
An Improved Implementation of Preconditioned
Conjugate Gradient Method on GPU

Yechen Gui

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
Email:liaoran919@yahoo.com.cn

Guijuan Zhang

 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
Email:gj.zhang@siat.ac.cn

Abstract—An improved implementation of the
Preconditioned Conjugate Gradient method on GPU using
CUDA (Compute Unified Device Architecture) is proposed.
It aims to solving the Poisson equation arising in liquid
animation with high efficiency. We consider the features of
the linear system obtained from the Poisson equation and
propose an optimization method to solve it. First, a novel
storage format called mDIA (modified diagonal storage
format) is presented to improve the efficiency of the Sparse
Matrix-Vector product (SpMV) operation. Second, a
parallel Jacobi iterative method is proposed when using the
Incomplete Cholesky preconditioner to explore inherent
parallelism. Third, CUDA streams are also introduced to
overlap computations among separate streams. The
proposed optimization technique is embedded into our GPU
based PCG algorithm. Results on Geforce G100 show that
our SpMV kernel yields an improvement of nearly 100% for
large sparse matrix with more than 30, 0000 rows. Also, a
speedup of more than 7 is obtained for PCG method,
making the real-time physics engine possible.

Index Terms—CUDA, PCG, Incomplete Cholesky
preconditioner, SpMV, Poisson equation

I. INTRODUCTION

In the past few years, Graphics Processing Unit (GPU)
has evolved into a unified powerful many-core processor.
The modern GPUs are well suited for compute-intensive
tasks and massively parallel computation (e.g., solving
matrix problems [1] [2]). As one of the most common and
important matrix problems, solving the large-scale linear
system can be significantly accelerated if corresponding
algorithms can be mapped well to the structure of the
GPU and be accord with SIMD (Single Instruction,
Multiple Data) pattern.

In this paper, we focus on the problem of solving the
Poisson equation. The equation arises in many
applications such as computational fluid dynamics,
electrostatics, magnetostatics, etc. Numerical solution of
the Poisson equation leads to a large sparse linear system.
It is usually solved by iterative methods such as the best-
known conjugate gradient (CG) method instead of direct
methods (e.g., Gaussian elimination). The CG method
can be easily implemented to solve linear systems that

have a symmetric, definite positive (SPD) matrix [3].
However, it is often used with a suitable preconditioner in
order to achieve high convergence rates in large scale
applications. A CG algorithm with a preconditioner is
called preconditioned conjugate gradient algorithm (PCG)
and it has been proven to be efficient and robust in a wide
range of applications [4].

Our goal is to solve Poisson equation efficiently by
applying PCG algorithm on the Nvidia GPU architecture
using CUDA [5]. Since the SpMV routine is the
bottleneck of PCG algorithm that consumes nearly 80%
of the total time, we present a novel storage format called
mDIA storage format to optimize it. Moreover, we
parallelize the traditional Jacobi iterative method to solve
the lower Cholesky triangular equation when using the
Incomplete Cholesky (IC) preconditioner. In addition, to
effectively overlap the computation, CUDA streams are
also adopted in this paper. Results show that our method
obtains a speedup of 7 for PCG algorithm on Geforce
G100.

The paper is organized as follows. The next section
introduces the background of our method. The related
work on GPU based PCG methods are reviewed first, and
then we give a brief introduction of our linear system
generated from Poisson equation. GPU architecture and
our optimization algorithm based on GPU are presented
in Section 3. In this section, the optimization techniques
are discussed in detail. Section 4 shows experimental
results followed by conclusions in Section 5.

II. BACKGROUND

2.1. Related Work
Jeff Bolz et.al [6] was the first to implement CG

method on GPU using shader language and the speedup
was about 1.5x. He also showed the feasibility of using
the Compressed Row Storage Format for SpMV routine.
After the advent of NVIDIA CUDA, GPU based iterative
methods have been widely used to solve the sparse linear
systems [7][8][9]. For example, Georgescu et.al [7]
discussed how CG method could be aligned to the GPU
architecture. They also discussed the problem with
precision and applied different preconditioners to

