
A New Access Control Model for Manufacturing
Grid

Zhihui Ge, Taoshen Li
School of computer science, Electronics and Information, Guangxi University, Nanning, China, 530004

Email: gezhihui@foxmail.com

Abstract—In order to protect the sensitive information in
collaborative manufacturing grid environment, an access
control solution was proposed to satisfy the inherent
dynamic natures of the Manufacturing Grid, including
dynamic Business Flow and system environment. Activity is
introduced to encapsulate role and permission. Activity state,
activity hierarchy and activity dependence are used to
provide dynamic authorization and flexible multi-
granularity permission management, which can get adapted
to the dynamic, flexible modern business process. UNIX-like
permission can guarantee default minimum
read/write/delete permissions. This proposed model can
meet the need of MG.

Index Terms—manufacturing grid, access control, RBAC,
task context, environment context

I. INTRODUCTION

Manufacturing grid is such kind of platform, which can
integrate various resources to form a giant “virtual
computer”, provided for modern enterprise. In this
“virtual organization”(VO), users can share resources and
cooperate with problem solving. So, manufacturing grid
has not only the same features as traditional network, but
also has high dynamics, accurate organization, large scale
etc.

As a mass customized distributed cooperation system,
there are lots of data, which may come from different
users, departments, enterprises, to be processed in
manufacturing grid. And all the data are associated with
fund, cost, product, project process and staff management
etc privacy information. So how to guarantee the security
of those data is very challenging. As an important
component of security, access control can prevent data
suffering from illegal modification and damage.

Figure 1. Cooperation in VO among Enterprises

Figure 1 shows a typical scenario, within which
multiple manufacturing enterprises cooperate with each
other based on virtual organization.

We assume enterprise A has found some opportunities
in the market. In order to response quickly, A authorize B
and C to complete the design of components and the final
product integration. When the design work is completed,
A delegates the manufacturing task to D. During this
commercial activity, multiple enterprises associate and
cooperate with each other through resources sharing and
division of labor. Different services provide by various
enterprises form a temporary virtual organization, once
the manufacturing activity ends, the VO will naturally
dissolved.

During the phases of cooperation, in order to ensure
the final product satisfied with the primitive requirement,
The staff participated in the collaborative design work
have to communicate with each other, and the manager
also needs to track and control the project process,
coordinates developers and resources. All the tasks
mentioned above need mutual cross-domain access.
However, each enterprise joined in the VO has their
individual security requirements and access control
policy.

In this paper, a context-aware access control model is
proposed, which can effectively support the
interoperability with dynamic changing right polices for
collaboration in manufacturing grid environment.

II. RELATED WORK

Researchers have done many works in the field of grid.
Grid Security Infrastructure (GSI)[3] is the essential
middleware for authentication in grid environment. GSI
maps the global user who needs to access resources to an
account on local resource servers. Because the giant
amount resources and users in grid environment, the
mapping table will also be huge, furthermore GSI does
not have effective global/local permission management
scheme. Ian Foster etc proposed the Community
Authorization Service (CAS)[4]. CAS allows resource
providers to delegate some of the authority for
maintaining fine-grained access control policies to
communities, while still maintaining ultimate control
over their resources. In order to gain access to a CAS-
managed community resource, a user must first acquire a
capability from the CAS server. So the final permission
assigned to user is an intersection of VO (Virtual
Organization) and resource provider. But CAS is static

2678 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.12.2678-2686

delegation of authority, which can not satisfy the
requirement of dynamic authorization.

There are lots of research works on extension of
traditional RBAC in grid environment. The model
proposed in Ref[5] can provide dynamic permission
according to gird environment context, but drawback is
the dynamic changes of task in manufacturing project are
not considered.

Recent years, along with the rapid development of
manufacturing grid, some access control models are
successively proposed. In order to support interaction
between global and local, dynamic and static security
strategies in dynamic heterogeneous manufacturing grid,
Ref[6] proposes an extension method for RBAC. The
model is based on CAS, but it is too complicated and can
not effectively reflect the changes of environment context
so as to control view of CAD model.

