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Abstract—This paper presents a novel distance concept, 
Vector-Distance (VD) for high dimensional data. VD 
extends traditional scalar-distance to a vector-like fashion 
by collecting multi partial distances from diverse angles. 
These partial distances are derived from random 
projections, and they preserve individual features of 
dimensions as much as possible. Based on VD definition, a 
method family for neighborhood development is proposed, 
where methods consist of some norm definitions and certain 
constrains specified for various purposes. Experiments on 
real datasets verify the quality of neighborhoods produced 
by the proposed method family better or competitive with 
the neighborhood produced by the state of the art. 
 
Index Terms—vector-distance (VD), high dimensional data, 
partial distances, neighborhood development 
 

I.  INTRODUCTION 

High dimensional data received renewed interest in 
recent years thanks to the increase of the available 
computer hardware. While the software or approaches 
handling to them didn’t achieve so sharp improvement as 
hardware due to the difficulty in learning high 
dimensional data structure. The structure of high 
dimensional space defies usual 3-dimensional geometric 
intuition, and it is extremely sparse with data points far 
away from each other. If using conventional metric to 
explore a data’s neighborhood, only a small number of 
neighbors may be inferred. Unless the neighborhood 
radius is set large, sufficient neighbors could be covered. 
But that leads to the loss of locality. This phenomenon is 
known in the statistical literatures as the curse of 
dimensionality, and its affect increases exponentially in 
the dimension [1, 2, 3]. 

Dimension reduction is the natural solution to address 
this issue. This approach family includes dimension 
selection that chooses important dimensions, dimension 
extraction that derives new dimensions from the original 
ones, and dimension weighting that equips dimensions 
with significance coefficients. Their idea relies on 
defining data-dependent metrics that can capture local 
distribution features from dimension analysis so as to 
generate data’s new representation. These metrics provide 
a scalar value, which reflects the distance information 
from a single angle. Yet in high dimensional space the 
single-source-based metric might not succeed in 
exploring exact distance information everywhere because 
the dimension significance might vary from region to 
region. For example, high dimensional data x, y and z, 
perhaps the dimensions that are critical to measure 
distance between x and y are not important to x and z. 
That inspires us to define a multi-source-based metric. 

This paper defines a vector-fashion distance concept 
for high dimensional data, named as Vector-Distance 
(VD). VD equips a pair of data points with a vector as 
their distance; the components of that vector are partial 
distance values derived using random projections 
technique. The random projections are realized by 
iterations of data space partition. That idea is rooted from 
Local Sensitive Hashing (LSH) [4]. LSH is focused on 
nearest neighbor searching, and it develops neighborhood 
by collecting hash table buckets that query is projected to. 
The neighborhood produced by LSH is an unsorted set, 
so that an extra metric has to be consulted to find the 
nearest neighbor. Compared with classical LSH, VD is 
characterized with the ability to sort neighbors. 

Based on VD, a method family of neighborhood 
formulation is proposed, where various metrics plus some 
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constrains specify diverse manners of neighborhood 
formulation. Heuristics are given to facilitate VD 
computation, thus without suffering from huge cost in 
tuning parameters that many random-projection-based 
method need. 

The rest of this paper is organized as below. Section 2 
reviews some work, namely, state of the art of 
neighborhood development for high dimensional data. 
Then VD definition and method family are presented in 
Section 3. Consequently, Section 4 discusses self tuning 
of parameters of random projections. Experimental 
evidence and analysis are given in Section 5, followed by 
conclusion in the last section. 

II.  RELATED WORK 

LSH originally aims to solve the ε–approximate 
nearest neighbor problem of high dimensional data. The 
relaxation from finding an exact answer to an 
approximate answer removes the curse. 

LSH is asked to return a point whose distance from the 
query is at most (1+ε) times the distance from the query 
to its nearest points. The appeal of this approximation 
fashion is that in many cases, an approximate nearest 
neighbor is almost as good as the exact one. The general 
LSH schema relies on existence of locality-sensitive hash 
functions. 

