
Vector-Distance and Neighborhood Development
for High Dimensional Data

Ping Ling

College of Computer Science and Technology, Xuzhou Normal University, Xuzhou, 221116, China
Email: lingicehan@yahoo.cn

Xiangsheng Rong

Training Department, Xuzhou Air Force College of P. L. A, Xuzhou 221000, China
Email: rxs12@126.com

Xiangyang You

Training Department, Xuzhou Air Force College of P. L. A, Xuzhou 221000, China
Email: xyyou@126.com

Ming Xu

Department of Logistic Command, Xuzhou Air Force College of P. L. A, Xuzhou 221000, China
Email: mingxu@sina.com

Abstract—This paper presents a novel distance concept,
Vector-Distance (VD) for high dimensional data. VD
extends traditional scalar-distance to a vector-like fashion
by collecting multi partial distances from diverse angles.
These partial distances are derived from random
projections, and they preserve individual features of
dimensions as much as possible. Based on VD definition, a
method family for neighborhood development is proposed,
where methods consist of some norm definitions and certain
constrains specified for various purposes. Experiments on
real datasets verify the quality of neighborhoods produced
by the proposed method family better or competitive with
the neighborhood produced by the state of the art.

Index Terms—vector-distance (VD), high dimensional data,
partial distances, neighborhood development

I. INTRODUCTION

High dimensional data received renewed interest in
recent years thanks to the increase of the available
computer hardware. While the software or approaches
handling to them didn’t achieve so sharp improvement as
hardware due to the difficulty in learning high
dimensional data structure. The structure of high
dimensional space defies usual 3-dimensional geometric
intuition, and it is extremely sparse with data points far
away from each other. If using conventional metric to
explore a data’s neighborhood, only a small number of
neighbors may be inferred. Unless the neighborhood
radius is set large, sufficient neighbors could be covered.
But that leads to the loss of locality. This phenomenon is
known in the statistical literatures as the curse of
dimensionality, and its affect increases exponentially in
the dimension [1, 2, 3].

Dimension reduction is the natural solution to address
this issue. This approach family includes dimension
selection that chooses important dimensions, dimension
extraction that derives new dimensions from the original
ones, and dimension weighting that equips dimensions
with significance coefficients. Their idea relies on
defining data-dependent metrics that can capture local
distribution features from dimension analysis so as to
generate data’s new representation. These metrics provide
a scalar value, which reflects the distance information
from a single angle. Yet in high dimensional space the
single-source-based metric might not succeed in
exploring exact distance information everywhere because
the dimension significance might vary from region to
region. For example, high dimensional data x, y and z,
perhaps the dimensions that are critical to measure
distance between x and y are not important to x and z.
That inspires us to define a multi-source-based metric.

This paper defines a vector-fashion distance concept
for high dimensional data, named as Vector-Distance
(VD). VD equips a pair of data points with a vector as
their distance; the components of that vector are partial
distance values derived using random projections
technique. The random projections are realized by
iterations of data space partition. That idea is rooted from
Local Sensitive Hashing (LSH) [4]. LSH is focused on
nearest neighbor searching, and it develops neighborhood
by collecting hash table buckets that query is projected to.
The neighborhood produced by LSH is an unsorted set,
so that an extra metric has to be consulted to find the
nearest neighbor. Compared with classical LSH, VD is
characterized with the ability to sort neighbors.

Based on VD, a method family of neighborhood
formulation is proposed, where various metrics plus some

2832 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.12.2832-2839

constrains specify diverse manners of neighborhood
formulation. Heuristics are given to facilitate VD
computation, thus without suffering from huge cost in
tuning parameters that many random-projection-based
method need.

The rest of this paper is organized as below. Section 2
reviews some work, namely, state of the art of
neighborhood development for high dimensional data.
Then VD definition and method family are presented in
Section 3. Consequently, Section 4 discusses self tuning
of parameters of random projections. Experimental
evidence and analysis are given in Section 5, followed by
conclusion in the last section.

II. RELATED WORK

LSH originally aims to solve the ε–approximate
nearest neighbor problem of high dimensional data. The
relaxation from finding an exact answer to an
approximate answer removes the curse.