III. GROUP-ACTIVITY BASED ACCESS CONTROL MODEL

A. Design Philosophy
The access control model we designed is showed in

Figure 2, which is an activity-centered, encapsulated with
role and right. The work flow can easily be organized and
coordinated to form a global management and dynamic
authorization. The group provided autonomous
management and UNIX-like permission configuration all
can improve the efficiency of administrator.

Figure 2. GA_RBAC Access Control Model

B. Definitions
Definition 1. Object and UNIX-like permission

object base class: The most important part in access
control system is to determine the object to be controlled.
But all data and resources are dynamically increasing in
manufacturing grid, and most part of them are stored in
database. It’s very hard for the administrator to assign all
the permisssions. So we define the following UNIX-like
configuration for objects.

obj_id and owner_id are object and owner identity

respectively. unix_perms is 32 bit integer, which records
the read/write/delete access rights. A shared object may
be composed of multiple objects and organized in
hierarchical structure. The products designed by different
designers, who are affiliated with different enterprises,
belong to different organizations. The owner_group_set
is used for such situation, which can solve rights
inheriting problem of sub-objects.

Definition 2. Subject: subject is an object, which is
assigned some role and participated in collaborative
activities with corresponding permission. Subject initiates
resource request, it is a abstract concept, which can be
person, program and even group.

Definition 3. Groups and Group Hierarchy (GH):
one enterprise is composed of multiple departments
which are associated with different roles. The
organizations in VO may be enterprises and departs
coming from different domains, so we give the following
definition to describe this relation.

gid is group identity; super_gid is parent group of gid;

u_set and r_set are user set and corresponding role set of
group respectively.

Definition 4. User: user is a staff with some role and
taking part in some activity.

uid is user identity, group_set is the user’s group;

r_set is role set assigned to user.
Definition 5. Group-User Relation (GUA): GUA

indicates the many-to-one relation between user and
group set.

Definition 6. Role and Role Hierarchy (RH): Role is

the entity who owns rights, which is related to task
function, responsibility etc semantics.

rid is the role identity, super_rset is the role set

inherited. group_set and u_set are group and user set
respectively. actset is activity set the role participated in.

In manufacturing grid, role can be system role such as
administrator, service provider, service caller etc, and it
also can be set according to the specific task and position,
such as design engineer, process engineer, design leader
etc.

Definition 7. Permission: permission is the permitted
operations on specific object.

Definition 8. Activity and Activity Hierarchy (AH):

activity is the base unit of decomposed task and their
hierarchy relation, which also is encapsulated with role
and permission etc objects.

aid is the activity identity, state is the activity state,

superAct is the father activity, subActs is the child
activity set, rset is the role set of participators, peSet is
the record set of right.

During the cooperation process of VO, some project
cycle may be divided as several activities. Furthermore,
activity can be divided into tasks, so the activity
hierarchy structure can express this relation well.

Definition 9. Subject-Role Relation (SR): SR is a
kind of many-to-many relation.

sid can be group id or user id, rid is role identity.
Definition 10. Role-Activity Relation (RA): RA is

many-to-many relation between role and activity.

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2679

© 2012 ACADEMY PUBLISHER

rid is role identity, aid is activity identity.
Definition 11. Activity-Permission Relation (AP): AP

is many-to-many relation between activity and right.

Activity A can be divided into seven sub-activities
and they have correlations with each other, figure 3
shows the activity dependence graph among them.

Figure 3. Activity Dependence Graph

Definition 12: Activity State Migration (ASM) is the
migration of activity state, which is used to describe the
changes of activity state.

all is used to guarantee some right can be available at

any time, such as the right management of administrator.
active and inactive indicate the activity is in its active or
inactive state respectively. denied state is used to describe
backtracking of activity dependence. complete indicates
the activity is completed, all the rights are not available
except the read right of its owner. The migration of
activity state is showed as figure 4.