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2695

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.12.2695-2702

accelerate convergence. In particular, they stated that for
double precision calculations, problem having condition
number less than 10 may converge and give a speedup
also. In 2009, Buatois et al. [10] introduced their
framework CNC for solving general sparse linear systems
on GPU with a Jacobi-preconditioned CG method. Their
method achieved a speedup of 3.2. However, they warned
that GPU is only able to provide comparable accuracy
because as the iterations increase, the precision drops in
comparison to CPU. They also exploited some of the
techniques like register blocking to optimize their
algorithm. In [11], the CG method with Incomplete
Poisson preconditioning was implemented on a multi-
GPU platform. It mainly focused on overlapping
communication between different GPUs by interactively
exchanging boundary stream and inner stream. Their
results showed that the performance can grow
proportionally to the problem size and showed a good
scalability. In work published by A.Asgasri[9], the author
parallelized a Chebyshev polynomial preconditioner to
improve the performance of PCG method based on GPU.

As for the CG algorithm, nearly 80% of the total time
is consumed by SpMV routine. It yields only a small
fraction of the machine peak performance due to its
indirect and irregular memory access. Therefore, there
exists a large amount of work focusing on speeding up
SpMV routine. Typical methods often use CSR
(Compressed sparse row) format, COO (the coordinate)
format and the DIA (diagonal) storage formats to mitigate
the irregularity [12]. In a recent study by Nathan Bell [13],
a hybrid method that used the modified ELL-COO format
to store the sparse matrix delivered high throughput.
However, it relied on an additional sweep operation to
find out the number of nonzero elements in the matrix.

2.2. The Linear System Derived from the Poisson
Equation

The Poisson equation in liquid animation is a second-
order PDE as shown in equation (1). It is used to compute
the pressure p .

 2 p u
t
ρ

∇ =
Δ

 (1)

Note that in the Poisson equation (1), p is the pressure,
ρ is the density and tΔ is time step. It can be further
transformed into equation (2) according to finite
difference method.

1, , , 1, , , 1 , , 1, , , 1, , , 1

1, , , , , 1, , , , , 1 , ,2

1, , , , , 1, , , , , 1 , ,

6

()

i j k i j k i j k i j k i j k i j k i j k

i j k i j k i j k i j k i j k i j k

i j k i j k i j k i j k i j k i j k

p p p p p p p

u u v v w w
x

t x

x u u v v w w
t

ρ

ρ

− − − + + +

+ + +

+ + +

− − − + − − −

− + − + −⎛ ⎞
=−Δ ⎜ ⎟Δ Δ⎝ ⎠

=−Δ − + − + −
Δ

 (2)

In equation (2), xΔ is space interval, u = (u,v,w) is the
velocity field. Let

 1, , , , , 1, , , , , 1 , ,().i j k i j k i j k i j k i j k i j kb x u u v v w w
t
ρ

+ + +=−Δ − + − + −
Δ

(3)

Equation (2) can be converted into Ap = b, and our goal
is to solve the unknown vector p .

It can be proved that A is a sparse, positive-definite
and symmetry matrix. In addition, we also explore some
other features of matrix A in order to design more
efficient algorithms. See the left side of equation (2), each
row of A has no more than 7 nonzero elements. In this
row, the diagonal element is a nonzero integer while the
other nonzero elements equal to -1. Other rows also have
similar structures. All these features will be considered in
our new algorithm. Details will be given in the following
sections.

2.3. The PCG Algorithm
Consider

 ,Ax b= (4)

where x is an unknown vector, b is a known vector, A is a
known SPD matrix. According to PCG algorithm,
equation (4) can be written as

 1 1 ,M Ax M b− −= (5)

where matrix M is a preconditioner[4].
Given the inputs A , b , a starting vector x , a

preconditioner M, a maximum number of iterations
k_max and a error tolerance err, the PCG algorithm can
be described in fig. 1. In this figure, a set of α -

orthogonal search directions 0 1 2, , nα α α α… are
constructed by the conjugation of the

residues 0 1 2, , nr r r r… respectively. Then in the k th

iteration step, kx takes exactly one step of the length

kh along the direction .ka If the convergence conditions
and max_err k kε< < are met, the iterative process is

terminated. Note that in our method, we set 0 0x = .