LSH is asked to return a point whose distance from the
query is at most (1+ε) times the distance from the query
to its nearest points. The appeal of this approximation
fashion is that in many cases, an approximate nearest
neighbor is almost as good as the exact one. The general
LSH schema relies on existence of locality-sensitive hash
functions.

Various families of hash functions can be defined to

yield various LSH schemas. But the precondition is that
the function must meet the locality-sensitiveness property,
that is, the basic parameters r, p1 and p2 can be computed.

Many literatures have touched this issue. Reference [5]
defines the hash function mapping from original space to
Hamming space, and rectangular-shaped cell acts as the
basic grid to form neighborhood. Reference [6] projects
data to a R1 space, where the projected line in R1 is
partitioned into equal-length intervals. The hash function
returns the index of the interval containing the projection
of query.

Literature [7] partitions data space with ball-shaped
grid; the resulted ball boundaries actually correspond to
hash functions definitions. In that paper, the number of
balls is parameterized to ensure the union of balls can
cover all space. In above methods, interval, rectangular
and ball that contain query are collected to form
neighborhood.

Recently an analysis in reference [8] uses one hash
function to store all data. To search the neighborhood of
query, not only query itself but also some neighbor-like
points generated are hashed to find interesting hashing
buckets.

III. VECTOR-DISTANCE AND PARAMETERIZATION

A. VD Definition
The novel of Vector-Distance definition is that it

employs a vector as the distance representation of a pair
of points. Elements of such a vector are partial distance
values that are derived from some number of partitions of
data space. And each partition is generated by random
projections, a technique that used to handling high
dimensional data.

Assume dataset S = {x1…xN}, xi∈Rn, and q is the
query. S is tessellated P times with random partitions. In
each partition, a partial distance value is derived from C
dimensions that are selected at random. In more details,
each partition is defined by C pairs of random numbers (d,
vd), where d is an integer between 1 and n and vd is a
value within the range of the data along the dth coordinate.
vd acts as a benchmark coordinate to measure the local
distance between q and xi in dth dimension. Denote qd and
xid as the dth coordinate, and then the local distance is
defined as:

Ad(q, xi) = exp(-(qd - vd)(xid - vd)) (1)

Simultaneously, vd is used to form the inequality ‘xid <
vd’. q and xi yield the true or false result under that
inequality. After a partition q and xi yield C-length
Boolean vector with 0 meaning false and 1 meaning true.
This Boolean vector is the projections of data under C
random embeddings.

Denote PDI as the set of selected dimensions of Ith
partition, bI(x) as the Boolean vector of x, with bI (x)d
being its dth component. We employ bI (q)d and bI (xi)d to
weight the local distance between qd and xid, to generate
their partial distance of Ith partition:

(,) (,)IA q x A q xi d PD d d iI
α= Σ ⋅∈ (2)

With exp(| () () |)I Ib q b xd d i dα = − .

The employment of dα will strength the dth local
distance between q and xi if they have different response
to the inequality xid < vd. The VD between q and xi is:

1(,) ((,) (,))PVD q x A q x A q xi i i= K (3)

Points with the same Boolean vector are grouped into
the same cell. View one partition as a hash function; then
a cell is actually a hash table bucket. Compared with [4],
which uses one-dimensional interval as bucket, our
schema extends the bucket from one-dimension to multi-
dimension, so brings richer hashing meaning and locality
sensitiveness without expensive cost. That low
computation cost also makes cell-bucket hashing
competitive with ball-bucket hashing [9], which needs the
nonlinear embeddings to fulfill random projections. Of
course the nonlinear is at the gains of stronger hashing
power and locality sensitiveness. Consider both
performance and cost, cell-bucket hashing is a fine choice.
VD definition integrates distance measurement into cell

Definition. Locality-Sensitive Hashing.
A family H is called (r, (1+ε)r, p1, p2)-sensitive

if for any p, q∈Rd:

1) If ||p-q||≦r then Pr[h(q) = h(p)]≧p1

2) If ||p-q||≧(1+ε)r then Pr[h(q) = h(p)] ≦ p2

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2833

© 2012 ACADEMY PUBLISHER

formulation, say random projections, so that neighbors
are inherently sorted according to closeness with the
query.

