (FFSFs),” Computer-Aided
Design, 2010, 44(2): 99–112.

[11] X.L. Yan, L.P. Bu, L.M. Wang, “A Flame Apex Angle
Recognition Arithmetic Based on Chain Code,” Advances
in Intelligent and Soft Computing, 2012, 116: 29–35.

[12] I.K.G.D. Putra, M.A. Sentosa, “Hand Geometry
Verification based on Chain Code and Dynamic Time
Warping,” International Journal of Computer Applications,
2012, 38(12): 17–22.

[13] E. Bribiesca, “A chain code for representing 3D curves,”
Pattern Recognition, 2000, 33(5): 755–765.

[14] H. Sánchez-Cruza, E. Bribiescab, R.M. Rodríguez-
Dagnino, “Efficiency of chain codes to represent binary
objects,” Pattern Recognition, 2007, 40(6): 1660–1674.

[15] M. Maitre, M.N. Do, “Depth and depth–color coding using
shape-adaptive wavelets,” Journal of Visual
Communication and Image Representation, 2010, 21(5):
513–522.

[16] E. Bribiesca, “A new chain code,” Pattern Recognition,
1999, 32(2): 235–251.

[17] M. Salem, A. Sewisy, U. Elyan, “A vertex chain code
approach for image recognition,” ICGST International
Journal on Graphics, Vision and Image Processing, 2005,
5(3): 1–8.

[18] S.H. Subri, H. Haron, R. Sallehuddin, “eural network
corner detection of vertex chain code,” AIML Journal,
2006, 6(1): 37–43.

[19] S.X. Zhang, W. Zhang, G.Q. Li, G.Q. Gu, “Skew detection
for form document using Vertex-chain-code,” Journal of
East China Normal University: Natural Science, 2004,
9(3): 54–58.(In Chinese)

[20] D. Q. Wang, W. Zhang, G. Q. Gu, “Calculating the
compact and posture ratio of an image region based on
VCC,” Journal of East China Normal University: Natural
Science, 2005, 3(1): 59–62. (In Chinese)

[21] Y. K. Liu, W. Wei, P. J. Wang, B. Žalik, “Compressed
vertex chain codes,” Pattern Recognition, 2007, 40(11):
2908–2913.

[22] P. Y. Chen, C. P. Chang, “The segmented vertex chain
code,” Journal of the Chinese Institute of Engineers, 2011,
34(6): 40–44.

[23] G. F. Yu, L. Wang, “Research on compression-type vertex
chain code,” Journal of Image and Graphics, 2010, 15(10):
1465–1470. (In Chinese)

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2847

© 2012 ACADEMY PUBLISHER

Linghua Li female, was born in
Liaoning China in February 1975, a
lecturer in Computer Science Department
at Dalian Nationalities University, Dalian,
China. She received her BSc in
application of electronic technique from
Liaoning Normal University in 1998. She
received her MSc in physics from
Liaoning Normal University in 2001. Her

areas of interest are pattern recognition and image processing &
recognition.

Yining Liu female, was born in
Liaoning China in January 1991, a
junior in College of Communication
Engineering, Jilin University,
Changchun, China.

Yongkui Liu male, was born in Liaoning
China in May 1961, a professor in Computer
Science Department at Dalian Nationalities
University, Dalian, China. He has his BSc in
computer science from Jilin University in
1982. He has his MSc in computer
application from Shenyang University of
Technology in 1987. He has his PhD in
CAD and computer graphics from Zhejiang
University in 1999. His research interests lie

in computer Graphics, pattern recognition and image processing.

Borut Žalik is a professor of Computer
Science at University of Maribor, Slovenia.
He obtained PhD in computer science in
1993 from the University of Maribor,
Slovenia. He is the head of Laboratory for
Geometric modeling and multimedia
algorithms. His research interests include
computational geometry, geometric data
compression, scientific visualization and
geographic information systems. He is an

author or co-author of more than 70 journal and 90 conference
papers.

2848 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