 
Various families of hash functions can be defined to 

yield various LSH schemas. But the precondition is that 
the function must meet the locality-sensitiveness property, 
that is, the basic parameters r, p1 and p2 can be computed. 

Many literatures have touched this issue. Reference [5] 
defines the hash function mapping from original space to 
Hamming space, and rectangular-shaped cell acts as the 
basic grid to form neighborhood. Reference [6] projects 
data to a R1 space, where the projected line in R1 is 
partitioned into equal-length intervals. The hash function 
returns the index of the interval containing the projection 
of query.  

Literature [7] partitions data space with ball-shaped 
grid; the resulted ball boundaries actually correspond to 
hash functions definitions. In that paper, the number of 
balls is parameterized to ensure the union of balls can 
cover all space. In above methods, interval, rectangular 
and ball that contain query are collected to form 
neighborhood.  

Recently an analysis in reference [8] uses one hash 
function to store all data. To search the neighborhood of 
query, not only query itself but also some neighbor-like 
points generated are hashed to find interesting hashing 
buckets. 

III.  VECTOR-DISTANCE AND PARAMETERIZATION 

A.  VD Definition 
The novel of Vector-Distance definition is that  it 

employs a vector as the distance representation of a pair 
of points. Elements of such a vector are partial distance 
values that are derived from some number of partitions of 
data space. And each partition is generated by random 
projections, a technique that used to handling high 
dimensional data. 

Assume dataset S = {x1…xN}, xi∈Rn, and q is the 
query. S is tessellated P times with random partitions. In 
each partition, a partial distance value is derived from C 
dimensions that are selected at random. In more details, 
each partition is defined by C pairs of random numbers (d, 
vd), where d is an integer between 1 and n and vd is a 
value within the range of the data along the dth coordinate. 
vd acts as a benchmark coordinate to measure the local 
distance between q and xi in dth dimension. Denote qd and 
xid as the dth coordinate, and then the local distance is 
defined as: 

Ad(q, xi) = exp(-(qd - vd)(xid - vd))             (1) 

Simultaneously, vd is used to form the inequality ‘xid < 
vd’. q and xi yield the true or false result under that 
inequality. After a partition q and xi yield C-length 
Boolean vector with 0 meaning false and 1 meaning true. 
This Boolean vector is the projections of data under C 
random embeddings. 

Denote PDI as the set of selected dimensions of Ith 
partition, bI(x) as the Boolean vector of x, with bI (x)d 
being its dth component. We employ bI (q)d and bI (xi)d to 
weight the  local distance between qd and xid, to generate 
their partial distance of Ith partition: 

( , ) ( , )IA q x A q xi d PD d d iI
α= Σ ⋅∈            (2) 

With exp(| ( ) ( ) |)I Ib q b xd d i dα = − . 

The employment of dα  will strength the dth local 
distance between q and xi if they have different response 
to the inequality xid < vd. The VD between q and xi is: 

1( , ) ( ( , ) ( , ))PVD q x A q x A q xi i i= K           (3) 

Points with the same Boolean vector are grouped into 
the same cell. View one partition as a hash function; then 
a cell is actually a hash table bucket. Compared with [4], 
which uses one-dimensional interval as bucket, our 
schema extends the bucket from one-dimension to multi-
dimension, so brings richer hashing meaning and locality 
sensitiveness without expensive cost. That low 
computation cost also makes cell-bucket hashing 
competitive with ball-bucket hashing [9], which needs the 
nonlinear embeddings to fulfill random projections. Of 
course the nonlinear is at the gains of stronger hashing 
power and locality sensitiveness. Consider both 
performance and cost, cell-bucket hashing is a fine choice. 
VD definition integrates distance measurement into cell 

Definition. Locality-Sensitive Hashing.  
A family H is called (r, (1+ε)r, p1, p2)-sensitive 

if for any p, q∈Rd: 

1) If ||p-q||≦r then Pr[h(q) = h(p)]≧p1 

2) If ||p-q||≧(1+ε)r then Pr[h(q) = h(p)] ≦ p2 
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formulation, say random projections, so that neighbors 
are inherently sorted according to closeness with the 
query. 

