
Trusted Software Constitution Model Based on
Trust Engine

Junfeng Tian

College of Mathematics and Computer Science of HeBei University, Baoding, China
Email: tjf@hbu.edu.cn

Ye Zhu and Jianlei Feng

Shijiazhuang Posts and Telecommunications Technical College, Shijiazhuang, China
College of Mathematics and Computer Science of HeBei University, Baoding, China

Email: zhuye626@163.com, snuboy_2008@126.com

Abstract—The guaranty of trustiness wasn’t considered
enough in traditional software development methods, the
software developed in that methods lack effective measures
for ensuring its trustiness. Combining agent technique with
the support of trusted computing provided by TPM, a
trusted software constitution model based on Trust Engine
(TSCMTE) is demonstrated in this paper, Trust Engine
extends the “chain of trust” of TCG into application, and
cooperates with TPM to perform integrity measurement for
software entity to ensure the static trustiness, then through
verifying whether the dynamic behavior of software satisfies
the trustiness constraints at runtime, Trust Engine
guarantees the dynamic trustiness of software behavior. For
the purpose of improving the accuracy of trustiness
constraints, a strategy of determining the weights of
characteristic attributes based on information entropy is
proposed. Simulation experiments illustrate that the
trustiness of software developed by the TSCMTE is
improved effectively without performance degradation.

Index Terms—Trusted Software Constitution, Trust Engine,
Trust Control and Evaluation, Trust View, Software
Behavior Trace

I. INTRODUCTION

The increase in software size and the complexity of
external environment have resulted in the increasingly
descending of software quality. Once software failures
and malfunctions occur, especially when software is
attacked maliciously, it will bring tremendous loss to
people’s work and life. Trusted software will not result in
malfunction or failure largely even if caused by malicious
attacks, or system errors [1]. How to ensure the trustiness
of software will be an inexorable trend of software’s
development and application.

Trusted software constitution technology is an
important guarantee of software’s correct execution,
which ensures that software is always works in the
intended way and goes towards the intended direction [2].
Based upon the theory and technology of traditional
software, this paper presents a trusted software
constitution model based on Trust Engine (TSCMTE).
The remainder of this paper is organized as follows:

Section 2 covers the previous related works on the
research of software’s trustiness. Section 3 introduces the
framework of TSCMTE, and Section 4 presents the
software behavior and trustiness evaluation in detail.
Section 5 states the simulation experiments and results.
Finally, Section 6 draws conclusion and outlines future
extension of this work.

II. RELATED WORKS

In recent years, the trustiness of software has drawn
more and more people’s attentions and large quantities of
research achievements have mounted in the field of the
software’s trustiness [3].

Formal methods [4] ensure the software’s trustiness in
a rigorous way. Cleaning Software Engineering [5] places
the process of software’s development in the control of
statistic value, which can be used to develop software
with high reliability certification. Aspect-oriented
programming methods (AOP) [6] can be used to separate
the monitoring and controlling for developing software
with trustiness, which records the process of software’s
execution to guarantee trustiness. Qu Yanwen et al. [7]
described the trustiness of software by Software Behavior,
which is defined by the expectations of software’s correct
execution, and the trustiness can be classified into several
classes. Lin Huimin et al. [8] carried out the formal
research on software with high trustiness, through
converting the problem that "whether the software has the
intended characteristics" into a mathematical problem
that "whether the software behavior S satisfies software
character F", to ensure that the behavior of software is
always consistent with the intended. Wang Huaimin et al.
[9] proposed the trustworthiness classification
specification of software, mainly included the definitions
of the trustiness classes, measurements of trusted
evidence and so on. Liu Jing [10] discussed how to
integrate the UTP and UML together to form a unified
modeling system, which not only makes the MDA
technology to be used to constitute trusted software, but
also adopts the formal specification of software and
techniques of model checking in the software’s

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2771

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.12.2771-2778

development process to ensure software’s trustiness
fundamentally.

Through a brief review of the above researches on
software’s trustiness, it can be concluded that the
achievement on software’s trustiness have initiated us
into the causes of untrusted software, and some
countermeasures have been adopted. However, in the
field of software’s trustiness, the researches on the
constitution of trusted software continue to be scarce. To
bridge this gap, this paper demonstrates a trusted software
constitution model based on Trust Engine (TSCMTE),
and aims to:

1. show the framework of TSCMTE by combining
agent technique with the support of trusted computing
provided by TPM.