Basic parameters of VD, r, p1 and p2, are specified as
in [10]. The time complexity is O(N1+1/(1+ε)), and the
query time is O(dN1/(1+ε)).

B. Parameterization of P and C
P and C have a direct influence on the size of cell and

the quality of neighborhood. But it is hard to integrate
them into some cost function explicitly and find the
optimal configuration through optimization. Reference [5]
gave an approach that runs over all pairs of configuration
and chooses the pair that can incur least time cost under a
pre-specified error upper bound. Here we search P and C
in an empirical way. That is, we do searching trails within
an appreciate range, where a measurement of
neighborhood quality is employed to find the best
parameter pair.

When C increases, the number of cells increases and
the average volume of one cell drops. When P becomes
larger, more cells are produced and then the final
neighborhood becomes large. Given the fixed C, only
values of P below an upper bound are of interest. Because
once P exceeds some bound, the neighbors it finds have
been covered by smaller values of P, and the larger
values of P only brings extra computation without any
improvement in the neighborhood quality.

Therefore this paper fixes C by setting its value as an
integer randomly generated from range [n , n] in
advance.

As to P, we run P over a specified range to find the
one able to bring the best neighborhood quality. The
neighborhood quality is measured in the way: Qua(P) =
ave{|MEM i| / | NEI i |}, where NEIi is the neighborhood of
xi, and MEMi is the set of xi’s same-class members in
NEIi. Then the optimal P is parameterized by the method
of below steps:

The upper bound Pup can be specified by the memory

available or problem at hand. The below bound is set as:
Pdown = max (n/C, C). Its underlying idea is following.

a) When n/C > C, that is, C n< . There are a few
conditions to specify a cell, which leads to the coarse
boundaries of cells. So P should be large to produce more
cells, so that the quality of the final neighborhood can be
guaranteed. In this case, P is set as n/C.

b) When n/C < C, a cell can be constrained by the
moderate number of conditions so it is refined
sufficiently. Since every cell is of fine performance, a
good neighborhood can be obtained without the need to
yield many cells.

IV. METHOD FAMILY OF NEIGHBORHOOD DEVELOPMENT

VD spans a vector space where diverse norms can be
defined for purposes. Assuming μ = VD(q, xi), we give
below five norm definitions:

|| || min | |1 jμ μ= (4)

|| || max | |jμ μ=∞ (5)

2|| ||2 jμ μ= Σ (6)

 || || {| |}3 ave jμ μ= (7)

|| || || ||1|| ||4 || ||3

μ μ
μ

μ

−∞= (8)

The neighborhood is specified according to: ||μ||F < δ,
where F = 1, 2, 3, 4, and ∞. Threshold δ is probed by
following steps:

The above strategy thinks the max gap reveals the

boundary of dense area around q, and this boundary
provides a natural estimate of neighborhood. Points
located before of the gap are taken as q’s neighbors.

V. EXPERIMENTS

A. Compared with Other Metric
As a kind of metric definition, VD is compared with

some popular metrics: Euclidean metric Machete [11],
Scythe [11], DANN [12], Adamenn [13].

These methods aim to reduce dimensionality and
formulate data new representation by learning dimension
relevance and then weighting dimensions. Machete is a
recursive splitting procedure, in which the input variable
used for splitting at each step is the one that maximizes
the estimated local relevance. Scythe is a generalization
of Machete method. DANN works as an adaptive nearest
neighbor classifier. Adamenn is an adaptive nearest
neighbor approach based on probability programming.
Gaussian Kernel function, viewed as a kind of metric, is

1) Select m data randomly;
2) For P = Pdown : Pup
3) Develop neighborhoods for m data: {NEIi },

(i = 1…m);
4) Qua(P) = ave{|MEM i| / | NEI i |};
5) EndFor
6) Poptimal = max P {Qua(P)}.

1) Sort VD values between q and xi in the ascending
order: {||VD(q, x1)||F…||VD(q, xN)||F};

2) Find the max gap between two adjacent values of
that list, and let δ = ||VD(q, xgap)||F, where gap is
defined as below (9):

|| (,) || || (,) ||1max { }
|| (,) ||1

VD q x VD q xj F j Fgap j VD q x j F

−+
=

+

(9)

2834 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

also compared, with its width parameter tuned by cross-
validation.