Basic parameters of VD, r, p1 and p2, are specified as 
in [10]. The time complexity is O(N1+1/(1+ε)), and the 
query time is O(dN1/(1+ε)). 

B.  Parameterization of  P and C 
P and C have a direct influence on the size of cell and 

the quality of neighborhood. But it is hard to integrate 
them into some cost function explicitly and find the 
optimal configuration through optimization. Reference [5] 
gave an approach that runs over all pairs of configuration 
and chooses the pair that can incur least time cost under a 
pre-specified error upper bound. Here we search P and C 
in an empirical way. That is, we do searching trails within 
an appreciate range, where a measurement of 
neighborhood quality is employed to find the best 
parameter pair. 

When C increases, the number of cells increases and 
the average volume of one cell drops. When P becomes 
larger, more cells are produced and then the final 
neighborhood becomes large. Given the fixed C, only 
values of P below an upper bound are of interest. Because 
once P exceeds some bound, the neighbors it finds have 
been covered by smaller values of P, and the larger 
values of P only brings extra computation without any 
improvement in the neighborhood quality. 

Therefore this paper fixes C by setting its value as an 
integer randomly generated from range [ n , n ] in 
advance. 

As to P, we run P over a specified range to find the 
one able to bring the best neighborhood quality. The 
neighborhood quality is measured in the way: Qua(P) = 
ave{|MEM i| / | NEI i |}, where NEIi is the neighborhood of 
xi, and MEMi is the set of xi’s same-class members in 
NEIi. Then the optimal P is parameterized by the method 
of below steps: 

 
The upper bound Pup can be specified by the memory 

available or problem at hand. The below bound is set as: 
Pdown = max (n/C, C). Its underlying idea is following. 

a) When n/C > C, that is, C n< . There are a few 
conditions to specify a cell, which leads to the coarse 
boundaries of cells. So P should be large to produce more 
cells, so that the quality of the final neighborhood can be 
guaranteed. In this case, P is set as n/C.  

b) When n/C < C, a cell can be constrained by the 
moderate number of conditions so it is refined 
sufficiently. Since every cell is of fine performance, a 
good neighborhood can be obtained without the need to 
yield many cells. 

IV.  METHOD FAMILY OF NEIGHBORHOOD DEVELOPMENT 

VD spans a vector space where diverse norms can be 
defined for purposes.  Assuming μ = VD(q, xi), we give 
below five norm definitions: 

|| || min | |1 jμ μ=                              (4) 

|| || max | |jμ μ=∞                            (5) 

2|| ||2 jμ μ= Σ                              (6) 

 || || {| |}3 ave jμ μ=                           (7) 

|| || || ||1|| ||4 || ||3

μ μ
μ

μ

−∞=                     (8) 

The neighborhood is specified according to: ||μ||F < δ, 
where F = 1, 2, 3, 4, and ∞. Threshold δ is probed by 
following steps:  

 
The above strategy thinks the max gap reveals the 

boundary of dense area around q, and this boundary 
provides a natural estimate of neighborhood. Points 
located before of the gap are taken as q’s neighbors. 

V.  EXPERIMENTS 

A.  Compared with Other Metric 
As a kind of metric definition, VD is compared with 

some popular metrics: Euclidean metric Machete [11], 
Scythe [11], DANN [12], Adamenn [13]. 