To compute
1

kM r−

 at each iteration step, we choose
IC preconditioner in our method to improve the
convergence rate [4]. An IC preconditioner can be

obtained by factoring a matrix A into the form
TLL

where L is a lower Cholesky triangular matrix. L is
restricted to have the same pattern of nonzero elements as
A and other elements of L are thrown away. Therefore,

M equals
TLL and

1
k kz M r−← can be converted

into ()T
k kLL z r= . As a result, kz can be directly

computed by forward and then backward substitutions.

III. IMPLEMENTATION ON GPU

3.1 GPU Architecture and CUDA

2696 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

The new generation of GPU adopts the unified shader
architecture CUDA and promise up to 900 Gflops(single
precision) of computational power.

A GPU can be seen as a SIMD processer. What this
means is that there are an army of processers executing
the same instructions in parallel independently. Take fig.
2 for example, a GPU has a scalable array of
multithreaded Streaming Multiprocessors (SPs). Each
multiprocessor creates, manages, schedules, and executes
groups of 32 parallel threads which are called warps.
Individual threads composing a warp start together at the

Figure 1. PCG algorithm.

same program address, but have their own instruction
address counter and register state. Therefore they are free
to branch and execute independently.

On GPU chip, each multiprocessor has a set of
memories associated with it. They are: on-chip shared
memory, global memory, read-only constant cache, and
read-only texture cache. Among these memories, global
memory is the biggest in size but with highest access
latency. On the other hand, Shared memory, constant
cache as well as the texture cache resides on chip and can
be accessed more efficiently. Note that shared memory is
only visible to one block and threads of other block
cannot access the data stored in it.

The scalable characteristic of modern GPU provides
coarse-grained and the fine-grained data parallelism.
They guide the programmer to partition the problem into
sub-problems that can be solved independently in parallel
by blocks of threads. Moreover, each sub-problem can be
divided into finer pieces that can be solved cooperatively
in parallel by all threads within the block. Fig. 3 gives an
example. In this figure, kernels are launched on GPU
device and executed by multiple equally-shaped thread
blocks.

3.2 Overview
Algorithm 1 shows our framework for PCG

implementation on GPU. In this framework, we use two
kernels to complete the computation involved in the for
loop. They are the SpMV kernel that computes matrix-
vector multiplication such as 1,kAh − the preconditioning

kernel that computes 1
kM r−

 .
Besides the above kernels, other operations such as dot

products among vectors can be done efficiently by cublas
library [14] because they all belong to level-1 BLAS
(Basic Linear Algebra Subprograms) functions.

Figure 2. GPU architecture.

Figure 3. Serial code executes on the host while parallel code executes

on the device.

0 0
1

0 0

0 0

0 0

1 1

1 1

1 1
1

1

,
,

 (err < || k<k_max)

,

,

old

new old

new

new
k

k k

k k k

k k k

k k

old new

new k k

new

old

k k k

r b Ax

z M r
h z
err r z
err err
While do

err
h Ah

x x h
r r Ah

z M r
err err
err r z

err
err

h z h

ε

α

α
α

β

β

−

− −

− −

− −

−

−

← −

←
←

←< >

←

←
< >

← +
← −

←

←

←< >

←

← +

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2697

© 2012 ACADEMY PUBLISHER

In order to improve the efficiency of our GPU based
PCG algorithm, we focus on two most expensive kernels
here: the SpMV kernel and the preconditioning kernel. In
addition, to get a higher level of concurrency, we use a
technique called streams [15] to run independent kernels
asynchronously so as to overlap the computation.

Algorithm 1. Algorithm for our PCG method on
GPU

0 0
1

0 0

0 0

0 0

1

//Use () to compute dot products
//and then obtain err

,
,

 (err < && k<k_max)
// kernel calucating

_ ()
//Use

old

new old

new

k

cublas

r b Ax

z M r
h z
err r z
err err
while do

spmv for Ah
kenel spmv

cublasdo

ε

−

−

← −

←

←
←< >
←

1 1

1 1

1 1

1

()

 (1)
,

//Use ()
 (2)
 (3)

// reconditioning kernel

// Devcie

//Use

new

k k

k k k

k k k

k k

old new

t
err

h Ah
cublasSaxpy

x x h
r r Ah

P
z M r

assignment
err err

cublasdo

α

α
α

− −

− −

− −

−

←
< >

← +
← −

←

←

1

()
, (4)