These metrics are introduced into ||x - q||F < δ to
develop neighborhoods. The neighborhood size takes two
fashions: the pre-specified size NS1 and the adaptive size
NS2. NS1 is expressed as a selectivity percentage to
tellhow many data are selected from dataset as neighbors.
NS2 is computed using our strategy mentioned in Section
4. Neighborhood quality is evaluated by:

{| | / | |ave MEM NEIq qη = (10)

News Group [14] is used as experimental dataset.
This dataset contains about 20,000 articles (email
messages). These articles are evenly divided into the 20
newsgroups. In this paper, each newsgroup is labeled as
following:

NG1: alt.atheism;
NG2: comp.graphics;
NG3: comp.os.ms.windows.misc;
NG4: comp.sys.ibm.pc.hardware;
NG5: comp.sys.mac.hardware;
NG6: comp.windows.x;
NG7: misc.forsale;
NG8: rec.autos;NG9: rec.motorcycles;
NG10: rec.sport.baseball;
NG11: rec.sport.hockey;
NG12: sci.crypt;
NG13: sci.electronics;
NG14: sci.med;
NG15: sci.space;
NG16: soc.religion.christian;
NG17: talk.politics.guns;
NG18: talk.politics.mideast;
NG19: talk.politics.misc;
NG20: talk.religion.misc.

We apply the usual tf.idf weighting schema to express
documents. We delete words that appear too few times
and normalize each document vector to have unit

Euclidean length. We do experiments in the whole dataset
with the ever-increasing NS1.

Figure 1 shows the average dependence of η on NS1,
where 0.5% data are sampled randomly as queries.

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 NS1 (10-3)

Euclidean
Kernel
Machete
Scythe
DANN
Adamenn
VD

Figure 1. Neighborhood quality comparison

According to results reflected from Figure 1, it is easy
to find that with NS1 increasing, η values of these
methods drop at different speed. On average, the
dropping speed of VD is the least sharp. Adamenn is
competitive with VD. Their ratio curves are relatively
gentle. Other methods yield somewhat sharp tendency
curves; that suggests their performance is unsteady and
they are readily to be influenced by the changes of
neighborhood size. VD sees a local peak at about NS1 =
0.004; this NS1 value could be considered as the desired
neighborhood size searched by cross-validation under VD
metric.

Then take a look of other methods. Firstly, it is easy to
find that Adamenn also has a local peak, but its peak is
located at about 0.005, a larger size than that of VD. This
is because Adamenn extracts complete and profound
dimension relevance from data distribution, and
consequently shows more effectiveness when more data
are absorbed into the neighborhood.

0.5

0.6

0.7

0.8

0.9

1

1) 2) 3) 4) 5) 6) NS2 (10-3)

Euclidea
n
Kernel

Machete

Scythe

Figure 2. Neighborhood quality comparison

Secondly, it comes to DANN and Scythe. Obviously,
the performance of DANN and Scythe follows first two

methods and they produce similar results. But the curve
of Scythe is a little sharper than DANN because DANN

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2835

© 2012 ACADEMY PUBLISHER

is equipped with adaptation to data distribution. But
DANN approximates the weighted Chi-squared distance,
which will cause its failure in datasets of non-Gaussian
distribution. The local peaks of DANN and Scythe are
between Adamenn and VD. Thirdly, Machete shares the
same spirit of Scythe, while it employs a greedy idea, so
its job is not good as Scythe.

Finally, Euclidean metric works poorly, and the reason
lies in the mismatch between its measurement meaning
and the high-dimensional data space. And its ratio curve
is somewhat devious with more local peaks than other
methods, which shows the unsteady behavior of this
metric. Although Kernel’s results are better than
Euclidean, its curve also experiences more local peaks.
Compared with the first 5 methods, Euclidean metric and
Kernel metric present unsteady performance and their
multi local peaks prevent finding optimal NS1 value. For
Adamenn and VD, VD is a fine choice because it has
computation ease brought by parameterization strategies
while Adamenn has six parameters to be tuned carefully.