These methods aim to reduce dimensionality and 
formulate data new representation by learning dimension 
relevance and then weighting dimensions. Machete is a 
recursive splitting procedure, in which the input variable 
used for splitting at each step is the one that maximizes 
the estimated local relevance. Scythe is a generalization 
of Machete method. DANN works as an adaptive nearest 
neighbor classifier. Adamenn is an adaptive nearest 
neighbor approach based on probability programming. 
Gaussian Kernel function, viewed as a kind of metric, is 

1) Select m data randomly; 
2) For P = Pdown : Pup 
3)    Develop neighborhoods for m data: {NEIi }, 

(i = 1…m); 
4)    Qua(P) = ave{|MEM i| / | NEI i |}; 
5) EndFor 
6) Poptimal = max P {Qua(P)}. 

1) Sort VD values between q and xi in the ascending 
order: {||VD(q, x1)||F…||VD(q, xN)||F};  

2) Find the max gap between two adjacent values of 
that list, and let δ = ||VD(q, xgap)||F, where gap is 
defined as below (9): 

|| ( , ) || || ( , ) ||1max { }
|| ( , ) ||1

VD q x VD q xj F j Fgap j VD q x j F

−+
=

+
  

(9) 
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also compared, with its width parameter tuned by cross-
validation. 

These metrics are introduced into ||x - q||F < δ to 
develop neighborhoods. The neighborhood size takes two 
fashions: the pre-specified size NS1 and the adaptive size 
NS2. NS1 is expressed as a selectivity percentage to 
tellhow many data are selected from dataset as neighbors. 
NS2 is computed using our strategy mentioned in Section 
4. Neighborhood quality is evaluated by: 

{| | / | |ave MEM NEIq qη =                  (10) 

News Group [14] is used as experimental dataset. 
This dataset contains about 20,000 articles (email 
messages). These articles are evenly divided into the 20 
newsgroups. In this paper, each newsgroup is labeled as 
following: 

NG1: alt.atheism; 
NG2: comp.graphics; 
NG3: comp.os.ms.windows.misc; 
NG4: comp.sys.ibm.pc.hardware; 
NG5: comp.sys.mac.hardware; 
NG6: comp.windows.x; 
NG7: misc.forsale; 
NG8: rec.autos;NG9: rec.motorcycles;  
NG10: rec.sport.baseball; 
NG11: rec.sport.hockey;  
NG12: sci.crypt; 
NG13: sci.electronics; 
NG14: sci.med; 
NG15: sci.space; 
NG16: soc.religion.christian; 
NG17: talk.politics.guns; 
NG18: talk.politics.mideast; 
NG19: talk.politics.misc; 
NG20: talk.religion.misc. 

We apply the usual tf.idf weighting schema to express 
documents. We delete words that appear too few times 
and normalize each document vector to have unit 

Euclidean length. We do experiments in the whole dataset 
with the ever-increasing NS1. 

Figure 1 shows the average dependence of η on NS1, 
where 0.5% data are sampled randomly as queries. 

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 NS1  (10-3)

Euclidean
Kernel
Machete
Scythe
DANN
Adamenn
VD

 
Figure 1.  Neighborhood quality comparison 

According to results reflected from Figure 1, it is easy 
to find that with NS1 increasing, η values of these 
methods drop at different speed. On average, the 
dropping speed of VD is the least sharp. Adamenn is 
competitive with VD. Their ratio curves are relatively 
gentle. Other methods yield somewhat sharp tendency 
curves; that suggests their performance is unsteady and 
they are readily to be influenced by the changes of 
neighborhood size. VD sees a local peak at about NS1 = 
0.004; this NS1 value could be considered as the desired 
neighborhood size searched by cross-validation under VD 
metric.  

Then take a look of other methods. Firstly, it is easy to 
find that Adamenn also has a local peak, but its peak is 
located at about 0.005, a larger size than that of VD. This 
is because Adamenn extracts complete and profound 
dimension relevance from data distribution, and 
consequently shows more effectiveness when more data 
are absorbed into the neighborhood. 

