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Abstract—An improved implementation of the 
Preconditioned Conjugate Gradient method on GPU using 
CUDA (Compute Unified Device Architecture) is proposed. 
It aims to solving the Poisson equation arising in liquid 
animation with high efficiency. We consider the features of 
the linear system obtained from the Poisson equation and 
propose an optimization method to solve it. First, a novel 
storage format called mDIA (modified diagonal storage 
format) is presented to improve the efficiency of the Sparse 
Matrix-Vector product (SpMV) operation. Second, a 
parallel Jacobi iterative method is proposed when using the 
Incomplete Cholesky preconditioner to explore inherent 
parallelism. Third, CUDA streams are also introduced to 
overlap computations among separate streams. The 
proposed optimization technique is embedded into our GPU 
based PCG algorithm. Results on Geforce G100 show that 
our SpMV kernel yields an improvement of nearly 100% for 
large sparse matrix with more than 30, 0000 rows. Also, a 
speedup of more than 7 is obtained for PCG method, 
making the real-time physics engine possible.  
 
Index Terms—CUDA, PCG, Incomplete Cholesky 
preconditioner, SpMV, Poisson equation  

 

I. INTRODUCTION 

In the past few years, Graphics Processing Unit (GPU) 
has evolved into a unified powerful many-core processor. 
The modern GPUs are well suited for compute-intensive 
tasks and massively parallel computation (e.g., solving 
matrix problems [1] [2]). As one of the most common and 
important matrix problems, solving the large-scale linear 
system can be significantly accelerated if corresponding 
algorithms can be mapped well to the structure of the 
GPU and be accord with SIMD (Single Instruction, 
Multiple Data) pattern. 

In this paper, we focus on the problem of solving the 
Poisson equation. The equation arises in many 
applications such as computational fluid dynamics, 
electrostatics, magnetostatics, etc. Numerical solution of 
the Poisson equation leads to a large sparse linear system. 
It is usually solved by iterative methods such as the best-
known conjugate gradient (CG) method instead of direct 
methods (e.g., Gaussian elimination). The CG method 
can be easily implemented to solve linear systems that 

have a symmetric, definite positive (SPD) matrix [3]. 
However, it is often used with a suitable preconditioner in 
order to achieve high convergence rates in large scale 
applications. A CG algorithm with a preconditioner is 
called preconditioned conjugate gradient algorithm (PCG) 
and it has been proven to be efficient and robust in a wide 
range of applications [4]. 

Our goal is to solve Poisson equation efficiently by 
applying PCG algorithm on the Nvidia GPU architecture 
using CUDA [5]. Since the SpMV routine is the 
bottleneck of PCG algorithm that consumes nearly 80% 
of the total time, we present a novel storage format called 
mDIA storage format to optimize it. Moreover, we 
parallelize the traditional Jacobi iterative method to solve 
the lower Cholesky triangular equation when using the 
Incomplete Cholesky (IC) preconditioner. In addition, to 
effectively overlap the computation, CUDA streams are 
also adopted in this paper. Results show that our method 
obtains a speedup of 7 for PCG algorithm on Geforce 
G100. 

The paper is organized as follows. The next section 
introduces the background of our method. The related 
work on GPU based PCG methods are reviewed first, and 
then we give a brief introduction of our linear system 
generated from Poisson equation. GPU architecture and 
our optimization algorithm based on GPU are presented 
in Section 3. In this section, the optimization techniques 
are discussed in detail. Section 4 shows experimental 
results followed by conclusions in Section 5. 