2. introduce software behavior and trustiness
evaluation in detail, including the guaranty for the static
integrity of software with Trust Engine, the definition,
representation and extraction of Software Intended
Behavior Trace.

3. propose a strategy of determining the weights of
characteristic attributes based on information entropy to
improve the accuracy of constraints.

III. THE TRUSTED SOFTWARE CONSTITUTION MODEL
BASED ON TRUST ENGINE

The basic idea of TSCMTE is not only guaranteeing
the static integrity of software, but also constraining the
dynamic behavior in the process of software execution
effectively. The trustiness of software is mainly
manifested in the trustiness of static integrity and
dynamic behavior of software. On the basis of ensuring
the static trustiness of software, the TSCMTE is driven
by software dynamic behavior, through monitoring the
dynamic behavior in the process of software execution, it
can be verified whether the dynamic behavior is always
consistent with the intended behavior, then the dynamic
behavior of software will be adjusted and controlled
possibly to ensure the dynamic trustiness of software.
A. Framework of TSCMTE

The software based on traditional theories faces two
typical security threats: first, the static integrity of
software is broken probably, suffering from virus, which
caused dynamic behavior to be changed; second, software

is illegally injected or interrupted by other processes in
the process of execution, such as buffer overflow attack,
which can change the dynamic behavior of software
possibly without breaking the static integrity.

Therefore, in order to identify the above-mentioned
security threats and ensure software’s trustiness,
combining agent technique with the support of trusted
computing provided by TPM, the framework of
TSCMTE is proposed, as shown in Fig. 1.

The reasons why the TSCMTE is proposed are listed
as follows:

1. Trusted computer based on TPM is of temporary
trustiness in the initial phase [11]. When software is
running, the trustiness of dynamic behavior of software
can’t be guaranteed if the static integrity has been broken.

2. It is effective for ensuring the dynamic trustiness to
monitor and constrain the dynamic behavior of software.
Inject the capability of monitoring in an appropriate way,
and then the entity agent [12] can autonomously monitor
the dynamic behavior and extract the related information
with its context.

The TSCMTE is made up of Application Software,
Trust Engine, TPM and Operation System.

1. Application Software: the source of software’s
dynamic behavior.

2. Trust Engine: extends the “chain of trust” of TCG
into application, and cooperates with TPM to perform
integrity measurement for software entity to ensure the
static trustiness, and based on agent technique, through
monitoring and extracting the dynamic behavior of
software, it can verify whether the dynamic behavior
satisfies the trustiness constraints, then adjust and control
the software behavior to ensure the dynamic trustiness. It
is composed of Trust Monitor, Context, Trust Control and
Evaluation, Trust View and Trusted Communication
Agent Interface.

(1) Trust Monitor: it can monitor the process of
software execution to extract related information.

(2) Context: it refers to the necessary conditions for
the operation and interaction of software, which
includes the time, environmental factors and other
related information. Whether the behavior is
trusted or not is closely related to the specific
context.

Figure 1. Framework of TSCMTE.

2772 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

(3) Trust Control and Evaluation: it’s responsible for
trustiness evaluation, and then it can adjust the
dynamic behavior and take appropriate measures
to control anomalous behavior according to the
result of evaluation.

(4) Trust View: it’s defined to represent the
characteristics of software behavior

(5) Trusted Communication Agent Interface (TCAI):
it’s a security bus actually which is of trustiness,
privacy and integrity [13] and responsible for
communication with other modules. That is, it can
guarantee the security of identity, the transmission
of message invisible to other processes and can’t
be modified unauthorizedly, etc.

Trust Engine as the core of TSCMTE interacts with
other modules to ensure the trustiness of software.

3. TPM: trusted computer based on TPM can be of
temporary trustiness in the initial phase.

The TSCMTE focuses on the logical framework and
the design of Trust Engine.