//Use ()

 (5)

 while

new k k

new

old

k k k

t
err r z

cublasSaxpy
err
err

h z h
k
end

β

β −

←< >

←

← +
+ +

3.3 SpMV Kernel
Sparse Matrix-vector multiplication (SpMV) is one of

the most fundamental and important operations in sparse
matrix computations. It is the dominant cost in many
iterative methods for solving large-scale linear systems.
Recently, several research groups have reported their
implementation on CUDA–compatible GPUs and show
that the storage pattern such as CSR, ELL, HYBRID
formats can be efficiently accessed by CUDA threads.
However, except for the CSR format, all other formats
have to fill in zeros to keep the array strictly aligned, thus
causing memory waste.

Since the SpMV kernel with CSR format provides
important insight for understanding our algorithm, we
discuss the implementation of SpMV GPU kernels with
CSR and mDIA respectively in the following subsections.

3.3.1 SpMV with CSR format

CSR format is one of the most popular sparse matrix
representations. In this format, an N-by-N sparse matrix
with K nonzero elements is stored as two arrays: one
array val holds the K nonzero elements and the other
array col holds the column indexes of these nonzero
elements. What’s more, an additional array Rowptr with
the length N+1 is used. The first N components of
Rowptr record the indexes of the first element in each
row while the last one denotes the number of nonzero
elements in the matrix. Fig. 4 gives an example. Unlike
the ELL or DIA, CSR format doesn’t waste any memory
space.

Figure 4. CSR format for sparse Matrix.

To parallelize the SpMV operation with CSR format, a
scheme called scalar CSR kernel [13] is used. In this
kernel, one thread is used to fetch one row of the matrix
A and then complete the dot product for one component
of the result vector. The computations of all threads are
independent. The data parallelism as well as the access
pattern of scalar CSR kernel is shown in Fig. 5. It gives a
simplified example of the allocation of the threads, in
which the array data, Col Index, and Rowptr are stored in
global memory for the dot product operation.

Figure 5. Scalar SpMV Kernel with CSR format.

3.3.2 SpMV with mDIA format
(1) Our mDIA storage format
Our matrix has a regular pattern that the elements off

the main diagonal are all assigned to a constant integer -
1while the nonzero diagonal elements are also integers.
The number of nonzero elements per row varies from 3 to
7 and this irregularity makes ELL or hybrid pattern
infeasible, since they will cause large zero fill-ins.

In mDIA format, the constant value is stored in the
constant memory. As a result, 1D array Diag only needs
to store the diagonal elements. Because all diagonal
elements in our matrix are nonzero values, the row and

Data

Col Index

Rowptr

Row2
Thread2

Row3
Thread3

Row4
Thread4

Row1
Thread1

Global Memory

1 3 0 0 0
9 7 0 8 2
0 6 1 0 0
1 0 3 9 0
0 0 0 0 2

[1 3 9 7 8 2 6 1 1 3 9 2]
[0 1 0 1 3 4 1 2 0 2 3 2]

[0 2 6 8 11 12]

Matrix

val
col
Rowptr

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=
=

=

2698 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

column indexes of them can be easily obtained from Diag.
Array col only needs to record column indexes of the
constant value. Besides, Array Rowptr is used to tell
where a new row begins in the array col, similar to array
Rowptr in CSR format. Fig. 6 shows a portion of one
matrix and its corresponding storage mechanism. Note
that the constant -1 is stored in the constant memory.

Since most of the nonzero elements are off the main
diagonal in our matrix and they are stored in the constant
memory, the memory usage can be significantly reduced
compared with the CSR format. Also, the constant
memory, a small high-speed cache residing in the global
memory on GPU, enables us to fetch data efficiently [15].

Figure 6. mDIA storage format.

(2) The SpMV kernel
To implement the SpMV kernel with mDIA format on

GPU, we assign one thread to compute one component of
the result vector. Take thread i for example. It computes
the dot product between the i-th row of our matrix and the
vector. First it fetches the diagonal nonzero element from
diag[i]. Then the column indexes of the constant
elements from col[Rowptr[i]] to col[Rowptr[i+1]] are
read contiguously. Finally, the dot products operation is
executed.