Then we do experiments in subsets consisting of
several news groups. These experimental subsets are
below six ones:

1) {NG1, NG2, NG7} (400);
2) {NG2, NG8, NG12, NG17} (300);
3) {NG11, NG12, NG16， NG19} (400);
4) {NG2 (200), NG3 (350), NG4 (400)};
5) {NG4 (200), NG5 (300), NG6 (300), NG7 (200)};
6) {NG17 (300) NG18 (500), NG19 (300)}.

Therein, the number in bracket is the size of random
samples selected from the original set. Now suppose that
all methods use their own NS2 value as neighborhood
size. Then the corresponding ratios are described in
Figure 2.

In Figure 2, all ratios are lower than corresponding
peaks of Fig. 1. This is because those peak ratios are
found in the searching way, while ratios of Fig. 2 are
computed under fixed NS2 values. If ratios of Fig. 2 are
close to peak ratios of Fig. 1, it suggests that NS2 is a
qualified neighborhood size and the specification
heuristic is fine. As expected, the difference between
them is not far. If the cost is taken into consideration,
NS2-based procedure is more welcome than NS1-based
methods.

From Figure 2, the analysis of Euclidean, Kernel
methods and four dimension derivation methods follow
the above patterns. For VD and Adamenn, the former is
competitive or even outperforms the later. In those
subsets containing similar news groups, say 4), 5) and 6),
VD takes more advantage than Adamenn. In that cases,
class boundaries are not distinct, data original
representations are unfriendly to reveal class features, and
consequently the probability derivation based on these
representations is less confident. That leads to the metric
produced by Adamenn being not so informative. VD
relies on repeating random projections without much
direct dependence on data representation, therefore it is
less influenced.

TABLE I.

CLASSIFICATION ACCURACY COMPARISON (%)

Data kNN AkNN VkNN SVM1r ASVM1r VSVM1r DAGSVM ADAGSVM VDAGSVM

Vote 92.2 96.8 96.8 96.1 96.7 96.1 96.1 96.5 96.7

BC1 88.3 92.5 92 89 93.9 93.7 91.1 94.2 94.1

BC2 86.2 90.7 90.5 88.4 92.6 92.6 89.8 93.4 93.2

Musk1 89.6 93.8 94.1 94.8 95.9 96 94.8 95.9 96

Musk2 59.5 62.4 63.1 62.8 67.3 68 62.8 63.7 63.8

Iris 94 97 97 95.9 97 97 96.2 96.4 96.8

Wine 92 93.9 94.7 93.1 93 90.9 93.6 94 90.6

1) 83 86.9 88.1 84.2 86.3 86.5 85.3 86.8 86.9

2) 87.1 89.2 90.5 90.1 92.1 91.6 91.2 92.8 93

3) 79.6 82 82.2 82.6 84.7 84.7 83 83.6 84.1

4) 67.7 70.3 70.1 70.2 72.9 73.4 71.1 73.5 73

5) 69.4 73.2 73.5 73.5 75.1 75.9 73.4 75.1 75.3

6) 70.4 72 72.1 71.8 73.2 73.5 72 73.8 74.1

2836 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

B. Test VD Performance through Classifiers
In this experimental section, VD definition and

Adamenn are introduced into some metric-based
classifiers to fulfill classification task. Those metric-
based classifiers are: pure kNN [15], SVM1r [16, 17] and
DAGSVM [18].

Due to the introduction of VD definition and Adamenn,
resulted methods form two groups of variants of original
algorithm, and these two groups of variants are denoted
by adding two prefixes to the original names, namely,
adding ‘V-’ and ‘A-’ before these method names. That is,
for kNN, there are two versions: AkNN and VkNN.For
kNN, two metrics can work directly; for SVM1r and
DAGSVM, two metrics appear in their Gaussian Kernel
in the way that:

2 2(,) exp([(,)] /)K x y VD x y σ= − (11)
2 2(,) exp(|| || /)K x y x y Adamenn σ= − − (12)

The original classifiers and variants are compared on
some real datasets that are taken from UCI Machine
Learning Repository [11]. Among these experimental
datasets, 1% data are sampled at random as training data
and metric quality is measured by the classification
accuracy listed in Table I.