B. Trust Engine
For the openness of operational environment, there is

the security threat to the static integrity of software
inevitably. Combining “chain of trust” of TCG with the
support of trusted computing provided by TPM [14], the
TCG sets up a root of trust in computer system and builds
a chain of trust, which starts from root of trust to
hardware platform, and operating system. Trust Engine in
TSCMTE provides effective measurements to constrain
the static integrity of Software Module, and then passes

trust. Therefore, trust can be extended into the whole
computer system. The chain of trust of TCG with Trust
Engine is shown in Fig. 2.

When Application Software is loading, Trust Engine
interacts with TPM firstly to check the static integrity,
and then trust can be extended from the root of trust into
Application Software. After that, the dynamic behavior of
Application Software in the process of execution can be
monitored and extracted to ensure the dynamic trustiness.

C. Trust Control and Evaluation
Application Software is the source of Software

Behavior. The dynamic behavior of software monitored
by Trust Monitor needs to be verified the consistency
with the intended behavior. Therefore, the intended
behavior as a benchmark of evaluation is the essential
prerequisite of dynamic trustiness constraints. The
Context extracted during software execution can
guarantee objectivity and credibility of software behavior.

The Trust Control and Evaluation proposed is made up
of Trusted Network Interface, Event Channel, Evaluation
and Trust Control. Its framework is shown as in Fig. 3:

1. Trusted Network Interface: the software based on
network interacts with other entities through the Trusted
Network Interface.

2. Event Channel: receive the related information
which extracted through monitoring the process of
software execution.

3. Evaluation: verify whether the dynamic behavior
satisfies the trustiness constraints.

Figure 2. Chain of trust of TCG with Trust Engine.

Figure 3. Framework of Trust Control and Evaluation.

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2773

© 2012 ACADEMY PUBLISHER

4. Trust Control: according to the evaluation result,
adjust dynamic behavior and take appropriate measures to
control anomalous behavior.

IV. SOFTWARE BEHAVIOR AND TRUSTINESS EVALUATION

A. Related Definitions
The definition of trustiness is given by TCG according

to the behavior of the entity: An entity can be trusted if it
always behaves in the expected manner for the intended
purpose [15]. Therefore, as an entity, the trustiness of
software depends on whether its behavior is trusted or not.
The related definitions are listed as below:

Definition 1. Software Behavior: Software behavior
refers to any changes, influences or any operations made
to the other independent entities when the software works
as an independent entity [7], that is, software is able to
perform its function by consuming computer resources.

Definition 2. Trustiness of Software Behavior: If the
dynamic behavior in the process of software execution is
always consistent with the intended behavior, it can be
considered as trusted.

Definition 3. Software Intended Behavior Trace: it is
the representation of intended behavior of software,
which is composed of Software Intended Operation Trace
and Software Intended Function Trace.

Definition 4. Software Intended Operation Trace:
represents the intended routes on which some significant
positions are selected orderly as monitor points. It can be
denoted by ordered vectors.

Definition 5. Software Intended Function Trace:
describes the intended functions performed on monitor
points. It is constituted by a series of functions with
related information and also denoted by ordered vectors.

B. Software Intended Operation Trace
Definition 6. Check Point: It’s a significant point

which was set up as a monitor on the route of software
execution. It contains two types: Ordinary Check Point
and Branch Check Point. Ordinary Check Point records
function with its related information, and Branch Check
Point records transfer condition and other related
information.

The ordered vector of Check Points can guarantee the
dynamic trustiness of software operation trace from the
aspect of intended routes. However, where to set up the
Check Points on the route of software execution is a
significant problem that should be solved. It is to consider
that: 1. from the routes coverage of software execution,
setting up as more Check Points as possible will improve
the accuracy of the constraints of software’s dynamic
operation trace; 2. from the efficiency of software
execution, setting up more Check Points means extracting
and storing more related information, which will reduce
the efficiency of software execution. Therefore, how to
make balance between accuracy and efficiency should be
analyzed. In addition, the granularity of setting up Check
Points determines the degree of software’s dynamic
trustiness. According to the rules as follows, Check
Points can be set up on the routes of software execution:

Rule 1: Set up Ordinary Check Points at significant
system calls. In order to perform certain function, most
software needs to interact with kernel through system
calls. System call sequences can reflect software behavior
to a certain degree [16]. Therefore, it can evaluate the
trustiness of software’s dynamic behavior.