Considering that the vector is reused in the
computation of the dot product, we bind it to a 1D texture.
This can bring potentially higher bandwidth and can be
used to avoid uncoalesced loads from global memory
[15]. Other array such as col are stored in the global
memory. Fig. 7 presents the pseudo-code of our
implementation.

3.4 Preconditioning Kernel using Jacobi Method
Another important kernel in our PCG algorithm is the

preconditioning kernel. According to IC preconditioner,
1

k kz M r−← is converted into ()T
k kLL z r= where

L is the lower Cholesky triangular matrix. Thus, kz can

be obtained by solving ()T
k kL L z r= in two stages:

forward substitution kLy r= and backward

substitution T
kL z y= .

However, the direct method of backward and forward
substitution cannot be used to solve all the components

simultaneously on GPU because the computation of the
ith component of kz relies on all its previous components.

To get a higher level of parallelism, we use Jacobi
method instead of direct method in this paper. Jacobi
iterative method is data independent that can be well
aligned to SIMD pattern and improves parallelism
significantly.

Figure 7. Pseudo-code of our SpMV kernel

3.4.1 Jacobi iterative method
Jacobi iterative method is a numerical solution of a

system of linear equations with largest absolute values in
each row and column dominated by the diagonal element.

To solve our lower Cholesky triangular
equation kLy r= , we first decompose the lower
Cholesky triangular matrix L into a diagonal matrix D
and a lower triangle matrix R. Then the system of linear
equations becomes

 () ,kD R y r+ = (6)

and finally

 kDy r Ry= − . (7)

Therefore, y can be solved iteratively by

 1
1()kk ky D r Ry+
−= − . (8)

Next, kz can be computed by solving upper Cholesky

triangular equation T
kL z y= in the same way.

3.4.2 Parallel Jacobi algorithm
Fig. 8 (a) shows the iterative process of our parallel

Jacobi algorithm. In this figure, d_old stores the result
from the previous step and d_new is used to update the
current computation. The constant vector d_const
= 1

kD r− , where the diagonal matrix D is stored in the
array d_diag. d_R stores the lower triangular matrix R
and d_res is used to compute the residue. Note that most

__Constant__ val = -1;
__ global__ void SpMV(float *diag, float *col, float
*Rowptr, float *x,)
{

int thread_id = blockDim.x * blockIdx.x + threadIdx.x;
int grid_size = gridDim.x * blockDim.x;
for(int row = thread_id; row < num_rows; row +=

grid_size)
{

 const int row_beg = Rowptr[row];
 const int row_end = Rowptr[row+1];
 float sum = 0;
 for (int jj = row_beg; jj < row_end; jj++)
 {

sum += val*fetch_x(Col[jj], x, UsedTex);
 sum += diag[row] *fetch_x(row, x, UsedTex);
 }
 y[row] = sum;

}
}

6 -1 0 0 0
-1 7 0 -1 0
0 -1 6 0 0
-1 0 -1 3 -1
0 0 -1 0 2

[6 7 6 3 2]
[1 0 3 1 0 2 4 2]

[0 1 3 4 7 8]
 device _constant_ val =-1

Matrix

diag
col
Rowptr

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=
=

=

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2699

© 2012 ACADEMY PUBLISHER

of the operations such as 1D b− can be converted to
level-1 BLAS operation among the vectors. These
operations could be easily parallelized using CUDA. Fig.
8 (b) shows the kernel named VecDiv_kernel for
computing 1D b− and the kernel named VectorSub_kernel
for computing the substraction betweeen two vectors.

 (a) The iterative process.

 (b) Two GPU kernels involved in this process.

Figure 8. Parallel Jacobi iterative method.

3.5 Parallelism with Streams
CUDA applications can manage concurrency through

streams. A stream is a sequence of commands that

execute in order. Different streams, on the other hand,
may execute their commands out of order concurrently.
Fig. 7 illustrates the GPU time flow for sequential (Fig. 9
(a)) and concurrent (Fig. 9 (b)) kernel executions.

Figure 9. GPU Time flow with CUDA streams

We adopt this optimization technique for our two
independent tasks as shown in fig. 10.