Note that for bi-classification cases, SVM1r and
DAGSVM yield same result because both of them train
one basic SVM. It is easy to find that ‘A-’ and ‘V-’
variants improve their original models, which indicates
two metrics do improve effectiveness. But two metrics
take their own advantage in different scenarios. In low-
dimensional datasets, ‘A-’ methods behave better, while
in high-dimensional space, ‘V-’ family is relatively
preferred.

According to experimental evidence of this section, it
concludes that VD is more suitable to high-dimensional
space than Adamenn because the later derives new metric
from statistics of data distribution. Those statistics, as
measurements, might be caught by the curse of
dimensionality, and consequently the resulted metric
becomes less informed. However, VD focuses on
learning valid information from repeating projections,
thus does not suffer from this problem. For SVM1r and
DAGSVM, the later accounts to a weighted framework of
basic SVM, while the former is the non-weighted
framework of SVM, so naturally the later gives higher
accuracies.

C. Test VD Performance for High-dimensional Data

After investigating the performance of VD through
comparing it with other metrics and other classifiers, This
section experiment aims to compare VD with some NN
searching techniques that are developed specially for
high-dimensional data. These NN searching techniques
are those famous ones: VA-file [19, 20, 21, 22, 23], iLSH
[6], cLSH [10] and bLSH [9]. To check their property,
another evaluation is used, neighborhood cohesion. For
q’s neighborhood, NEI (q), its cohesion is defined as
formula (13):

2exp(|| ||)
, () | () |

x y
x y NEI q NEI q

− −
Σ ∈ (13)

Suppose that each method finds its own NS2 value.
Here, 10% data are sampled randomly as queries. The
average cohesion values of each method are collected and
shown in Table II.

TABLE II.

COMPARISON OF LSH-BASED APPROACHES THROUGH AVERAGE
COHESION

Data 1) 2) 3) 4) 5) 6)

VA-file 0.73 0.78 0.86 0.7 0.67 0.65

iLSH 0.71 0.75 0.83 0.68 0.68 0.63

cLSH 0.74 0.74 0.87 0.71 0.67 0.66

bLSH 0.79 0.79 0.86 0.73 0.71 0.68

VD 0.78 0.79 0.85 0.75 0.71 0.7

From Table II, it is clear that bLSH and VD behave
similarly and take their own advantage in various cases.

bLSH does better in subsets with clear class
boundaries, while VD exhibits its merit in handling
subsets with blurred classes. cLSH and VA-file yield
close results for they actually construct the same-shaped
bucket using different strategies. iLSH is relatively poor
due to its weak hashing power carried by the one-
dimensional hashing embeddings. bLSH can be seen the
best one among four indexing approaches because the
shape of its bucket is the best to approximate the inherent
shape of neighborhood, and thus it has more ability to
formulate the good neighborhood which contains true
neighbors.

The mismatch between neighborhood region shape and
rectangular, cell and interval leads to some irrelevant data
absorbed into neighborhood, so affects the quality of
neighborhood spanned by other three methods. Although
VD’s bucket is of cell-like shape, it exploits the informed
weighted metric to sort neighbors. That removes the
influence brought by the mismatch.

D. Test VD Performance for Real Dataset
Finally, VD is conducted on the real datasets: Musk

[24] and Mutagenesis [25]. Musk dataset has two
versions Musk1 and Musk2. They record 476 and 6598
conformations for musk molecules and non-musk
molecules. We fix the data with some normalization and
develop its relation frame shown in Figure 3.

Figure 3. Dataset Relationship of Musk

RK: Molecule-Name Common Attributes

FK:M-Name Feature1 …… Feature 166

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2837

© 2012 ACADEMY PUBLISHER

Mutagenesis dataset records 230 aromatic and
heteroaromatic nitro compounds. They are divided into
two groups based on the mutagenicity: the active and the
inactive. Its relation schema is formulated in Figure 4.

Figure 4. Dataset Relationship of Mutagenesis

 Here, for two datasets, their tables are integrated into
one big table, which includes all records. Note that since
there are two types of Mutagenesis molecules: regression-
friendly and regression-unfriendly, some data are
sampled from two subsets and the whole dataset
respectively. Table III shows classification accuracy of
above methods.

TABLE III.