II.  BACKGROUND 

2.1. Related Work 
Jeff Bolz et.al [6] was the first to implement CG 

method on GPU using shader language and the speedup 
was about 1.5x. He also showed the feasibility of using 
the Compressed Row Storage Format for SpMV routine. 
After the advent of NVIDIA CUDA, GPU based iterative 
methods have been widely used to solve the sparse linear 
systems [7][8][9]. For example, Georgescu et.al [7] 
discussed how CG method could be aligned to the GPU 
architecture. They also discussed the problem with 
precision and applied different preconditioners to 
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accelerate convergence. In particular, they stated that for 
double precision calculations, problem having condition 
number less than 10 may converge and give a speedup 
also. In 2009, Buatois et al. [10] introduced their 
framework CNC for solving general sparse linear systems 
on GPU with a Jacobi-preconditioned CG method. Their 
method achieved a speedup of 3.2. However, they warned 
that GPU is only able to provide comparable accuracy 
because as the iterations increase, the precision drops in 
comparison to CPU. They also exploited some of the 
techniques like register blocking to optimize their 
algorithm.  In [11], the CG method with Incomplete 
Poisson preconditioning was implemented on a multi-
GPU platform. It mainly focused on overlapping 
communication between different GPUs by interactively 
exchanging boundary stream and inner stream. Their 
results showed that the performance can grow 
proportionally to the problem size and showed a good 
scalability. In work published by A.Asgasri[9], the author 
parallelized a Chebyshev polynomial preconditioner  to 
improve the performance of PCG method based on GPU. 

As for the CG algorithm, nearly 80% of the total time 
is consumed by SpMV routine. It yields only a small 
fraction of the machine peak performance due to its 
indirect and irregular memory access.  Therefore, there 
exists a large amount of work focusing on speeding up 
SpMV routine. Typical methods often use CSR 
(Compressed sparse row) format, COO (the coordinate) 
format and the DIA (diagonal) storage formats to mitigate 
the irregularity [12]. In a recent study by Nathan Bell [13], 
a hybrid method that used the modified ELL-COO format 
to store the sparse matrix delivered high throughput. 
However, it relied on an additional sweep operation to 
find out the number of nonzero elements in the matrix. 

2.2. The Linear System Derived from the Poisson 
Equation 

The Poisson equation in liquid animation is a second-
order PDE as shown in equation (1). It is used to compute 
the pressure p . 

 2 p u
t
ρ

∇ =
Δ

 (1) 

Note that in the Poisson equation (1), p is the pressure, 
ρ  is the density and tΔ  is time step. It can be further 
transformed into equation (2) according to finite 
difference method.  
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In equation (2), xΔ is space interval, u = (u,v,w) is the 
velocity field. Let  

 1, , , , , 1, , , , , 1 , ,( ).i j k i j k i j k i j k i j k i j kb x u u v v w w
t
ρ

+ + +=−Δ − + − + −
Δ

(3) 

Equation (2) can be converted into Ap = b, and our goal 
is to solve the unknown vector p .  

It can be proved that A is a sparse, positive-definite 
and symmetry matrix. In addition, we also explore some 
other features of matrix A in order to design more 
efficient algorithms. See the left side of equation (2), each 
row of A has no more than 7 nonzero elements. In this 
row, the diagonal element is a nonzero integer while the 
other nonzero elements equal to -1. Other rows also have 
similar structures. All these features will be considered in 
our new algorithm. Details will be given in the following 
sections. 

2.3. The PCG Algorithm 
Consider 

 ,Ax b=  (4) 

where x is an unknown vector, b is a known vector, A is a 
known SPD matrix. According to PCG algorithm, 
equation (4) can be written as 

 1 1 ,M Ax M b− −=  (5) 

where matrix M is a preconditioner[4].  
Given the inputs A , b , a starting vector x , a 

preconditioner M, a maximum number of iterations 
k_max and a error tolerance err, the PCG   algorithm can 
be described in fig. 1. In this figure, a set of α -

orthogonal search directions 0 1 2, , nα α α α…  are 
constructed by the conjugation of the 

residues 0 1 2, , nr r r r…  respectively. Then in the k th 

iteration step, kx takes exactly one step of the length 

kh along the direction .ka If the convergence conditions 
and max_err k kε< < are met, the iterative process is 

terminated. Note that in our method, we set 0 0x = . 

To compute
1

kM r−

 at each iteration step, we choose 
IC preconditioner in our method to improve the 
convergence rate [4]. An IC preconditioner can be 

obtained by factoring a matrix A into the form 
TLL  

where L is a lower Cholesky triangular matrix. L is 
restricted to have the same pattern of nonzero elements as 
A and other elements of L are thrown away. Therefore, 

M  equals 
TLL and 

1
k kz M r−←  can be converted 

into ( )T
k kLL z r= . As a result, kz can be directly 

computed by forward and then backward substitutions. 