Rule 2: Set up Branch Check Points at each conditional
branch, and set up Ordinary Check Points at the body of
each branch separately. Due to the non-determinism
caused by branches, software is easy to be attacked at
each conditional branch and executes the unexpected
branch path which is difficult to be detected. Therefore, it
is necessary to set up Branch Check Points for ensuring
the trustiness of dynamic behavior.

Rule 3: Set up Ordinary Check Points in the end of
basic function. The results of software execution can
evaluate whether the independent Software Module
performed intended operation.

C. Software Intended Function Trace
Definition 7. Scene: It’s a vector of n-tuples which

records the background and function during software
execution. Ordinary Check Point contains certain
function with function name, function arguments, CPU
load, memory usage, result of software execution and so
on; Branch Check Point concludes CPU load, memory
usage, branch data, transfer condition and so on.

Definition 8. Time Interval: It is an interval that
software consumes between adjacent Check Points in the
process of execution, which can ensure the dynamic
trustiness of software behavior between adjacent Check
Points.

The vectors which records Scene and Time Interval
can guarantee the dynamic trustiness of Software
Operation Trace from the aspect of intended function.
However, for different Check Points, the same attribute,
due to the difference of values, contributes to ensuring
the dynamic trustiness of Software Intended Function
Trace differently.

Information entropy is the measure of uncertainty of a
random variable [17]. For the purpose of improving
accuracy of the constraints of dynamic trustiness, a
strategy of determining the weights of characteristic
attributes based on information entropy is proposed.

Suppose that there is a set of n-samples, denoted by
E={e1, e2, ……, en}, which is obtained at certain Ordinary
Check Point during software execution. Each sample ej is
represented by the vector of characteristic attributes
ej=<Function, Argument, CPU, Memory, Result,
TimeInterval>. So, the matrix E={ e(i,j) }, 1≤i≤n, 1≤j≤6
is the source of determining the weights of characteristic
attributes based on information entropy. The strategy
mainly contains 5 steps as follows:

1. The probability pij when the value of attribute j is
e(i,j):

 n21i
jie

jie
p n

1i

ij ,,,

,

,

)(

)(
L==

∑
=

 (1)

2774 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

Where)(, jie is the frequency when the value of

attribute j is e(i,j) , so that njie
n

1i

=∑
=

)(,

2. The information entropy of attribute j is:

∑
=

−=
n

1i

ijijj ppke ln
⎪⎩

⎪
⎨
⎧

≥

=
=

2n
n

1
1n1

k
a

a

a

ln

 (2)

Where na is the count of different values of attribute
j, lnna is the max value of information entropy, so 0≤ej≤1

3. Let
 jj e1g −= (3)

4. The sum of information entropy of E={ e(i,j) } is:

∑
=

=
6

1j

jeE ' (4)

5. The weight of attribute j after normalized is:

621j
E6

gj
j ,,,

'
L=

−
=ω ∑

=

=≤≤
6

1j

jj 110 ωω , (5)

However, the strategy has its limitation which didn’t
consider the relations among characteristic attributes, and
an intensive study will be made in the future.

D. Extraction of Software Intended Behavior
Extracting the intended behavior of software is crucial

to the generation of Trust View. The methods of
extraction generally contains: static extraction and
dynamic extraction. Static extraction doesn’t need to
execute software. It is able to obtain the control flow of
software by analyzing the source code, but can’t extract
background information [18]. Dynamic extraction can
obtain the execution model through monitoring the
dynamic behavior. The model is incomplete because its
generation relays on the input and operation [19], but it
contains the context, execution time and related
information of software execution.

The TSCMTE makes full use of static extraction and
dynamic extraction. Firstly, static extraction was done to
select some significant points as Check Points on the
intended routes of software, and then the intended
operation trace of software was gotten. Secondly, when
the software is in the process of execution, dynamic
extraction was done to extract the Scene, Time Interval
with other related information by weaving the sensors on

the position of Check Points. Specifically, sensor is
essentially a program for extracting function with related
information, which is triggered automatically. Then the
intended function trace during software execution was
obtained.

Both the intended operation trace and intended
function trace mutually complete each other, and then
constitute the software intended behavior trace accurately.
The generation process of software intended behavior
trace is shown in Fig. 4.

