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Abstract—In this paper, the problem of estimating the 
central direction of arrival (DOA) of coherently distributed 
source impinging upon a uniform linear array is considered. 
An efficient method based on the support vector regression 
is proposed. After a training phase in which several known 
input/output mapping are used to determine the parameters 
of the support vector machines, among the outputs of the 
array and the central DOA of unknown plane waves is 
approximated by means of a family of support vector 
machines. So they perform well in response to input signals 
that have not been initially included in the training set. 
Furthermore, particle swarm optimization (PSO) algorithm 
is expressed for determination of the support vector 
machine parameters, which is very crucial for its learning 
results and generalization ability. Several numeral results 
are provided for the validation of the proposed approach.  
 
Index Terms—coherently distributed source; the central 
DOA; angular spread; support vector machines; particle 
swarm optimization 
 

I.  INTRODUCTION 

Sensor array processing plays a prominent role in the 
propagation of plane waves through a medium. The 
problem of finding the directions impinging on an array 
antenna or sensor array, namely, direction finding or 
DOA estimation, has been of interest for several decades. 
This is because the direction is a useful parameter for 
several systems, such as wireless communications, radar, 
navigation, etc. In most DOA estimation algorithms, it is 
commonly assumed that the received signals originate 
from far-field point sources and give rise to perfectly 
planar wavefronts which impinge on the array from 
discrete and fixed DOAs. However, in many practical  
applications, such as radar, sonar and mobile 
communications, the sensor array often receives sources 
which have been reflected by a number of scatters. The 

scattered signals are received from a narrow angular 
region, an alternative signal model can be derived which 
is called distributed source model [1-4]. 

Note that depending on the relationship between the 
channel coherency time and the observation period, the 
sources can be viewed either as coherently distributed or 
incoherently distributed [5]. A source is called coherently 
distributed if the signal components arriving from 
different directions are replicas of the same signal, 
whereas in the incoherently distributed source case, all 
signals coming from different directions are assumed to 
be uncorrelated. Indeed, if the channel coherency time is 
much smaller than the observation period, then the 
incoherently distributed model is relevant. In the opposite 
case, the coherently distributed model or a partially 
coherent model can be used. 

Several methods have been proposed for estimating 
parameters for these two types of distributed sources. 
Indeed, in coherently distributed source case, the rank of 
the noise-free covariance matrix is equal to the number of 
sources. On the other hand, for incoherently distributed 
sources, the rank of the noise-free covariance matrix 
increases as the angular spread increases. In particular, 
for a single-source case, the rank can reach the number of 
array sensor [6]. However, most of the signal energy is 
concentrated within the first few eigenvalues of the noise-
free covariance matrix. The number of these eigenvalues 
is referred to as the effective dimension of the signal 
subspace. It is generally smaller than the number of 
sensors. 

Typically, the statistics of a distributed source is 
parameterized by its central DOA and angular spread. A 
number of investigators have proposed distributed source 
modeling, and several parameter estimation techniques 
have been proposed in the literature [7-12].To begin with, 
attempts for coherently distributed source modeling and 
parameter estimation have been accomplished in [7], 
where the central DOAs and angular spreads are 
estimated by algorithms based on MUSIC using a 
uniform linear array. However, this algorithm needs two 
dimensional joint searching and assumes that the multiple 
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sources must have identical and known angular signal 
intensity function. In contrast to some computationally 
complex approaches such as the maximum likelihood [8], 
the dispersed signal parameter estimator (DISPARE) [9], 
and the covariance fitting [10] have been provided. 
Subsequently, a classical localization algorithm has been 
used to estimate both virtual parameters and deduced the 
required ones. The focus in [11] has been on root-MUSIC 
which was shown to provide better accuracy with 
relatively low computational complexity compared to 
some other point-source localization algorithm [12-13]. 

Other robust techniques using the array geometry have 
recently been developed. A typical example is low-
complexity parameter estimation with ESPRIT technique 
[14], which employs eigenvalue decomposition with two 
uniform linear arrays. The ESPRIT algorithm is still 
computationally extensive and time consuming especially 
when the number of antenna array elements is larger than 
the number of incident signals. An asymptotic maximum 
likelihood for joint estimation of the central DOA and 
angular spreads of multiple distributed sources is 
presented in [15]. Though it has best precision, the 
computationally load is high. 