Figure 4. Activity State Migration

Definition 13: Activity Dependence (AD) is the
relationship of activities, which includes:

(1) Mutually Exclusive Dependence: the
exclusive dependence of different activities
when executing. For any two activities ai and aj,
aj can not enter into that state when ai has
entered, vice versa. Noted as ai(state) ↔﹁
aj(state) or aj(state)↔ ﹁ ai(state). Mutually
exclusive dependence meets the conditions of
non-reflexivity, non-transitivity and symmetry.

(2) Sequence Dependence: the precedence
relationship of different activity when
executing. For any two activities ai and aj,
when ai enters into complete state, the active
state of aj is activated. Noted as ai
(complete)→aj (active).

(3) Failure Dependence: the denied relation of
different activities when executing. For any
two activities ai and aj, when ai enters into
denied state, the active state of aj is activated.
Noted as ai (denied)→aj (active).

(4) Synchronous Dependence: synchronous
execution of different service state. For any
two activities ai and aj, when ai is implemented,
aj has to be implemented at the same time, vice
versa. We note this as ai (state)↔ aj (state).
Synchronous relation is a kind of equivalence
relation, which meets the conditions of
reflexivity, transitivity, symmetry.

Definition 14: Activity Property (AP): we define activity
A has the following properties.

(1) Start Activity Set: in activity hierarchy and
activity dependence, is composed of all the
started sub-activities, which can be formalized as

It means that the start activity set of activity A is the

activity set of whose sequence dependence in-degree is
zero.

(2) End Activity: In order to guarantee the
cooperation going successfully, we set each activity
having only one ending sub-activity is the
activity set of whose sequence dependence out-degree is
zero.

(3) Activate Activity: When some activity instance ai

is running, all the conditions are satisfied, then ai is
activated and all its permission set are available.

deptype is the activity dependence type.
(4) Prior Activity Set ： For the convenient of

managing the activation of activity, we need to find out
the prior activity set of some activity.

 (5) Follow-up Activity Set：We also need to find out
the follow-up activity set of some activity.

IV. MODEL OPERATIONS

The implementation process of access control model is
mainly include static permission assignment, dynamic
activity management and user authorization.

A. Static Permission Assignment
Any implementation of access control model has to

provide permission policies for the access control system.
Static permission assignment is a method to achieve
permission policy, which can initialize the data for access
control system. In our model, the static permission
assignment includes activity partition, activity permission
assignment, activity role association, subject role
association.

The activity partition is the first step. The
administrative staffs organize and partition the activities
at different stages during the work flow and decide their
dependence relationship. This task is related to special
application. When the activity and activity dependence is
worked out, permission can be assigned by RA and AP
mapping, and then mapping the available roles for users
and their groups according to the SR.

2680 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

B. Activity Management and Dynamic Permission
Adjustment

Activity management is one key component to achieve
the goal of dynamically adjust the permission of users.
According to the features of access control model of
manufacturing grid, we design three operations to
complete the activity management.

(1) Startup() function is used to activate some activity
and its corresponding sub-activities. In AH, when
we want to activate an activity from its inactive
state, we must keep searching for the startup
activity set in the sub-activity set until there are no
more sub-activities due to the hierarchy
organization of AH. The operations can be
constructed according to the definition of Start
Activity Set, the pseudo code is as following:

Figure 5. Function for Starting up an Activity

(2) After some activity is completed or denied, the
activities which having dependence with it have to
be activated to proper state. ActivateAct() is used
to dynamically adjust the state of activities. The
main idea of this operation is to find a given
activity ai’s FollowAct(ai,deptype) set according
to the state of activity ai in AD. If activities in
FollowAct(ai,deptype) set is satisfied with the
dependence relation and corresponding state, then
it will be activated.

Figure 6. Function for Activating an Activity

(3) CompleteAct() is used to mark the completion
state of activity. In AD, when the complete sub
activity of one activity is completed, that indicated
the activity is also completed.