0.5

0.6

0.7

0.8

0.9

1

1) 2) 3) 4) 5) 6) NS2   (10-3)

Euclidea
n
Kernel

Machete
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Figure 2.  Neighborhood quality comparison 

Secondly, it comes to DANN and Scythe. Obviously, 
the performance of DANN and Scythe follows first two 

methods and they produce similar results. But the curve 
of Scythe is a little sharper than DANN because DANN 
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is equipped with adaptation to data distribution. But 
DANN approximates the weighted Chi-squared distance, 
which will cause its failure in datasets of non-Gaussian 
distribution. The local peaks of DANN and Scythe are 
between Adamenn and VD. Thirdly, Machete shares the 
same spirit of Scythe, while it employs a greedy idea, so 
its job is not good as Scythe. 

Finally, Euclidean metric works poorly, and the reason 
lies in the mismatch between its measurement meaning 
and the high-dimensional data space. And its ratio curve 
is somewhat devious with more local peaks than other 
methods, which shows the unsteady behavior of this 
metric. Although Kernel’s results are better than 
Euclidean, its curve also experiences more local peaks. 
Compared with the first 5 methods, Euclidean metric and 
Kernel metric present unsteady performance and their 
multi local peaks prevent finding optimal NS1 value. For 
Adamenn and VD, VD is a fine choice because it has 
computation ease brought by parameterization strategies 
while Adamenn has six parameters to be tuned carefully. 

Then we do experiments in subsets consisting of 
several news groups. These experimental subsets are 
below six ones: 

1) {NG1, NG2, NG7} (400);  
2) {NG2, NG8, NG12, NG17} (300);  
3) {NG11, NG12, NG16， NG19} (400);  
4) {NG2 (200), NG3 (350), NG4 (400)}; 
5) {NG4 (200), NG5 (300), NG6 (300), NG7 (200)};  
6) {NG17 (300) NG18 (500), NG19 (300)}. 

Therein, the number in bracket is the size of random 
samples selected from the original set. Now suppose that 
all methods use their own NS2 value as neighborhood 
size. Then the corresponding ratios are described in 
Figure 2. 

In Figure 2, all ratios are lower than corresponding 
peaks of Fig. 1. This is because those peak ratios are 
found in the searching way, while ratios of Fig. 2 are 
computed under fixed NS2 values. If ratios of Fig. 2 are 
close to peak ratios of Fig. 1, it suggests that NS2 is a 
qualified neighborhood size and the specification 
heuristic is fine. As expected, the difference between 
them is not far. If the cost is taken into consideration, 
NS2-based procedure is more welcome than NS1-based 
methods. 

From Figure 2, the analysis of Euclidean, Kernel 
methods and four dimension derivation methods follow 
the above patterns. For VD and Adamenn, the former is 
competitive or even outperforms the later. In those 
subsets containing similar news groups, say 4), 5) and 6), 
VD takes more advantage than Adamenn. In that cases, 
class boundaries are not distinct, data original 
representations are unfriendly to reveal class features, and 
consequently the probability derivation based on these 
representations is less confident. That leads to the metric 
produced by Adamenn being not so informative. VD 
relies on repeating random projections without much 
direct dependence on data representation, therefore it is 
less influenced. 

TABLE I.   

CLASSIFICATION ACCURACY COMPARISON (%) 