Recently, many low-complexity methods are proposed 
to reduce the computational burden of estimators [16-18]. 
For example, the decoupled COMET-EXIP [16] uses two 
successive one dimensional searches instead of a two 
dimensional search for parameter estimation of a single 
incoherently distributed source. 

Furthermore, methods based on the use of neural 
networks and radial basis function networks have also 
been efficiently applied for point source DOA estimation 
[19-20]. In these works, the outputs of the array, properly 
preprocessed, are used as input data for a family of neural 
networks trained with a subset of the possible 
configurations of the impinging sources. 

In this paper, an alternative algorithm is proposed, 
which is based on a support vector regression. In 
particular, the support vector regression approximates the 
unknown function that relates the received signals to the 
angles of incidence. The support vector regression is 
based on the theory of support vector machines, which 
are a nonlinear generalization of the generalized portrait 
algorithm. In the past few years, there has been a great 
interest in the development of support vector machines, 
mainly because they have yielded excellent 
generalization performances in applications [21-22]. And 
fast iterative algorithms based on the use of support 
vector machines and relatively simple to be implemented, 
have been developed [23-24]. 

The remainder of this paper is organized as follows. 
Section II presents the array configuration and system 
model. Section III proposes a central DOA estimation 
algorithm for coherently distributed source based on 
support vector regression. Section IV shows particle 
swarm optimization for parameter section of support 
vector regression. Section V gives simulation results. And 
Section VI concludes the paper. 

II.  PROBEM STATEMENT AND PRELIMINARIES 

In this work, a uniform linear array composed M 
elements with interelement spacing d is considered. q 
electromagnetic narrowband plane waves impinge on the 
array from directions. 

The complex envelope of the array output can be 
written as 

 ( ) ( ) ( )
1

q

i
i

t t t
=

= +∑X S N  (1) 

where ( )tX  is the array snapshot vector,  ( )i tS is the 
vector that describes the contribution of the ith signal 
source to the array output, and the noise ( )tN is zero-
mean and spatially and temporally white and Gaussian, 

 ( ) ( ){ }H 2
ttE t t σ δ ′′ =N N I  (2) 

and 
 ( ) ( ){ }T 0, ,E t t t t′ ′= ∀N N  (3) 

where 2σ is the noise variance, I denotes identity matrix 
and ttδ ′ is the Kronecker delta function with 1ttδ ′ = for 
t t′= and 0ttδ ′ = for t t′≠ . We also assume that the 
signal is uncorrelated with the noise. 

In point source model, the baseband signal of the ith 
source is modeled as 

 ( ) ( ) ( )i i it s t θ=S a               (4) 

where ( )is t  is the complex envelope of the ith source, iθ  

is its DOA, and ( ) ( )2 1 sin2 sin T[1 , ]ii j M dj d
i e e π λ θπ λ θθ − −−=   , a L， is 

the corresponding steering vector, d is the distance 
between two adjacent sensors,  λ is the wavelength of the 
impinging signal. 

In many environments for modern radio 
communications, the transmitted signal is often 
obstructed by buildings, vehicles, trees, etc., and/or 
reflected by rough surfaces. Hence, the absence of a 
single Line-Of-Sight (LOS) ray will violate the classical 
point source assumption.  

Assume a single narrow point source that contributes 
with a large number of wavefronts originating from 
multi-path reflections near the source and during 
transmission. If we observe the baseband signals received 
at the antenna array, it is possible to regard the source just 
as a spatially distributed source as Fig.1. 