Figure 7. Function for Completing an Activity

C. User Authorization
The object of access control is to judge the requests of

users, and then decides whether the requested access can
be implemented on the resource. So in our access control
model, we introduce activity state, group and
corresponding UNIX-like permission control. The
request of user can be expressed as following

u_id is user identity, group_set is the group of user, r is

the activity role of user in current session, act_id is the
activity identity of current request of user, op is the

CompleteAct(act)
Step1: if act.state = all

return
else act.state=complete

goto step2
Step2: tmp_act:=act.super_act
Step3: if tmp_act = null

return
else

if EndAct(tmp_act)=act
 ActivateAct(act,Order)

CompleteAct(tmp_acct)
if EndAct(tmp_act)!=act

return

ActivateAct(ai,state)
Step1: ai.state：= state
Step2: if state=denied

followActs:=FollowAct(ai,failure)
else

if state=complete
followActs=FollowAct(ai,order)

Step3: for each tmp_act in followActs
preFailureSet:=PriorAct(tmp_act,failure

)
preOrderSet:=PriorAct(tmp_act,order)

for each act in preFailureSet
if act.state=denied continue
else return

for each act in preOrderSet
if act.state=complete

continue

Startup(act)
Step1: tmp_act=act，

if tmp_act.state!=all
tmp_act.state=active

Step2: if tmp_act.subActSet.length=0
return

Step3: if tmp_act.subActSet.length!=0
if tmp_act.SubActs_Dep!=null

for each start_act in StartAct(tmp_act)
Startup(sub_act)

else
for each act in tmp_act.subActSet

 Startup(sub_act)

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2681

© 2012 ACADEMY PUBLISHER

requested operation, obj is the requested object. We
design the following strategy:

(1) If the activity is in its inactive state, then all
the rights are not available during all the
activities.

(2) If activity is in its denied state, then reset the
activity into active state.

(3) If activity is in active or all state, then all the
rights are available.

(4) If activity is in completed state, then only read-
only right is available for the corresponding
users.

V. IMPLEMENTATION

A. Framework
In order to illustrate the effectiveness and security of

our access control model, we construct a prototype based
on Globus Toolkit 4. The framework of our prototype is
showed in Figure 8.

Figure 8. Framework of Prototype

(1) CSGService is a grid service based on Globus
Toolkit 4, which is used to save the properties
of resource objects.

(2) CSGClient is the client which is used to submit
the users requests.

(3) CSGListener is the subscriber of CSG service,
which is used to monitor the state changing of
resources in CSGService.

(4) AccessControlManager is used to coordinate the
interaction between CSGService and
GA_RBAC.

(5) GA_RBAC is our proposed group-activity based
access control model, which is used to authorize
the users’ requests.

B. WSDL based Service Description
We use WSDL (Web Service Description Language)

to describe the interaction protocol between server and
client.

(1) Submit user’s request. The cooperation works
among clients are implemented by invoking the grid

service of server. We define the message format of
SubmitRequest operation as following

<SubmitRequest> : = AccessRequest
<AccessRequest>:=<Use,ActID,Op,PermissionBaseO

bject>
<User>:=<u_id,u_name,u_ip,u_i,time,groupmembersh

ip>
<ActID>:= Identification of current user’s activity
<Op>:= add | create | modify | delete | save | load | read

| write | read …
<PermissionBaseObject>:=<ObjID,ObjName,ObjOwn

er,ObjOwnerGroup,ObjUnixPerms >
The most important part of our prototype is the access

control, so we add all the items needed by authorization
in SubmitRequest. User indicates the sender of the
request, in which u_id is the user’s identification, u_name
is the name of user, u_ip is the IP address, time is the
request sending time, groupmembership is the user’s
group. ActID is the id of current activity, Op is the
operation of user request. PermissionBaseObjec is the
base class of operation object. The object of our
prototype simulates the permissionmanagement system of
UNIX to simplify the configuration of permission, so we
abstract the basic permissionclass of UNIX as
PermissionBaseObject.