III. IMPLEMENTATION ON GPU 

3.1 GPU Architecture and CUDA 
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The new generation of GPU adopts the unified shader 
architecture CUDA and promise up to 900 Gflops(single 
precision) of computational power. 

A GPU can be seen as a SIMD processer. What this 
means is that there are an army of processers executing 
the same instructions in parallel independently. Take fig. 
2 for example, a GPU has a scalable array of 
multithreaded Streaming Multiprocessors (SPs). Each 
multiprocessor creates, manages, schedules, and executes 
groups of 32 parallel threads which are called warps. 
Individual threads composing a warp start together at the  

 

 

Figure  1.  PCG algorithm. 

same program address, but have their own instruction 
address counter and register state. Therefore they are free 
to branch and execute independently. 

On GPU chip, each multiprocessor has a set of 
memories associated with it. They are: on-chip shared 
memory, global memory, read-only constant cache, and 
read-only texture cache. Among these memories, global 
memory is the biggest in size but with highest access 
latency. On the other hand, Shared memory, constant 
cache as well as the texture cache resides on chip and can 
be accessed more efficiently. Note that shared memory is 
only visible to one block and threads of other block 
cannot access the data stored in it. 

The scalable characteristic of modern GPU provides 
coarse-grained and the fine-grained data parallelism. 
They guide the programmer to partition the problem into 
sub-problems that can be solved independently in parallel 
by blocks of threads. Moreover, each sub-problem can be 
divided into finer pieces that can be solved cooperatively 
in parallel by all threads within the block. Fig. 3 gives an 
example. In this figure, kernels are launched on GPU 
device and executed by multiple equally-shaped thread 
blocks.  

3.2 Overview  
Algorithm 1 shows our framework for PCG 

implementation on GPU. In this framework, we use two 
kernels to complete the computation involved in the for 
loop. They are the SpMV kernel that computes matrix-
vector multiplication such as 1,kAh − the preconditioning 

kernel that computes  1
kM r−

 . 
Besides the above kernels, other operations such as dot 

products among vectors can be done efficiently by cublas 
library [14] because they all belong to level-1 BLAS 
(Basic Linear Algebra Subprograms) functions. 

 
Figure 2. GPU architecture. 

 

 
Figure 3. Serial code executes on the host while parallel code executes 

on the device. 
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In order to improve the efficiency of our GPU based 
PCG algorithm, we focus on two most expensive kernels 
here: the SpMV kernel and the preconditioning kernel. In 
addition, to get a higher level of concurrency, we use a 
technique called streams [15] to run independent kernels 
asynchronously so as to overlap the computation.  

Algorithm 1.  Algorithm for our PCG method on 
GPU 
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3.3 SpMV Kernel 
Sparse Matrix-vector multiplication (SpMV) is one of 

the most fundamental and important operations in sparse 
matrix computations. It is the dominant cost in many 
iterative methods for solving large-scale linear systems. 
Recently, several research groups have reported their 
implementation on CUDA–compatible GPUs and show 
that the storage pattern such as CSR, ELL, HYBRID 
formats can be efficiently accessed by CUDA threads. 
However, except for the CSR format, all other formats 
have to fill in zeros to keep the array strictly aligned, thus 
causing memory waste.  

Since the SpMV kernel with CSR format provides 
important insight for understanding our algorithm, we 
discuss the implementation of SpMV GPU kernels with 
CSR and mDIA respectively in the following subsections. 
 

3.3.1 SpMV with CSR format 

CSR format is one of the most popular sparse matrix 
representations. In this format, an N-by-N sparse matrix 
with K nonzero elements is stored as two arrays: one 
array val holds the K nonzero elements and the other 
array col holds the column indexes of these nonzero 
elements. What’s more, an additional array Rowptr with 
the length N+1 is used. The first N components of 
Rowptr record the indexes of the first element in each 
row while the last one denotes the number of nonzero 
elements in the matrix. Fig. 4 gives an example. Unlike 
the ELL or DIA, CSR format doesn’t waste any memory 
space. 

 
Figure 4.  CSR format for sparse Matrix. 

To parallelize the SpMV operation with CSR format, a 
scheme called scalar CSR kernel [13] is used. In this 
kernel, one thread is used to fetch one row of the matrix 
A and then complete the dot product for one component 
of the result vector. The computations of all threads are 
independent. The data parallelism as well as the access 
pattern of scalar CSR kernel is shown in Fig. 5. It gives a 
simplified example of the allocation of the threads, in 
which the array data, Col Index, and Rowptr are stored in 
global memory for the dot product operation. 