 
 
 
 
 
 
 
 
 
 
 
 
In distributed signal model, the source energy is 

considered to be spread over some angular volume. 
Hence,  ( )i tS  is written as 

 ( ) ( ) ( ), , di it t
ϑ

ϑ ς ϑ ϑ
∈Θ

= ∫S a ψ  (5) 

d 0 1 M 

Fig.1  Distributed source model 

a distributed source 
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where Θ  is the set of the steering vector over some 
parameter space of interest,  ( ), ,i tς ϑ ψ is a complex 
random angular-temporal signal intensity which can be 
expressed as 

 ( ) ( ) ( ), ,i it s tς ϑ ϑ=  ψ ψl ；  (6) 
under the coherently distributed source assumptions, iψ is 
the location parameter. Examples of the parameter vector 
are the mean and standard deviation of a source with 
Gaussian angular signal intensity. 

The steering vector of distributed source is defined as 
 ( ) ( ) ( )di iϑ

ϑ ϑ ϑ
∈Θ

=  ∫b ψ a ψl ；  (7) 

As a common example of the coherently distributed 
source, assume that the deterministic angular signal 
intensity ( )iϑ  ψl ；  has the Gaussian shape 

 ( ) ( )2

2

1; , exp
22i

ii

i
i θ

θθ

ϑ θ
ϑ θ σ

σπσ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

l  (8) 

Here ,
ii i θθ σ⎡ ⎤= ⎣ ⎦ψ , iθ is the central DOA, 

iθσ is angular 
spread. 

Using the above definitions, the covariance matrix of 
the output signal vector can be written as 

 ( ) ( )H
XX E t t⎡ ⎤= ⎣ ⎦R X X  (9) 

In practical situations, the true covariance matrix of 
( )tX is unavailable but can be estimated. Therefore, the 

sample covariance matrix with N snapshots is defined as 

 ( ) ( )H

1

1 N

XX
t

t t
N =

= ∑R X X
)

          (10) 

III. THE CENTRAL DOA ESTIMATION BASED ON SUPPORT 
VECTOR REGRESSION 

The support vector regression is based on the theory of 
support vector machines, which are a nonlinear 
generalization of the generalized portrait algorithm 
developed by Vapnik [25]. In particular, support vector 
machines have a rigorous mathematical foundation, 
which is based on the learning theory. 

Since the correlation matrix XXR  is symmetric, only 
the upper triangular part is considered. These matrix 
elements are organized in an array V , given by 

 
[ ]11 12 1 22 23 2, , , , , , , , , , , ,M M mm mM MM=V r r r r r r r r rL L L L L     

(11) 
where [ ] , , 1, ,hk hk

r h k M= =R L . 

The array V is then normalized in order to obtain the 
input data Z , 

 =
VZ
V

 (12) 

Since ( )1 /2, M MC +∈ Σ Σ ⊂Z , and 1 qθ θ⎡ ⎤= ∈ Θ⎣ ⎦θ L , 
qRΘ ⊂ , so a mapping :G Θ → Σ  exists. The problem of 

the central DOA estimation can be thought as the 
retrieval of θ , starting from the knowledge of the array 
Z . To this end, the unknown inverse mapping 

:F Σ → Θ has to be found. The components of F  are 
estimated by using a regression approach, in which, 
starting from the knowledge of several input/output 
pairs ( ),θZ , an approximation F% to F is constructed at 
the end of the training phase. 

By using the support vector regression, F%  is defined 
as 

 ( )( ) ,F b= Φ +Z w Z%  (13) 

where ,� � denotes the scalar product, Φ is a nonlinear 
function that performs a transformation of the input array 
from the space Σ to a high dimensional space, and w and 
b are parameters which are obtained by minimizing the 
regression risk, defined as 

 ( )2
1

1

1 ,
2

L

reg i i
i

R C f θ
=

= + ∑w Z%  (14) 

where 1C% is a constant and ( ),i if θZ is the so-called 
ε insensitive loss function, given by 

 ( )
( )

( )
0,        if 

,
,    

                  =1,2, ,L

i i
i i

i i

F
f

F otherwise

i

θ ε
θ

θ ε

⎧ − ≤⎪= ⎨
− −⎪⎩

Z
Z

Z

L

 (15) 

The (15) can be rewritten as follows, considering the 
regression error. 