(2) Submit user’s response. After the user submits
request, the server will send feedback to clients according
to the user’s request. The user’s request accepted, the
server will update the user’s UI as the correct result is
sent back to the client to assure the consistency of the
client and the server. Otherwise, the server must notify
the client if the user’s request is not accepted. So we
define the message format of SubmitResponse as
following

SubmitResponse:=<StatusCode,
PermissionBaseObject>

StatusCode indicates the completed state code of
operation, a Boolean value. PermissionBaseObject is the
permission object, which is the XML date sent back by
the server to the client.

(3) Notification Mechanism. The notification
mechanism is achieved by using the features of grid
service that can maintain the state of objects the users
operates. When the state of some resources changes in
grid service, the client monitoring the resource can be
notified immediately. We design an interface
CSGServicePortType inherited from
GetMultipleResourceProperties, NotificationProducer
which are defined in WSRF specification. The WSDL file
is showed in Figure 9.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="CSGService"
targetNamespace="http://www.csg.net/namespaces/csg/CSGS
ervice"
 xmlns="http://schemas.xmlsoap.org/wsdl/"……>
<types>
 <xsd:complexType name="PermissionBaseObject"
abstract="true">
 <xsd:sequence><xsd:element

2682 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

ref="tns:ID"/> ……
 <xsd:any minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="CSGSolid" abstract="true">
….
</xsd:complexType>……
<xsd:element name="PermissionObject" type="tns:
PermissionBaseObject"/>……>
 <!-- RESOURCE PROPERTIES -->
 <xsd:element name="CSGSolidsProperties">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element
ref="tns:SubmitRequest" minOccurs="1"
maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
</types>
<!--MESSAGES-->
<message name="SubmitInputMessage">
 <part name="parameters"
element="tns:SubmitRequest"/>
</message>
<message name="SubmitOutputMessage">
 <part name="parameters"
element="tns:SubmitResponse"/>
</message>
<!--P O R T T Y P E-->
<portType name="CSGServicePortType"
 wsdlpp:extends="wsrpw:GetResourceProperty
wsrpw:SetResourceProperties
wsrpw:GetMultipleResourceProperties
wsrpw:QueryResourceProperties
wsntw:NotificationProducer"

 wsrp:ResourceProperties="tns:CSGSolidsProperties">
 <operation name="submit">
 <input
message="tns:SubmitInputMessage"/>
 <output
message="tns:SubmitOutputMessage"/>
 </operation>
</portType>
</definitions>

Figure 9. Part of WSDL File

C. GA_RBAC Implementation
(1) Permission Basic Class

Figure 10. Class Diagram of GA _RBAC

Figure 10 is the class diagram of GA _RBAC model.
In order to simplify the administrator’s work, we provide
the minimal permissionset for each object, which
includes read/write/delete three operations. We abstract a
permissionbasic class PermissionBaseObject for
permission judgment showed in Figure 11.

Figure 11. PermissionBaseObject Class

(2) Permission Record and PermissionChecker
PermissionEntry class is composed of by two-tuples

<op, obj>, and it overrides the equals() and hashCode()
functions to judge the permission record is equal or not.
The class description is showed in Figure 12.

Figure 12. PermissionEntry Class

UnixPermChecker is used to check the permission of
objects. The class description is showed in Figure 13.

Figure 13. UnixPermChecker Class

(3) Subject, Group and User Class
In manufacturing grid, the staffs in enterprise alliances

and organizations are the subjects of collaboration.
Usually, each enterprise has some predefined
organization structure. For example, an enterprise has

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2683

© 2012 ACADEMY PUBLISHER

several departments, which is composed of several
groups. There are several staffs in each group, who may
also belong to different groups and departments. In order
to present this kind of structure and realize authorization
to original organization, the subject class is abstracted
and the group adopts hierarchy structure. The user and
group are multiple to multiple relation. The class
description is showed in Figure 14.