Figure  5.  Scalar SpMV Kernel with CSR format. 
 

3.3.2 SpMV with mDIA format 
(1) Our mDIA storage format 
Our matrix has a regular pattern that the elements off 

the main diagonal are all assigned to a constant integer -
1while the nonzero diagonal elements are also integers. 
The number of nonzero elements per row varies from 3 to 
7 and this irregularity makes ELL or hybrid pattern 
infeasible, since they will cause large zero fill-ins. 

In mDIA format, the constant value is stored in the 
constant memory. As a result, 1D array Diag only needs 
to store the diagonal elements. Because all diagonal 
elements in our matrix are nonzero values, the row and 
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column indexes of them can be easily obtained from Diag. 
Array col only needs to record column indexes of the 
constant value. Besides, Array Rowptr is used to tell 
where a new row begins in the array col, similar to array 
Rowptr in CSR format. Fig. 6 shows a portion of one 
matrix and its corresponding storage mechanism. Note 
that the constant -1 is stored in the constant memory. 

Since most of the nonzero elements are off the main 
diagonal in our matrix and they are stored in the constant 
memory, the memory usage can be significantly reduced 
compared with the CSR format. Also, the constant 
memory, a small high-speed cache residing in the global 
memory on GPU, enables us to fetch data efficiently [15].  

 
Figure  6.  mDIA storage format. 

(2) The SpMV kernel 
To implement the SpMV kernel with mDIA format on 

GPU, we assign one thread to compute one component of 
the result vector. Take thread i for example. It computes 
the dot product between the i-th row of our matrix and the 
vector. First it fetches the diagonal nonzero element from 
diag[i]. Then the column indexes of the constant 
elements from col[Rowptr[i]] to col[Rowptr[i+1]] are 
read contiguously. Finally, the dot products operation is 
executed.  

Considering that the vector is reused in the 
computation of the dot product, we bind it to a 1D texture. 
This can bring potentially higher bandwidth and can be 
used to avoid uncoalesced loads from global memory 
[15]. Other array such as col  are stored in the global 
memory. Fig. 7 presents the pseudo-code of our 
implementation. 

3.4 Preconditioning Kernel using Jacobi Method 
Another important kernel in our PCG algorithm is the 

preconditioning kernel. According to IC preconditioner, 
1

k kz M r−← is converted into ( )T
k kLL z r=  where 

L is the lower Cholesky triangular matrix. Thus, kz can 

be obtained by solving ( )T
k kL L z r= in two stages: 

forward substitution kLy r=  and backward 

substitution T
kL z y= . 

However, the direct method of backward and forward 
substitution cannot be used to solve all the components 

simultaneously on GPU because the computation of the 
ith component of kz relies on all its previous components.   

To get a higher level of parallelism, we use Jacobi 
method instead of direct method in this paper. Jacobi 
iterative method is data independent that can be well 
aligned to SIMD pattern and improves parallelism 
significantly. 
 

 
Figure  7. Pseudo-code of our SpMV kernel 

3.4.1 Jacobi iterative method 
Jacobi iterative method is a numerical solution of a 

system of linear equations with largest absolute values in 
each row and column dominated by the diagonal element.  

To solve our lower Cholesky triangular 
equation kLy r= , we first decompose the lower 
Cholesky triangular matrix L  into a diagonal matrix D 
and a lower triangle matrix R. Then the system of linear 
equations becomes 

 ( ) ,kD R y r+ =  (6) 

and finally  

 kDy r Ry= − . (7) 

Therefore, y can be solved iteratively by 

 1
1( )kk ky D r Ry+
−= − . (8) 

Next, kz can be computed by solving upper Cholesky 

triangular equation T
kL z y= in the same way.  