( )
( )

( )
( ) '

'

0,        if 

,
  ,  

                      , 0     =1,2,

i

i i

i i i i i

i i

i i

F

f b
otherwise

b

i L

θ ε

θ θ ε ξ
θ ε ξ

ξ ξ

⎧ − ≤
⎪⎪= − ⋅Φ − ≤ +⎨
⎪ ⋅Φ + − ≤ +⎪⎩

≥

Z

Z w Z
w Z

L

 (16) 

where ',i iξ ξ  are slack variables. So the problem is 
equivalent to minimize 

 ( )
( )

2 '
1

1 1

'

'

1min    
2

                         
0, 0

L L

i i
i i

i i

i i i

i i

C

b
b

ξ ξ

θ ε ξ
θ ε ξ

ξ ξ

= =

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

− ⋅Φ − ≤ +⎧
⎪ ⋅Φ + − ≤ +⎨
⎪ ≥ ≥⎩

∑ ∑w

w Z
w Z

%

 (17) 

 

( ) ( ) ( )

( )

( )

2' ' ' '
1

1 1

T

1

' T '

1

1, , -   
2

+

+

i i i

i i

L L

i i i i
i i

L

i i i i
i
L

i i
i

L C

b

b

ξ ξ ξ ξ λ ξ λ ξ

α θ ε ξ

α θ ε ξ

= =

=

=

= + + +

⎡ ⎤− ⋅Φ − − −⎣ ⎦

⎡ ⎤⋅Φ + − − −⎣ ⎦

∑ ∑

∑

∑

w w

w Z

w Z

%

  

(18) 
Besides, the KKT(Karush-Kuhn-Tucker) conditions force 

' '
'0, 0, 0, 0, 0

i ii i
i i

L L L L
b

λ ξ λ ξ
ξ ξ

∂ ∂ ∂ ∂
= = = = =

∂ ∂ ∂ ∂w
. Applying 

them, we obtain an optimal solution for support vector 

regression weights ( ) ( )'

1
i

L

i i
i

α α
=

= − Φ∑w Z . So (18) can 

be expressed as 
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( ) ( ) ( ) ( ) ( )

( ) ( )

' ' '

1 1

' '

1 1

1,
2

                 -

L L

i i i j j j
i j

L L

i i i i i
i i

L α α α α α α

θ α α ε α α

= =

= =

= − − Φ ⋅Φ −

+ − +

∑∑

∑ ∑

Z Z
 (19) 

Subject to 

 
( )'

1

'
1

0

0 ,          1, 2, ,

L

i i
i

i i C i L

α α

α α
=

− =

≤ ≤ =

∑
% L

 (20) 

The dual variables '
i iα α−  and b are computed by using 

KKT conditions. 
The regression function for tracking coherently 

distributed source is given 

 
( ) ( ) ( ) ( )

( )
1

1

'

'          

L

i
L

i

F bi

K bi

α α

α α

=

=

= − Φ ⋅Φ +

= − ⋅ +

∑

∑

Z Z Z

Z Z

%

 (21) 

where K i ⋅Z Z  is the kernel function working on the 
original space Σ  . 

Several kernel functions help the support vector 
regression in obtaining the optimal solution. The most 
frequently used such kernel functions are the polynomial, 
sigmoid and radial basis kernel function (RBF) as follows 
[26], 

 ( ) [ ], ( ) 1 q
i iK x x x x= ⋅ +  (22) 

 ( ) ( ), tanh ( )i iK x x v x x e= ⋅ +  (23) 

 
2

2( , ) exp i
i

x x
K x x

γ

⎧ ⎫−⎪ ⎪= −⎨ ⎬
⎪ ⎪⎩ ⎭

 (24) 

The RBF is generally applied most frequently, because 
it can classify multi-dimensional data, unlike a linear 
kernel function. Additionally, the RBF has fewer 
parameters to set than a polynomial kernel. RBF and 
other kernel functions have similar overall performance. 
Consequently, RBF is an effective option for kernel 
function. Therefore, this study applies an RBF kernel 
function in the support vector regression to obtain 
optimal solution. 

IV. PARTICLE SWARM OPTIMIZATION FOR PARAMETER 
SELECTION OF SUPPORT VECTOR REGRESSION PROBLEM 

STATEMENT AND PRELIMINARIES 

The determination and selection for the parameters of 
the support vector machine is important in most 
applications.  