COMPARISON OF LSH-BASED APPROACHES THROUGH CLASSIFICATION
ACCURACY (%)

Data Musk Mutagenesis
(friendly)

Mutagenesis
(unfriendly)

Mutagenesis
(full)

VA-file 86.3 79.5 63.2 73.1

iLSH 87.6 82.9 68.7 75.2

cLSH 85.2 92.7 70.2 78.9

bLSH 88.4 90.5 70.5 77.2

VD 90.5 93.5 70.6 79.5

According to the experimental results, it is easy to
know that VD exhibits outstanding behaviors by
presenting highest classification accuracy among five
methods. That is the similar conclusion with above
section. Other LSH-based methods follow VD.

Through above experiments, the fine performance of
VD definition can be verified.

VI. CONCLUSION

This paper proposes a novel distance concept
customized to high-dimensional data, Vector-Distance
(VD). VD is a vector with its entries reflecting multi-
aspect information summarized from random projections.
Through applying some metric to VD values, a family of
neighborhood formulation methods is yielded. Empirical
evidence on real datasets demonstrates the fine
performance of VD and the proposed method family.

On the other hand, VD provides another thinking angle
by extending the common distance information to a
compound fashion. Consequently the new distance
collects rich information, and this information reveals
more to reflect the relationship among data. That is
expected to make more importance in high-structured
data environment.

Furthermore, high-dimensional data always attracts a
lot of interest in diverse applications, more work is

needed to promote the improvement of algorithms of
high-dimensional data, even high-structured data.

ACKNOWLEDGMENT

This work is supported by the Youth National Natural
Science Foundation of China under Grant No. 61105129.
And this work thanks for the contribution of Dr.
Xiangsheng Rong.

REFERENCES

[1] E Novak, K Ritter, “The Curse of Dimension and a
Universal Method for Numerical Integration,” Multivariate
Approximation and Splines, pp. 177-187, 1998.

[2] Michael E. Houle, Hans-Peter Kriegel, Peer Kröger, Erich
Schubert and Arthur Zimek, “Can Shared-Neighbor
Distances Defeat the Curse of Dimensionality?” Lecture
Notes in Computer Science, Volume 6187, pp. 482-500,
2010.

[3] Jiajun Liu, Zi Huang, Heng Tao Shen and Xiaofang Zhou,
“Efficient Histogram-Based Similarity Search in Ultra-
High Dimensional Space,” Lecture Notes in Computer
Science, Volume 6588, pp. 1-15, 2011.

[4] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in
High Dimensions via Hashing,” Proceeding of
International Conference on Very Large Data Bases, pp.
518–529, 1999.

[5] D. Comaniciu, P. Meer: Mean shift, “A robust approach
toward feature space analysis,” IEEE Transactions on
pattern analysis and machine intelligence, Vol. 24, No. 5,
pp. 603-619, 2002.

[6] M. Datar, N Immorlica, P Indyk, “Locality-sensitive
hashing scheme based on p-stable distributions,”
Proceeding of 20th annual symposium on Computational
geometry, p-. 253–262, 2004.

[7] A. Chakrabarti, S.Khot, S. Xiaodong, “Near-Optimal
Lower Bounds on the Multi-Party Communication
Complexity of Set Disjointness,” Proceeding of 18th
Annual IEEE Conference on Computational Complexity,
pp. 107-117, 2003.

[8] X.G. Cheng, C. Yang, J. Yu, “A New Approach to Group
Signature Schemes,” Journal of Computers, Vol. 6, No 4.
pp. 812-817, 2011.

[9] A. Andoni, P. Indyk, “Near-Optimal Hashing Algorithms
for Approximate Nearest Neighbor in High Dimensions,”
Proceeding of 47th Annual IEEE Symposium on
Foundations of Computer Science, pp. 459-468, 2006.

[10] P. Indyk and R. Motwani, “Approximate Nearest
Neighbors: towards Removing the Curse of
Dimensionality,” Proceeding of Symposium on Theory of
Computing, pp. 604-613, 1998.

[11] http://www.uncc.edu/knowledgediscovery
[12] T. Hastie, R. Tibshirani, “Discriminant Adaptive Nearest

Neighbor Classification,” IEEE Trans. on Pattern Analysis
and Machine Intelligence. Vol. 18(6), pp. 607-615, 1996.