Data kNN AkNN VkNN SVM1r ASVM1r VSVM1r DAGSVM ADAGSVM VDAGSVM

Vote 92.2 96.8 96.8 96.1 96.7 96.1 96.1 96.5 96.7 

BC1 88.3 92.5 92 89 93.9 93.7 91.1 94.2 94.1 

BC2 86.2 90.7 90.5 88.4 92.6 92.6 89.8 93.4 93.2 

Musk1 89.6 93.8 94.1 94.8 95.9 96 94.8 95.9 96 

Musk2 59.5 62.4 63.1 62.8 67.3 68 62.8 63.7 63.8 

Iris 94 97 97 95.9 97 97 96.2 96.4 96.8 

Wine 92 93.9 94.7 93.1 93 90.9 93.6 94 90.6 

1) 83 86.9 88.1 84.2 86.3 86.5 85.3 86.8 86.9 

2) 87.1 89.2 90.5 90.1 92.1 91.6 91.2 92.8 93 

3) 79.6 82 82.2 82.6 84.7 84.7 83 83.6 84.1 

4) 67.7 70.3 70.1 70.2 72.9 73.4 71.1 73.5 73 

5) 69.4 73.2 73.5 73.5 75.1 75.9 73.4 75.1 75.3 

6) 70.4 72 72.1 71.8 73.2 73.5 72 73.8 74.1 
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B.  Test VD Performance through Classifiers 
In this experimental section, VD definition and 

Adamenn are introduced into some metric-based 
classifiers to fulfill classification task. Those metric-
based classifiers are: pure kNN [15], SVM1r [16, 17] and 
DAGSVM [18].  

Due to the introduction of VD definition and Adamenn, 
resulted methods form two groups of variants of original 
algorithm, and these two groups of variants are denoted 
by adding two prefixes to the original names, namely, 
adding ‘V-’ and ‘A-’ before these method names. That is, 
for kNN, there are two versions: AkNN and VkNN.For 
kNN, two metrics can work directly; for SVM1r and 
DAGSVM, two metrics appear in their Gaussian Kernel 
in the way that: 

2 2( , ) exp( [ ( , )] / )K x y VD x y σ= −               (11) 
2 2( , ) exp( || || / )K x y x y Adamenn σ= − −       (12) 

The original classifiers and variants are compared on 
some real datasets that are taken from UCI Machine 
Learning Repository [11]. Among these experimental 
datasets, 1% data are sampled at random as training data 
and metric quality is measured by the classification 
accuracy listed in Table I. 

Note that for bi-classification cases, SVM1r and 
DAGSVM yield same result because both of them train 
one basic SVM. It is easy to find that ‘A-’ and ‘V-’ 
variants improve their original models, which indicates 
two metrics do improve effectiveness. But two metrics 
take their own advantage in different scenarios. In low-
dimensional datasets, ‘A-’ methods behave better, while 
in high-dimensional space, ‘V-’ family is relatively 
preferred.  

According to experimental evidence of this section, it 
concludes that VD is more suitable to high-dimensional 
space than Adamenn because the later derives new metric 
from statistics of data distribution. Those statistics, as 
measurements, might be caught by the curse of 
dimensionality, and consequently the resulted metric 
becomes less informed. However, VD focuses on 
learning valid information from repeating projections, 
thus does not suffer from this problem. For SVM1r and 
DAGSVM, the later accounts to a weighted framework of 
basic SVM, while the former is the non-weighted 
framework of SVM, so naturally the later gives higher 
accuracies. 

C.  Test VD Performance for High-dimensional Data 

After investigating the performance of VD through 
comparing it with other metrics and other classifiers, This 
section experiment aims to compare VD with some NN 
searching techniques that are developed specially for 
high-dimensional data. These NN searching techniques 
are those famous ones: VA-file [19, 20, 21, 22, 23], iLSH 
[6], cLSH [10] and bLSH [9]. To check their property, 
another evaluation is used, neighborhood cohesion. For 
q’s neighborhood, NEI (q), its cohesion is defined as 
formula (13): 

2exp( || || )
, ( ) | ( ) |

x y
x y NEI q NEI q

− −
Σ ∈        (13) 

Suppose that each method finds its own NS2 value. 
Here, 10% data are sampled randomly as queries. The 
average cohesion values of each method are collected and 
shown in Table II. 

TABLE II.   