Two major RBF parameters applied in support vector 
machine, 1C%  and γ , must be set appropriately. Parameter 

1C% represents the cost of the penalty. The choice of value 
for C influences on the classification outcome. If 1C%  is 
too large, then the classification accuracy rate is very 
high in the training phase, but very low in the testing 
phase. If 1C% is too small, then the classification accuracy 
rate unsatisfactory, making the model useless. 
Parameter γ  has a much greater influence on 
classification outcomes than 1C% , because its value affects 

the partitioning outcome in the feature space. An 
excessively large value for parameter 1C% results in over-
fitting, while a disproportionately small value leads to 
under-fitting. 

Grid search is the most common method to determine 
appropriate values for 1C% and γ [27]. Values for 
parameters 1C% and γ that lead to the highest classification 
accuracy rate in this interval can be found by setting 
appropriate values for the upper and lower bounds (the 
search interval) and the jumping interval in the search. 
Nevertheless, this approach is a local search method, and 
vulnerable to local optima. Additionally, setting the 
search interval is a problem. Too large a search interval 
wastes computational resource, while too small a search 
interval might render a satisfactory outcome impossible. 

In addition to the commonly used, grid search, other 
techniques are employed in support vector machine to 
improve the possibility of a correct choice of parameter 
values. Pai and Hong proposed an SA-based approach to 
obtain parameter values for support vector machine, and 
applied it in real data [28]; however, this approach does 
not address feature selection, and therefore may exclude 
the optimal result. 

As well as the two parameters 1C%  and γ , other factors, 
such as the quality of the feature’s dataset, may influence 
the classification accuracy rate. For instance, the 
correlations between features influence the classification 
result. Accidental removal of important features might 
lower the classification accuracy rate. Additionally, some 
dataset features may have no influence at all, or may 
contain a high level of noise. Removing such features can 
improve the searching speed and accuracy rate. 

Here the particle swarm optimization (PSO) algorithm 
is used to optimize the parameters of support vector 
machine. PSO is an emerging population-based meta-
heuristic that simulates social behavior such as birds 
flocking to a promising position to achieve precise 
objectives in a multidimensional space [29]. Like 
evolutionary algorithms, PSO performs searches using a 
population (called swarm) of individuals (called particles) 
that are updated from iteration to iteration. To discover 
the optimal solution, each particle changes its searching 
direction according to two factors, its own best previous 
experience and the best experience of all other members. 

Each particle represents a candidate position. A 
particle is considered as a point in a D-dimension space, 
and its status is characterized according to its position and 
velocity. The D-dimensional position for the particle i at 
iteration t can be represented as 

{ }1 2, , ,t t t t
i i i iDx x x=x L . Likewise, the velocity, i.e., 

distance change, which is also a D-dimension vector, for 
particle i at iteration t can be described as 

{ }1 2, , ,t t t t
i i i iDt t t=t L . 

Let { }1 2, , ,t t t t
i i i iDp p p=p L represent the best 

solution that particle i at iteration t, and 
{ }1 2, , ,t t t t

g g g gDp p p=p L denote the best solution 
obtained from t

ip in the population at iteration t. To 
search for the optimal solution, each particle changes its 
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velocity according to the cognition and social parts as 
follows, 

 ( ) ( )1
1 1 2 2

1, 2, ,

t t t t t t
id id id id gd idV V c r p x c r p x

d D

−= + − + −

= L
 (25) 

where 1c  and  2c are accelerating factors, and 1r  and  

2r are random numbers uniformly distributed in ( )0,1 . 
Each particle then moves to a new potential solution 
based on the following equation 

 1 , 1,2, ,t t t
id id idX X V d D+ = + = L  (26) 

The generalization ability of support vector machine 
algorithms depends on a set of parameters, including the 
penalty actor 1C%   , the estimated accuracy ε  and the RBF 

kernel parameter γ  . Defining ( ),,i i i iC ε γ=U %  , the speed 

( )1 2 3, ,i i i iv v v=V  , the history optimal location  

( )1, 2, 3i i i ip p p=P ,the global optimal location   

( )1 2 3, ,i i i ig g g=G for ith particle. The update for location 
and speed are written as 