[13] C. Domeniconi, J. Peng, D. Gunopulos, “An Adaptive
Metric Machine for Pattern Classification,” Advances in
Neural Information Processing Systems, Vol. 13. pp. 458-
464, 2001.

[14] http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-
bayes.html

[15] K.N.N. Unni, R. de Bettignies, S.-D. Seignon and J.-M.
Nunzi, “Application Physics Letter,” Vol. 85, pp. 1823.
2004.

RK: Molecule-ID MOLECULE

FK: Molecule-ID BOND FK: Molecule-ID ATOM

2838 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

[16] V.Murino, M. Bicego, I.A. Rossi, “Statistical classification
of raw textile defects,” Proceedings of the 17th
International Conference on Pattern Recognition, Vol. 4,
pp. 311-314, 2004.

[17] C.C. Chang, C.J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent
Systems and Technology, Volume 2 Issue 3, pp. 35-63,
2011.

[18] J. C. Platt, N. Cristianini, J. Shawe-Taylor, “Large margin
DAG’s for Multiclass classification,” Advances in neural
information processing systems. MIT press, Cambridge,
MA, 12: 547-553, 2000.

[19] R. Weber, H. Schek, and S. Blott, “A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces,” Proceeding of 24th
International Conference on Very Large Data Bases, pp.
194–205. 1998.

[20] Peisen Yuan, Chaofeng Sha, Xiaoling Wang, Bin Yang,
Aoying Zhou, “Efficient Approximate Similarity Search
Using Random Projection Learning”, Lecture Notes in
Computer Science, Volume 6897, pp. 517-529, 2011.

[21] C.H. Zhou, M.L. Cao, M. Ye, Z.H. Qian, “SAT-based
Algorithmic Verification of Noninterference,” Journal of
Computers, Vol. 6, No 11, 2310-2320, 2011.

[22] Z.Q. Wang, X. Sun, “An Efficient Discriminant Analysis
Algorithm for Document Classification,” Journal of
Computer, Vol 6, No 7, pp. 1265-1272, 2011.

[23] Chunyang Ma, Yongluan Zhou, Lidan Shou, Dan Dai,
Gang Chen, “Matching Query Processing in High-
dimensional space,” Proceeding of the 20th ACM
International Conference on Information and Knowledge
Management, pp. 32-40, 2011.

[24] J. Renders, “Kernel Methods in Natural Language
Processing,” Learning Methods for Text Understanding
and Mining Conference Tutorial, 2004.

[25] L. Lopriore, “Page Protection in Multithreaded Systems,”
Journal of Computers, Vol. 5, No 9, pp. 1297-1304, 2010.

Ping Ling was born in Xuzhou,
Jiangsu Province, China, Feb. 1979.
She received her Bachelor’s degree
in 2000, from College of Computer
Science and Technology, Xuzhou
Normal University. And then she
received her Master’s degree and
PHD from College of Computer

Science and Technology, Jilin University in 2006 and
2010 respectively. She research field focuses on data
mining, intelligence computing, support vector machine
and support vector clustering, etc.

Xiangsheng Rong was born in
Yanggu, Shandong Province, China,
1975. He received his Bachelor’s
degree in 1997, from Department of
Logistic Command, Xuzhou Air
Force College of P. L. A. And then
he received his Master’s degree in
2003 from Xuzhou Air Force

College of P. L. A. His major research directions include
the application of information technology and dynamic
programming technique in military logistic command,
intelligence command in combined operations of a sham
battle, etc.

Xiangyang You was born in Xuzhou, Jiangsu Province,
China, 1972. He received his Bachelor’s degree in
College of Computer Science and Technology, Harbin
Institute of Technology. His research directions are
operational research in military logistic command, etc.

Ming Xu was in Suqian, Jiangsu Province, China, 1968.
He received his Bachelor’s degree in 1994, from
Department of Logistic Command, Xuzhou Air Force
College of P. L. A. And then he received his Master’s
degree in 2005 from Xuzhou Air Force College of P. L. A.
His research fields are centered in data integration, data
mining, semantic network, etc.

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2839

© 2012 ACADEMY PUBLISHER