Figure 10. The operations using CUDA streams.

As a result, the computation of the two tasks can be
overlapped and the GPU resources can be used more
effectively.

IV. RESULTS

We use Geforce G100 to test the performance of our
parallel PCG algorithm. Geforce G100 has 8 CUDA
cores and the peak performance for single precision is
10.4 Gflops. The CPU used is AMD 7750 dual-core
processers with the core frequency of 2.7GHz. The CPU
implementation of PCG is single-threaded.

Table 1 shows some matrices that generated from our
Poisson equation. They will be used in our performance
test. In this section, we start from testing the performance
of our SpMV kernel and then test Jacobi iterative method
for solving the lower Cholesky triangular equations,
followed by CUDA stream results.

TABLE.1
MATRICES USED FOR EXPERIMENTS

MATRIX #N #Nonzeros
Matrix_1 8087 49915
Matrix_2 22028 131,118
Matrix_3 65043 394,877
Matrix_4 140,120 876,518
Matrix_5 209,908 1,325,066
Matrix_6 274,949 1,755,263
Matrix_7 304,207 1,962,311

4.1.SpMV Kernel Test
4.1.1 SpMV kernels performance
Table 2 shows the performance of our SpMV kernel

against the SpMV kernel with CSR format. In this table,
GPU Time accounts for the total time consumed for the

1 1

1 1

([0]);
 ;
([1]);
;

k k k

k k k

SetKernelStream streams
x x h
SetKernelStream streams
r r Ah

α

α

− −

− −

← +

← −

Kernel_1

Kernel_2

Kernel_3

Kernel_3

Kernel_4

Kernel_4

 (a). GPU time flow (without CUDA streams)

 (b). GPU time flow (with CUDA) streams)

Kernel_2 Kernel_1

__global__ void VectorSub_kernel(float* A, float*
B, float* C,int N)
{
 int i = blockDim.x * blockIdx.x +

threadIdx.x;
float a = 0.0f;
if (i< N)

 {
a = A[i] - B[i];

 C[i] = a;
}

}

__global__ void VecDiv_kernel1(float* A, const
float* B, float* C,int N)
{

int i = blockDim.x * blockIdx.x +
threadIdx.x;

float a = 0.0f;
if (i< N)
{

a = __fdividef(A[i],B[i]);
C[i] = a;

}
}

()

()

()

1

1 1

(& & max)
{
// d_yNew

d _ R, d _ ,d_yNew ;

// d_yNew ()
_ ker d _ , d _ , N ;

 // d_yNew ()
N,1.0, d _ const,1, d _ , 1 ;

// d_res

k

k

k k

while err tol k k

Ry
SpMV yOld

D Ry
VecDiv nel diag yNew

D Ry D r
cublasSaxpy yNew

residue
Vecto

−

− −

< <

←

←

← +

−

←

()
()

()

d _ New, d _ , d _ res, N ;

err N, d _ res,1 ;
// d_yOld d_yNew

N, d _ ,1, d _ Old,1 ;
;

}

rSub y yold

cublasSasum

cublasScopy yNew y
k

=

←

+ +

2700 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

SpMV kernel in our PCG algorithm and the speedup is
the ratio compared with CPU Time. On CPU, the SpMV
routine is implemented using CSR format. According to
the results, our SpMV kernel runs an average of one time
faster than that in CSR format and it offers an average of
about 10 times speedup compared with the CPU version.

TABLE 2
GPU/CPU SPMV KERNELS PERFORMANCE (SECONDS)

matrix

Timings for
spMV CPU
routine

Timings for
spMV GPU
kernel
(seconds)

Speedup

CSR mDIA CSR mDIA

Matrix_1 0.48 0.09 0.05 5.4 9.0
Matrix _2 1.34 0.25 0.14 5.4 9.5
Matrix _3 5.50 1.00 0.57 5.5 9.6
Matrix _4 15.15 2.63 1.52 5.8 10
Matrix _5 29.67 5.34 2.99 5.6 9.9
Matrix _6
Matrix _7

44.82
54.69

8.03
9.50

4.50
5.41

5.5
5.1

9.96
10.8

4.1.2 The performance of CG&PCG algorithm with
our SpMV kernel
We embed our SpMV kernel into CG&PCG method

On GPU. Here, the IC preconditioner of PCG method is
solved by direct method. Further improvement using
Jacobi iterative method will be presented in the next
subsection.