 1i i iC C v= +% %  (27) 

 
( ) ( )

( ) ( )
1 1 1 1

2 1

ik i i i

i i

v w v c rand p C

c rand g C

= + × × −

+ × × −

%

%
 (28) 

where 1w  is inertia factor, 

 ( ) ( )max min
1 min max

w w
w itc w itc itc

itc
−= + × −  (29) 

where itc is the number of iteration, maxitc is the maximal 
number of iteration, maxw and minw are the maximal and 
minimum inertia factors, respectively. The fitness 
function for the proposed central DOA estimation 
algorithm is defined as 

 ( )2

1

1 K

i i
i

fits
K

θ θ
=

= −∑
)

 (30) 

The basic process of the particle swarm optimization 
for parameter selection of support vector regression is 
given as follows, 

Step1,(Initialization) Randomly generate initial 
particles; 

Step2, (Fitness) Measure the fitness of each particle in 
the population; 

Step3, (Update) Compute the velocity of each particle 
with (28); 

Step4, (Construction) For each particle, move to the 
next position according to (26); 

Step5, (Termination) Stop the algorithm if termination 
criterion is satisfied; Return to Step 2 otherwise. 

V. NUMBERICAL RESULTS 

Several numerical simulations have been performed in 
order to validate the proposed approach. An array 
composed by 8 elements with interelement distance 

0.5d λ=  is considered.  
The kernel function used in this work is a radial kernel. 

We investigate the performances of the proposed fast 
DOA estimation of single coherently distributed source 
with Gaussian deterministic angular signal density. 

Moreover, in the considered simulations, following a 
widely used approach, an estimate of the correlation 
matrix XXR   is simply computed by averaging the values 
of 50 snapshots of X  . In the first example, we 
numerically illustrate the proposed algorithm for 
selecting the parameter of support vector machine. 
Considering a single coherently distributed source with 
angular spread  and SNR=10dB. In order to cover the 
whole region of interest, the range is 90 ,90⎡ ⎤−⎣ ⎦

o o  for the 
central DOA in training sample set. After the training 
phase, the test phase is performed by considering 
different values of the central DOAs of the impinging 
waves. The support vector machine parameters are 
initialized as [ ]30,500C ∈  , [ ]0,0.02ε ∈  and 

[ ]0.01,2γ ∈  . The speed range are [ ]500,500−  , 

[ ]0.02,0.02− and [ ]2,2− , respectively. The fitness 
function is initialized as 0. Fig.2 illustrates the iterative 
process. When the number of iteration is about 35, the 
fitness function is convergence. The optimal location of 
the particle is ( )230.4331,0,0.5734  ,which is support 
vector regression parameter. 

 
 
 
 
 
 
 
 
 
 
 
 

 
The estimated DOA values are reported in Fig.3. In the 

abscissa, the indexes of the samples belonging to the test 
set are indicated. The corresponding actual and estimated 
values of the incident angles are reported. As can be seen, 
the proposed method is able to obtain quite good results 
for almost all of the considered DOAs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 The iterative 

Fig.3 The actual and estimated values of the 
central DOA 
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The root-mean-squared errors (RMSEs) of the 
estimated central DOA by the proposed method are 
illustrated at different SNR in Fig. 4. As it can be seen, 
the proposed algorithm has a better estimation 
performance at low SNR. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The influence of the number of snapshots is 
investigated in Fig.5 for SNR=10dB.It can be observed 
that the proposed algorithm presents effective 
performance even for a small number of snapshots. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI. CONCLUSION 

A method for estimating the central DOA of 
coherently distributed source has been proposed. The 
developed method is based on the use of a support vector 
regression approach for the approximation of the 
unknown mapping that performs the transformation from 
the outputs of the smart array to the central DOA of 
coherently distributed source, which can be used when 
the sample set is small. Furthermore, the reported results 
show that the method is able to correctly produce outputs 
corresponding to accurate estimations even in large 
angular spread. The approach is able to reach this goal in 
a very short time and with good generalization 
capabilities. 
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