Figure 14. Subject, Group and User Class

(4) Role and Session
In GA_RBAC model, one role class indicates a role,

which is associated with special subject and activity. In
this way, the subject can operate according to the
permission in the given activity. Session is mainly used to
maintain the available roles for the logged users and
operate according to the user’s request. The class
description is showed in Figure 15.

Figure 15. Role and Session Class

(5) Activity and Activity Dependence
Activity and Activity Dependence are two very

important parts in GA_RBAC. They are the key to realize
the dynamic permission adjustment. In our prototype, we
use activity diagram to present activity dependence
relation. Our activity centered authority judgment
procedure is showed in Figure 17.

Figure 16. Activity and Activity Dependence Class

Figure 17. Authority Judgment Procedure Example

D. Example
We use the scenario showed in Figure 1 to illustrate

our access model. There is a product design project
CSGProject carried out by three groups: Ga, Gb and Gc.
Gb and Gc are responsible for component design and
integration design respectively. Project analyzer and
project supervisor in Ga can provide requirement analysis
and project tracking for Gb and Gc. We assume there are
such users {ua1, ua2}, {ub1,ub2}, {uc1, uc2}, the activities
may include requirement analysis, analysis review,
system design, component A design, component B design
and integration design etc stages. The whole cooperation
procedure is as following.

When CSGProject is started, the state of activity
requirement analysis is transformed from inactive to
active. At this time project analyzer can make
requirement analysis and create, modify and edit the
corresponding documents. When analyzer’s work is done,
his activity changes to state completed, the analysis
review activity and the permission of monitor are all
activated as the requirement documents submitted. If the
analysis review cannot pass, then the state of it should be
changed to denied, and make the requirement analysis
activity which has failure dependence relation with it
reenter into active state. Otherwise, the review activity
becomes complete state, and system design is activated.
Requirement analysis and analysis review are mutual
exclusive dependence, so they must be carried out by
different roles and users. The cooperation design will
finally succeed. The activity dependence and tasks
division is showed in Figure 18.

2684 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 18. Activity Dependence

According static permission assignment rules, the
related tables are as following.

TABLE 1
ACTIVITY OF CSGPROJECT

 AH Available
Roles

Available
Permissions

CSGPro

Analyse Analyser Create
Document,

Edit
Document,

default
Verify Verifier Note

Document,
default

GlobalDesign Desinger Create
Document,

Edit
Document,

default
PaDesign ADesigner Edit Solid,

default
PbDesign BDesigner Edit Solid,

default
Assemble Assembler Create Solid,

Boolean
Solid, default

admin Admin Manage Role,
Manager
Activity,
default

view ProjectMember Read

TABLE 2
ROLES HIERARCHY

Role Name Parent Role
ProjectMember

Analyser ProjectMember
Verfier ProjectMember

Designer ProjectMember
PaMember ProjectMember
PbMember ProjectMember
Assembler ProjectMember

Admin ProjectMember

TABLE 3
GROUP HIERARCHY

Parent Group Group

A Analyser
A SubProjectLeader(SubPL)
B Designer
B Draftman
B SubProjectLeader(SubPL)
C Draftman

TABLE 4

USER-GROUP MAP
User Name Group

ua1 A.Analyser
ua2 A.SubProjectLeader(SubPL)
ub1 B.Designer
ub1 SubPL
ub2 B.Draftman
uc1 C.Draftman

TABLE 5

SUBJECT-ROLE MAP
Subject Name Role

A ProjectMember

B PaMember
C PbMember

A.Analyser Analyser
A.SubPL Admin

B.Designer Designer
B.Draftman PAMember, Assembler
C.Draftman PbMember
C.Draftman Assembler

VI. CONCLUSIONS

In traditional manufacturing grid access control model,
it is hard to deal with the cooperation between dynamic
and non-dynamic businesses and can not effectively
support the global control and local autonomous
management etc. In this paper, we propose a group-
activity based access control model. Activity, activity
hierarchy, activity state and activity dependence are
introduced into our model, by this means, we can clearly
describe the dependence of operations and authorize
dynamically. The UNIX-like permission control make
the right management is much easier.