We compare our results with CG&PCG methods using
CSR format as shown in Table 3. It illustrates that due to
our SpMV kernels, the CG algorithm outperforms by
nearly 50% when the number of nonzero elements
reached 1,962,311.

However, when PCG method is applied, this table
shows that our advantage over the CSR_based method
has been less obvious; and when the dimension of matrix
has reached up to 304,207, the performance improvement
is only about 10%. This is due to the sequential nature of
the direct method as mentioned before.

4.2 Jacobi Method for IC Preconditioner
In this section, we adopt two variants: the direct

method and the Jacobi iterative method to explore GPU
performance for PCG algorithm.

TABLE 3.
TIME COST FOR CG AND PCG ALGORITHM IMPLEMENTED ON GPU

RESPECTIVELY (SECONDS)

matrix

CG
steps

Timings for GPU
based CG
method(seconds)

PCG
steps

Timings for GPU
based PCG
method(seconds)

mDIA CSR mDIA CSR

Matrix_1 84 0.64 0.68 17 0.50 0.50
Matrix_2 90 0.76 0.86 21 1.15 1.17
Matrix_3 123 1.40

2.42
1.80 23 2.63 2.71

Matrix_4 146 3.69 25 4.8 5.09
Matrix_5 192 4.44 6.70 30 7.9 8.32
Matrix_6 221 6.41 9.87 34 10.98 11.87
Matrix_7 234 7.25 11.53 35 11.35 12.77

When solving the lower Cholesky triangular
equation, Timings for the parallel Jacobi iterative method
and the direct method are both accumulated at every

iterative step and their final costs are showed in Table 4.
From this table, it can be noticed that GPU performance
of the Jacobi iterative method has been efficiently
improved about 3 times.

TALBE 4.
TIME COST FOR GPU SOLVER OF JACOBI METHOD AND DIRECT METHOD

WHILE APPLYING IC PRECONDITIONER

matrix Timings for
Jacobi solver (seconds)

Timings for
direct solver (seconds)

Matrix_2 0.18 1.001
Matrix_3 0.50 2.533
Matrix_4 1.225 3.912
Matrix_5 2.288 6.030
Matrix_6 3.377 9.454
Matrix_7 3.893 11.021

4.3 The Speedup of Our GPU based PCG Algorithm
Fig. 11 shows the speedup of our parallel PCG

algorithm after using our SpMV kernel, Jacobi iterative
method, as well as CUDA streams. It can be seen from
the figure that there has been at least 16% increase for our
PCG algorithm compared that with CSR formats.
Furthermore, our PCG algorithm with three optimization
techniques proposed obtains an average of 6 times
speedup, while the CSR method only offers an average of
4.

Figure 11. Speedup of our GPU based PCG algorithm.

V. CONCLUSIONS

In this work, we propose an optimization method for
GPU based PCG algorithm. It is designed to solve the
Poisson equation arising in liquid animation efficiently.
By utilizing optimized SpMV kernel, iterative Jacobi
method and CUDA streams, our method improves the
efficiency of solving large sparse linear systems
significantly. Experimental results also show the
effectiveness of our method.

Next we will focus on seeking out the other potential
bottleneck of PCG algorithm by CUDA Visual Profiler.
Besides, studies on finding more suitable preconditioners
for GPU-based PCG algorithm should be taken.

ACKNOWLEDGMENT

The authors wish to thank Prof. Shengzhong Feng.
This work was supported in part by the National High-
Tech Research and Development Plan of China (863
program) under Grant No.2009AA01A129-2, the Science

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2701

© 2012 ACADEMY PUBLISHER

and Technology Project of Guangdong, Province under
the grant No.2010A090100028, National Natural Science,
Foundation of P. R. China under the Grant
No.60903116，and Knowledge, Innovation Project of the
Chinese Academy of Sciences, No.KGCX2-YW-131，
the Science and Technology Project of Shenzhen, under
the grant No. JC200903170443A, ZD201006100023A.