E. Representation of Software Intended Behavior
The existing representations of dynamic behavior of

software, such as Petri nets [20], automata theory [21],
didn’t take the relationships between the behavior and
trustiness of software into account. Qu Yanwen [7]
proposed the behavior tree, which is a representation of
behavior trace of software. Actually, the behavior tree is
an effective representation of Software Intended Behavior.

The TSCMTE adopts Trust View to represent Software
Intended Behavior which can be described as
TrustView(V, E, T, v0, Ve):
 V is the set of check points, can be expressed as V(Id,
Type, Scene), where Id is the unique identity; Type
describes the type of check points: 0 represents ordinary
check points, and 1 represents branch check points; Scene
characterizes the function and related information of
current check point. If Type=0, it can be denoted by
Scene<Function, Argument, CPU, Memory, Result>; if
Type=1, it can be denoted by Scene<CPU, Memory,
BranchData, TransferCondition>.

E is a set of edges connecting check points associated
with transitions. It is the subset of the 2-dimensional
space V×V. Its element ei is a directed edge and be
described as ei=<vi, vj>.

 T is the set of time intervals. For any edge ei=<vi,
vj> E∈ , the weight of ei represents the transferred interval
between vi and vj.

v0 is the initial check point, v0 V∈ .
Ve is the set of the final check points, ve V∈ .

F. Trustiness Evaluation
Based on the research on software behavior, a strategy

of trustiness evaluation is proposed, the process is given
in Fig. 5.

Figure 4. Generation process.

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2775

© 2012 ACADEMY PUBLISHER

Figure 5. Trustiness Evaluation of TSCMTE.

The evaluation of software intended operation trace is
to verify whether the practical identification of check
point consistent with the intended. However, for the
evaluation of software intended function trace, we adopt
the above-mentioned strategy of determining the weights
of characteristic attributes based on information entropy.
After get the weights of all attributes, we sum up all
sample pattern with different weighting factor to perform
evaluation. The values of every attribute are described by
abstract value range [22]. If the value of j belongs to the
intended range, then cj=1, else cj=0. The value of
evaluation C is:

 ∑
=

=
6

1j
jjcC ω (6)

A trusted threshold T is defined. If C<T, it indicates
the software has been attacked, else the software is
trusted. The value of T depends on special condition.

V. SIMULATION EXPERIMENTS AND RESULTS

This section discusses the simulation experiments
undertaken to evaluate the trustiness and performance of
the TSCMTE. Trustiness is generally evaluated in two
aspects: the effectiveness and accuracy. All evaluations
obtained were run on a Core(TM)2 E8400 trusted
computer based on TPM with 2GB of ram for Linux
2.6.12.

The TSCMTE proposed has carried out trustiness
constraints of software’s static integrity and dynamic
behavior completely. The integrity measurement
provided by TPM can guarantee the static integrity of
software, but the dynamic constraints can’t ensure the
trustiness of software behavior accurately. The goal of
our model is to keep high accuracy of trustiness
evaluation.

Accuracy is generally evaluated in two aspects: True
Positive Rate (TPR) and False Positive Rate (FPR). True
Positive represents an effective detection, this is,
accepting an event when it is actually trusted; False
Positive represents a wrong detection, that is, rejecting an
event when it is actually trusted. The TPR should be as
high as possible, and the FPR should be as low as
possible.

This paper carried out the experiments for the purpose
of accuracy evaluation without weights (equal weights)
and with weights respectively, the results reflected in Fig.
6 and Fig. 7 that show the TPR and FPR based on

software as below: wu-ftpd, linuxconf, gzip and ps after
attacked by existing exploits.

70%

75%

80%

85%

90%

95%

100%

wu-ftpd linuxconf gzip ps

without weights

with weights

Figure 6. True Positive Rate of TSCMTE.

0%

5%

10%

15%

20%

25%

30%

wu-ftpd linuxconf gzip ps

without weights

with weights

Figure 7. False Positive Rate of TSCMTE.

From the above experiments it can be found out that
the TSCMTE without weights (equal weights) performs
high True Positive Rate, but also has high False Positive
Rate. This is due to the fact that the features of dynamic
behavior are deficient, that is, the characteristic attributes
extracted are so limited that can’t distinguish the trusted
behavior from anomalous behavior.