COMPARISON OF LSH-BASED APPROACHES THROUGH AVERAGE 
COHESION 

Data 1) 2) 3) 4) 5) 6)

VA-file 0.73 0.78 0.86 0.7 0.67 0.65

iLSH 0.71 0.75 0.83 0.68 0.68 0.63

cLSH 0.74 0.74 0.87 0.71 0.67 0.66

bLSH 0.79 0.79 0.86 0.73 0.71 0.68

VD 0.78 0.79 0.85 0.75 0.71 0.7

From Table II, it is clear that bLSH and VD behave 
similarly and take their own advantage in various cases.  

bLSH does better in subsets with clear class 
boundaries, while VD exhibits its merit in handling 
subsets with blurred classes. cLSH and VA-file yield 
close results for they actually construct the same-shaped 
bucket using different strategies. iLSH is relatively poor 
due to its weak hashing power carried by the one-
dimensional hashing embeddings. bLSH can be seen the 
best one among four indexing approaches because the 
shape of its bucket is the best to approximate the inherent 
shape of neighborhood, and thus it has more ability to 
formulate the good neighborhood which contains true 
neighbors. 

The mismatch between neighborhood region shape and 
rectangular, cell and interval leads to some irrelevant data 
absorbed into neighborhood, so affects the quality of 
neighborhood spanned by other three methods. Although 
VD’s bucket is of cell-like shape, it exploits the informed 
weighted metric to sort neighbors. That removes the 
influence brought by the mismatch. 

D.  Test VD Performance for Real Dataset 
Finally, VD is conducted on the real datasets: Musk 

[24] and Mutagenesis [25].  Musk dataset has two 
versions Musk1 and Musk2. They record 476 and 6598 
conformations for musk molecules and non-musk 
molecules. We fix the data with some normalization and 
develop its relation frame shown in Figure 3.  

 
Figure 3.  Dataset Relationship of Musk 

RK: Molecule-Name  Common Attributes  

FK:M-Name  Feature1     ……   Feature 166 
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Mutagenesis dataset records 230 aromatic and 
heteroaromatic nitro compounds. They are divided into 
two groups based on the mutagenicity: the active and the 
inactive. Its relation schema is formulated in Figure 4. 

 
Figure 4.  Dataset Relationship of Mutagenesis 

 Here, for two datasets, their tables are integrated into 
one big table, which includes all records. Note that since 
there are two types of Mutagenesis molecules: regression-
friendly and regression-unfriendly, some data are 
sampled from two subsets and the whole dataset 
respectively. Table III shows classification accuracy of 
above methods. 

TABLE III.   

COMPARISON OF LSH-BASED APPROACHES THROUGH CLASSIFICATION 
ACCURACY (%) 

Data Musk Mutagenesis
(friendly) 

Mutagenesis 
(unfriendly) 

Mutagenesis
(full) 

VA-file 86.3 79.5 63.2 73.1 

iLSH 87.6 82.9 68.7 75.2 

cLSH 85.2 92.7 70.2 78.9 

bLSH 88.4 90.5 70.5 77.2 

VD 90.5 93.5 70.6 79.5 

According to the experimental results, it is easy to 
know that VD exhibits outstanding behaviors by 
presenting highest classification accuracy among five 
methods. That is the similar conclusion with above 
section. Other LSH-based methods follow VD. 

Through above experiments, the fine performance of 
VD definition can be verified. 

VI.  CONCLUSION 

This paper proposes a novel distance concept 
customized to high-dimensional data, Vector-Distance 
(VD). VD is a vector with its entries reflecting multi-
aspect information summarized from random projections. 
Through applying some metric to VD values, a family of 
neighborhood formulation methods is yielded. Empirical 
evidence on real datasets demonstrates the fine 
performance of VD and the proposed method family. 

On the other hand, VD provides another thinking angle 
by extending the common distance information to a 
compound fashion. Consequently the new distance 
collects rich information, and this information reveals 
more to reflect the relationship among data. That is 
expected to make more importance in high-structured 
data environment. 

Furthermore, high-dimensional data always attracts a 
lot of interest in diverse applications, more work is 

needed to promote the improvement of algorithms of 
high-dimensional data, even high-structured data. 
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