ACKNOWLEDGMENT

This work is supported by Guangxi Nature Science
Foundation (09-007-05S018, 2010GXNSFD013037),
Guangxi Key Laboratory of Manufacturing System &
Advanced Manufacturing Technology Foundation (11-
031-12S02-02).

REFERENCES
[1] Fan Yushun. Concept and Architecture of Manufacturing

Grid. Aeronautical Manufacturing Technology. 2005,l0,42-
45.

[2] Foster I, Kesselman C and Tuecke S. The anatomy of the
grid: enabling scalable virtual organizations. International
Journal of Supercomputer Applications, 2001,15 (3) : 200-
222.

[3] I.Foster,C. Kesselman, G. Tsudik, S. Tuecke. A security
architecture for computational grids. Proceedings of the
Fifth ACM Conference on Computer and Communications
Security, November 1998, pp. 83–92.

[4] Pearlman L, Welch V, Foster I. A community
authorization service for Group collaboration. IEEE 3rd
International Workshop on Policies for Distributed
Systems and Networks. 2002, pp:50-59.

JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012 2685

© 2012 ACADEMY PUBLISHER

[5] YAO Han-Bing HU He-Ping LU Zheng-Ding LI Rui-Xuan.
Dynamic Role and Context-Based Access Control for Grid
Applications. PDCAT 2005, 404 - 406.

[6] CAI Hong-xia, YU Tao, FANG Ming-lun. Access control
of manufacturing grid. Computer Integrated Manufacturing
Systems. 2007,4(13) : 717-720.

[7] Hongxia Cai, Tao Yu, Minglun Fang. Access Control
Model of Manufacturing Grid. IFIP International
Federation for Information Processing, 2006, p. 938-943.

[8] F. Tao, L. Zhang, K. Lu & D. Zhao. Research on
manufacturing grid resource service optimal-selection and
composition framework. Enterprise Information Systems,
2012,Vol. 6, No. 2, 237-264.

[9] Dongming Zhao ; Yefa Hu ; Zude Zhou. Resource
Service Composition and Its Optimal-Selection Based on
Particle Swarm Optimization in Manufacturing Grid
System. IEEE Transactions on Industrial Informatics,
2008,Vol. 4, No. 4, 315 – 327.

[10] Wenjun Xu, Zude Zhou, D. T. Pham, Quan Liu, C. Ji and
Wei Meng. Quality of service in manufacturing networks:
a service framework and its implementation. The
International Journal of Advanced Manufacturing
Technology. 2012,1-11.

[11] Zhengqiu He, Lifa Wu, Huabo Li, Haiguang Lai, Zheng
Hong. Semantics-based Access Control Approach for Web
Service. Journal of Computers, Vol 6, No 6 (2011), 1152-
1161.

[12] Bailing Liu. Efficient Trust Negotiation based on Trust
Evaluations and Adaptive Policies. Journal of Computers,
Vol 6, No 2 (2011), 240-245.

[13] Xiaoming Wang, Yanchun Lin. An Efficient Access
control scheme for Outsourced Data. Journal of Computers,
Vol 7, No 4 (2012), 918-922.

Zhihui GE was born in Hebei, China, in
1978. He received a B.S. degree in
Computer Science from the Beijing
Technology and Business University,
Beijing, China, in 2001, and a M.S.
degree in Computer Science from the
Guangxi University, Guangxi, China, in
2004 and a Ph.D. degree in Computer
Science from the Central South
University, Hunan, China, in 2007.

 He is a associate professor in the Guangxi University. Nanning,
Guangxi, China. His research interests are in networks and
security with special emphasis on distributed system.

2686 JOURNAL OF SOFTWARE, VOL. 7, NO. 12, DECEMBER 2012

© 2012 ACADEMY PUBLISHER