Take an Ordinary Check Point in gzip for example,
this paper adopted the strategy introduced in section 4.3.2
to carry out experiments, the weights of characteristic
attributes and detection results are shown in Table Ⅰ. It
can be observed that, the TSCMTE with weights not only
improves the True Positive Rate, but also greatly reduce
the False Positive Rate.

2776 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

TABLE I.

WEIGHTS OF CHARACTERISTIC ATTRIBUTES AND DETECTION RESULTS

Trusted threshold T is 0.4：√ represents consistence with the intended; × represents deviation from the intended.

The performance of the TSCMTE mainly comes from
verifying whether the dynamic behavior trace extracted
during software execution is in accordance with the
intended. From the investigation, it is found that regular
software has a considerably lower system call density.
Take gzip for example, when the model was enabled, the
CPU load increased about 15% and the memory usage
grew by about 10%. Therefore, the TSCMTE has an
acceptable performance. Meanwhile, it also greatly
improves the trustiness of software.

In addition, this model has been adopted in the
information management system of Department of
Science and Technology of Hebei Province, China, the
effective trustiness and acceptable performance have
been proved completely.

VI. CONCLUSION

In this paper, a trusted software constitution model
based on Trust Engine (TSCMTE) is proposed. Software
Intended Behavior Trace was introduced to describe the
intended behavior of software, which consists of Intended
Operation Trace and Intended Function Trace. The
former is the intended routes which can be denoted by
vectors of ordered Check Points; the latter describes the
intended functions, which is constituted by a series of
functions with related information. Time Interval can
ensure the trustiness of software behavior between
adjacent Check Points. For the purpose of ensuring
software’s trustiness, the TSCMTE carries out constraints
of software’s static integrity and dynamic behavior
completely. Furthermore, in order to improve the
accuracy of constraints, a strategy of determining the
weights of characteristic attributes based on information
entropy is proposed. The simulation experiments and
practical application show that the trustiness of software
developed by the TSCMTE is improved greatly without
performance degradation. However, the TSCMTE has its
own limitations, an intensive research will be made on
the trustiness evaluation and the temporal and spatial
correlations among characteristic attributes for
determining weights in the future.

ACKNOWLEDGEMENT

This work is supported by the National Natural
Science Foundation of China (Grant No.60873203), the
Foundation of Key Laboratory of Aerospace Information
Security and Trusted Computing Ministry of Education
(Grant No.AISTC2009_03), Hebei National Funds for
Distinguished Young Scientists (Grant No.F2010000317),
the National Science Foundation of Hebei Province
(Grant No.F2010000319).

REFERENCES

[1] Chen Huowang, Wang Ji, Dong Wei, “High Confidence
Software Engineering Technologies,” Acta Electronica
Sinica, vol. 31, no. 12A, pp. 1933–1937, 2003.

[2] Li Renjie, Zhang Zhuxi, Jiang Haiyan, Wang Huaimin,
“Research and implementation of trusted software
constitution based on monitoring,” Application Research of
Computers, vol. 26, no. 12, pp. 4585–4588, Dec. 2009.

[3] Mei Hong, Liu Xizhe, “Software techniques evolved by the
Internet: Current situation and future trend,” Chinese Sci
Bull, vol. 55, no. 13, pp. 1214–1220, 2010.

[4] Edmund M Clarke, Jeannette M Wing, “Formal methods:
State of the art and future directions,” ACM Computing
Surveys, vol. 28, pp. 626–643, 1996.

[5] S. J. Prowell, C. J. Trammell, R. C. Linger, J. H. Poore,
Cleanroom Software Engineering: Technology and
Process, Boston: Addison-Wesley Professional, 1999.

[6] VO Safonov, Using aspect-oriented programming for
trustworthy software development, Wiley Interscience, Jun.
2008.

[7] Qu Yanwen, Software Behavior, Beijing: Electronic
Industry Press, Oct. 2004.

[8] Liu Huimin, Zhang Wenhui, “Model Checking: Theories,
Techniques and Applications,” Chinese Journal of
Electronics, vol. 30, no. 12A, pp. 1907–1912, Dec. 2002.