VI. REFERENCE

[1] J.D.Hall,N.A. Carr and J.C.Hart,”Cache and Bandwidth
aware matrix multiplication on the GPU,”,2003.UIUC
Technical Report UIUCDCSR-2003-2328(2003)

[2] N.Galopppo, N.K. Govindaraju,”LU-GPU:Efficient
algorithms for solving dense linear systems on graphics
hardware,” In SC’05: Proceedings of the 2005
ACM/IEEEE conference on Supercomputinng, page3,
Washington D.C, USA, 2005, IEEE Computer Society.
ISBN1-59593-061-2

[3] Kendell A. Atkinson (1988), An introduction to numerical
analysis (2nd ed.), Section 8.9, John Wiley and Sons.

[4] A.V. Knyazev, I. Lashuk, Steepest descent and conjugate
gradient methods with variable preconditioning, SIAM J.
Matrix Analysis and Applications 29(4), 1267-1280, 2007.

[5] Nvidia CUDA. Website,2009,
http://www.nvidia.com/cuda.

[6] J. Bolz, I. Farmer, E. Grinspun, and P. Schr¨ooder,
“Sparse matrix solvers on the GPU: Conjugate gradients
and multigrid,” in SIGGRAPH ’03:ACM SIGGRAPH
2003 Papers, 2003, pp. 917–924.

[7] W.A.Wiggers, V.Bakker, A.B.J.Kokkeler and G.J.M.Smit,
“Implementing the conjugate gradient algorithm on multi-
core systems,” In J.Nurmi,J.Takala and O.Vainio, editors,
Proceedings of the International Symposium on System-
on-Chip, Tampere, pages 11-14, Piscataway,

 NJ,November 2007,IEEE,ISBN 1-4244-1367-2
[8] Maringanti.A.;Athavale.V.; Patkar.S.B.; “Acceleration of

Conjugate Gradient Method for cirruit simulation using
CUDA” In High Performance Computing (HiPC), 2009
International Conference, Kochi, pp438-444

[9] A.Asgasri, J.E.Tate. Implementing the Chebyshev
Polynomial Preconditioner for the iterative solutions of
linear systems on massively parallel graphics processors
http://www.ele.utoronto.ca/zeb/publications /,2009

[10] L. Buatois, G. Caumon, and B. Levy, “Concurrent number
cruncher: a GPU implementation of a general sparse linear
solver,” Int. J. Parallel Emerg. Distrib. Syst., 24(3):205–
223,2009. ISSN 1744-5760

[11] Marco Ament, Gunter Knittel, Daniel Weiskopf,
Wolfgang Strasser, "A Parallel Preconditioned Conjugate
Gradient Solver for the Poisson Problem on a Multi-GPU
Platform," pdp, pp.583-592, 2010 18th Euromicro
Conference on Parallel, Distributed and Network-based
Processing, 2010

[12] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel, "Optimization of sparse matrix-vector
multiplication on emerging multicore platforms," in
Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, 2007, pp. 1-12.

[13] Nathan Bell "Implementing Sparse Matrix-Vector
Multiplication on Throughput-Oriented Processors" in
"Proc. Supercomputing '09", November 2009

[14] Nvidia, “CUDA Toolkit 4.0 CUBLAS Library” NVIDIA
Corporation, Santa Clara, April, 2011

[15] Nvidia,”CUDA Programming Guide 4.0” NVIDIA
Corporation, Santa Clara, April, 2011

Born in Jiangxi province in China,
Yechen Gui is a graduate of Xidian
University, where she earned her
bachelor degree in 2006, majoring in
biomedical engineering. After that, she
went to Southern Medical University for
her postgraduate studies. During that
time, she became fairly interested in
parallel algorithms in medical image
processing. She implemented parallel

ray-casting algorithm as well as CT reconstruction algorithms
on GPU using CUDA and published two articles in two
different core journals.

After Yechen gained her master degree in 2009, she worked
as a research assistant in Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences until now. During
this time, she published 4 articles in parallel algorithms on GPU
in all, one of which is accepted in the conference of 2010 GPU
Solutions to Multi-scale Problems in Science and Engineering
(GPU-SMP'2010), others of which are all indexed by EI. Now
she’s research field is towards computational fluid animations
as well as parallel algorithms.

2702 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