3.4.2 Parallel Jacobi algorithm  
Fig. 8 (a) shows the iterative process of our parallel 

Jacobi algorithm. In this figure, d_old stores the result 
from the previous step and d_new is used to update the 
current computation. The constant vector d_const 
= 1

kD r− , where the diagonal matrix D is stored in the 
array d_diag. d_R stores the lower triangular matrix R 
and d_res is used to compute the residue. Note that most 
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{ 

int thread_id = blockDim.x * blockIdx.x + threadIdx.x; 
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{ 

 const int row_beg = Rowptr[row]; 
 const int row_end   = Rowptr[row+1]; 
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 for (int jj = row_beg; jj < row_end; jj++) 
 { 
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 } 
 y[row] = sum; 

} 
} 

6  -1  0  0  0
-1  7  0  -1 0
0  -1  6  0  0
-1 0  -1  3 -1
0  0  -1  0  2

[6  7  6  3  2]
[1  0  3  1  0  2  4  2]

[0  1  3  4  7  8]
  _device_ _constant_  val =-1

Matrix

diag
col
Rowptr

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=
=

=

 

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2699

© 2012 ACADEMY PUBLISHER



of the operations such as 1D b−  can be converted to 
level-1 BLAS operation among the vectors. These 
operations could be easily parallelized using CUDA. Fig. 
8 (b) shows the kernel named VecDiv_kernel for 
computing 1D b−  and the kernel named VectorSub_kernel 
for computing the substraction betweeen two vectors. 

 
 (a) The iterative process.  

 
 

 
 (b) Two  GPU kernels involved in this process. 

Figure  8.  Parallel Jacobi iterative method. 

3.5 Parallelism with Streams 
CUDA applications can manage concurrency through 

streams. A stream is a sequence of commands that 

execute in order. Different streams, on the other hand, 
may execute their commands out of order concurrently. 
Fig. 7 illustrates the GPU time flow for sequential (Fig.  9 
(a)) and concurrent (Fig. 9 (b)) kernel executions.  

 
Figure  9.  GPU Time flow with CUDA streams 

We adopt this optimization technique for our two 
independent tasks as shown in fig.  10.  

 
Figure 10. The operations using CUDA streams. 

As a result, the computation of the two tasks can be 
overlapped and the GPU resources can be used more 
effectively.  

IV. RESULTS  

We use Geforce G100 to test the performance of our 
parallel PCG algorithm. Geforce G100 has 8 CUDA 
cores and the peak performance for single precision is 
10.4 Gflops. The CPU used is AMD 7750 dual-core 
processers with the core frequency of 2.7GHz. The CPU 
implementation of PCG is single-threaded.  

Table 1 shows some matrices that generated from our 
Poisson equation. They will be used in our performance 
test. In this section, we start from testing the performance 
of our SpMV kernel and then test Jacobi iterative method 
for solving the lower Cholesky triangular equations, 
followed by CUDA stream results.  

TABLE.1  
MATRICES USED FOR EXPERIMENTS  

MATRIX #N  #Nonzeros 
Matrix_1 8087 49915 
Matrix_2 22028 131,118 
Matrix_3  65043 394,877 
Matrix_4 140,120 876,518 
Matrix_5 209,908 1,325,066 
Matrix_6 274,949 1,755,263 
Matrix_7 304,207 1,962,311 

4.1.SpMV Kernel Test 
4.1.1 SpMV kernels performance 
Table 2 shows the performance of our SpMV kernel 

against the SpMV kernel with CSR format. In this table, 
GPU Time accounts for the total time consumed for the 
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__global__ void VectorSub_kernel(float* A, float* 
B, float* C,int N) 
{ 
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float a  = 0.0f; 
if (i< N) 

 { 
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     C[i] = a; 
} 

} 
 
 
__global__ void VecDiv_kernel1(float* A, const 
float* B, float* C,int N) 
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SpMV kernel in our PCG algorithm and the speedup is 
the ratio compared with CPU Time. On CPU, the SpMV 
routine is implemented using CSR format. According to 
the results, our SpMV kernel runs an average of one time 
faster than that in CSR format and it offers an average of 
about 10 times speedup compared with the CPU version.  