[9] Wang Huaimin, Liu Xudong, Xie Bing, Software
Trustworthiness Classification Specification, TRUSTIE-
STC V2.0, May 2009.

[10] Liu Jing, He Jifeng, Miao Huaikou, “A strategy for model
construction and integration in MDA,” Journal of Software,
vol. 17, no. 6, pp. 1141–1422, Jun. 2006.

[11] Li Xiaoyong, Shen Changxiang, “Research to a dynamic
application transitive trust model,” J.Huazhong Univ. of
Sci. & Tech (Nature Science Edition), vol. 33, pp. 310–312,
Dec. 2005.

Characteristic Attributes Function Argument CPU Memory Result TimeInterval Detection Results

Without
weights

Weights 0.166 0.166 0.166 0.166 0.166 0.166 ——

Attack × × √ √ √ √ False Negative(0.33)

Normal √ × √ × √ × False Positive(0.498)

With
weights

Weights 0.37 0.23 0.13 0.05 0.2 0.02 ——

Attack × × √ √ √ √ Attack(0.6)

Normal √ × √ × √ × Normal(0.3)

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2777

© 2012 ACADEMY PUBLISHER

[12] Liu Dayou, Yang Kun, Chen Jianzhong, “Agents: Present
Status and Trends,” Journal of Software, vol. 11, no. 3, pp.
315–321, Nov. 2000.

[13] David Challener, Kent Yoder, Ryan Catherman, A
Practical Guide to Trusted Computing, Upper Saddle
River, NJ: IBM Press, 2009.

[14] Shen Changxiang, Zhang Huanguo, Wang Huaimin,
“Research on trusted computing and its development,”
SCIENCE CHINA Information Sciences, vol. 53, pp. 405–
433, Mar. 2010.

[15] Trusted Computing Group, TCG Specification Architecture
Overview, Https://www.trustedcomputinggroup.org/groups
/TCG_1_ 0_Architecture_Overview.pdf.

[16] Yao Lihong, Zi Xiaochao, Huang Hao, Mao Bing, Xie Li,
“Research of System Call Based Intrusion Detection,” Acta
Electronica Sinica, vol. 31, no. 8, pp. 1134–1137, Aug.
2003.

[17] Cover T M. and Thomas J A, Elements of Information
Theory, New York: Wiley, 1991.

[18] M. Christodorescu, S. Jha, “Static analysis of executables
to detect malicious patterns,” In Proceedings of the 12th
USENIX Security Symposium (Security’03), pp. 169–186,
Aug. 2003.

[19] L. Wendehals, “Improving Design Pattern Instance
Recognition by Dynamic Analysis,” In Proc. of the ICSE
2003 Workshop on Dynamic Analysis (WODA), pp. 29–32,
May 2003.

[20] Luo Junzhou, Shen Jun, Gu Guanqun, “From Petri Nets to
Formal Description Techniques and Protocol Engineering,”
Journal of Software, vol. 11, no. 5, pp. 606–615, Nov.
2000.

[21] S Helke, F Kammiller, “Representing hierarchical
automata in interactive theorem provers,” Proc of the 14th

International Conference on Theorem Proving in Higher
Order Logics, London: Springer-Verlag, pp. 233–248,
2001.

[22] Xiao Qing, Gong Yunzhan, Yang Zhaohong, Jin Dahai,
Wang Yawen, “Path Sensitive Static Defect Detecting
Method,” Journal of Software, vol. 21, no. 2, pp. 209–217,
Feb. 2010.

Junfeng Tian, born in Baoding, China,
1965, received Ph.D degree of
computer science from University of
Science and Technology of China in
2004.

He is a professor of Computer
Science at Hebei University. In the past
few years, he has published many
technical papers in refereed journals

and conference proceedings. His research interests include
network security, trust computing and distributed computing.

Ye Zhu, born in Shijiazhuang, China, 1985, received Master
degree of computer science from Hebei University in 2011.

He works in Shijiazhuang Posts and Telecommunications
Technical College. His research interests include network
security, trust computing.

Jianlei Feng, born in Cangzhou, China, 1984, received Master
degree of computer science from Hebei University in 2011.

He studied in the College of Mathematics and Computer
Science of HeBei University His research interests include
network security, trust computing.

2778 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