TABLE 2  
GPU/CPU SPMV KERNELS PERFORMANCE (SECONDS) 

matrix 

Timings for 
spMV  CPU  
routine 

 

Timings for 
spMV  GPU  
kernel 
(seconds) 

Speedup 

CSR      mDIA CSR   mDIA

Matrix_1 0.48 0.09 0.05 5.4 9.0
Matrix _2 1.34 0.25 0.14 5.4 9.5
Matrix _3  5.50 1.00 0.57 5.5 9.6
Matrix _4 15.15 2.63 1.52 5.8 10 
Matrix _5 29.67 5.34 2.99 5.6 9.9
Matrix _6 
Matrix _7 

44.82 
54.69 

8.03 
9.50 

4.50 
5.41 

5.5 
5.1 

9.96
10.8

 
4.1.2 The performance of CG&PCG algorithm with 
our SpMV kernel 
We embed our SpMV kernel into CG&PCG method 

On GPU. Here, the IC preconditioner of PCG method is 
solved by direct method. Further improvement using 
Jacobi  iterative method will be presented in the next 
subsection.  

We compare our results with CG&PCG methods using 
CSR format as shown in Table 3. It illustrates that due to 
our SpMV kernels, the CG algorithm outperforms by 
nearly 50% when the number of nonzero elements 
reached 1,962,311. 

However, when PCG method is applied, this table 
shows that our advantage over the CSR_based method 
has been less obvious; and when the dimension of matrix 
has reached up to 304,207, the performance improvement 
is only about 10%. This is due to the sequential nature of 
the direct method as mentioned before.  

4.2 Jacobi Method for IC Preconditioner 
In this section, we adopt two variants: the direct 

method and the Jacobi iterative method to explore GPU 
performance for PCG algorithm.   

TABLE 3. 
TIME COST FOR CG AND PCG ALGORITHM IMPLEMENTED ON GPU 

RESPECTIVELY (SECONDS) 

matrix 

CG 
steps 

Timings for GPU 
based CG  
method(seconds) 

PCG 
steps   

Timings for GPU 
based PCG 
method(seconds) 

mDIA       CSR    mDIA       CSR 

Matrix_1 84  0.64 0.68 17 0.50 0.50 
Matrix_2 90  0.76 0.86 21 1.15 1.17 
Matrix_3  123  1.40 

2.42       
1.80 23 2.63 2.71 

Matrix_4 146  3.69 25 4.8 5.09 
Matrix_5 192  4.44 6.70 30 7.9 8.32 
Matrix_6 221  6.41 9.87 34 10.98 11.87 
Matrix_7 234  7.25 11.53 35 11.35 12.77 

When solving the lower Cholesky triangular 
equation, Timings for the parallel Jacobi iterative method 
and the direct method are both accumulated at every 

iterative step and their final costs are showed in Table 4. 
From this table, it can be noticed that GPU performance 
of the Jacobi iterative method has been efficiently 
improved about 3 times.  

TALBE 4. 
TIME COST FOR GPU SOLVER OF JACOBI METHOD AND DIRECT METHOD 

WHILE APPLYING IC PRECONDITIONER 

matrix Timings for  
Jacobi solver (seconds) 

Timings for  
direct solver (seconds)

Matrix_2 0.18 1.001 
Matrix_3 0.50 2.533 
Matrix_4 1.225 3.912 
Matrix_5 2.288 6.030 
Matrix_6 3.377 9.454 
Matrix_7 3.893 11.021 

4.3 The Speedup of Our GPU based PCG Algorithm 
Fig. 11 shows the speedup of our parallel PCG 

algorithm after using our SpMV kernel, Jacobi iterative 
method, as well as CUDA streams. It can be seen from 
the figure that there has been at least 16% increase for our 
PCG algorithm compared that with CSR formats.  
Furthermore, our PCG algorithm with three optimization 
techniques proposed obtains an average of 6 times 
speedup, while the CSR method only offers an average of 
4.  

 
Figure  11.   Speedup of our GPU based PCG algorithm. 

 

V. CONCLUSIONS 

In this work, we propose an optimization method for 
GPU based PCG algorithm. It is designed to solve the 
Poisson equation arising in liquid animation efficiently. 
By utilizing optimized SpMV kernel, iterative Jacobi 
method and CUDA streams, our method improves the 
efficiency of solving large sparse linear systems 
significantly. Experimental results also show the 
effectiveness of our method.  

Next we will focus on seeking out the other potential 
bottleneck of PCG algorithm by CUDA Visual Profiler. 
Besides, studies on finding more suitable preconditioners 
for GPU-based PCG algorithm should be taken. 
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