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Abstract—There are two fundamental problems of the 
Kernel Fisher Discriminant Analysis (KFDA) for nonlinear 
fault diagnosis. The first one is the classification 
performance of KFDA between the normal data and fault 
data degenerates as long as overlapping samples exist. The 
second one is that the computational cost of kernel matrix 
becomes large when the training sample number increases. 
Aiming at the two major problems, in this paper, an 
improved fault diagnosis method based on KFDA(IKFDA) 
is proposed. There are two aspects are improved in the 
method. Firstly, the variable weighting vector was 
incorprated into KFDA which can improve the discriminant 
performance. Secondly, when the training sample number 
becomes large, a feature vector selection scheme based on a 
geometrical consideration is given to reduce the 
computational complexity of KFDA for fault diagnosis. 
Finally, Gaussian mixture model (GMM) is applied for fault 
isolation and diagnosis on the KFDA subspace. 
Experimental results show that the proposed method 
outperforms traditional kernel principal component 
analysis (KPCA) and general KDA algorithms. 
 
Index Terms—kernel fisher discriminant analysis, fault 
diagnosis, variable weighting, feature vector selection, 
gaussian mixture model 
 

I.  INTRODUCTION 

Since the fault diagnosis problem can be considered as 
a multi-class classification problem, pattern recognition 
methods with good generalization and accurate 
performances have been proposed in recent years. Choi et 
al.[1] proposed a fault detection and isolation 
methodology based on principal component analysis–
Gaussian mixture model and discriminant analysis–
Gaussian mixture model. Fisher discriminant analysis 
(FDA) has been proved to outperform PCA in 
discriminating different classes, in the aspect that PCA 

aims at reconstruction instead of classification, while 
FDA seeks directions that are optimal for 
discrimination[2]. However, FDA is a linear method. In 
order to handle the nonlinear problem of process data, 
kernel FDA (KFDA) is proposed by Mika et al.[3]. KFDA 
performs a nonlinear discriminant through kernel feature 
space mapping before FDA method is used. Yang et al.[4] 
made an in-depth analysis on the KFDA algorithm, and 
reformulated it as a two-step procedure: kernel principal 
component analysis (KPCA) plus FDA. Recently, KFDA 
has been proved superior to PCA and FDA in fault 
diagnosis, which makes it a promising way for process 
monitoring[5,6]. The basic idea of the kernel trick is that 
input data are mapped into a kernel feature space by a 
nonlinear mapping function and then these mapped data 
are analyzed.  

However, the general KFDA method has some 
shortcomings for fault diagnosis. Firstly, the conventional 
KFDA views the same contribution of each variable to 
the classification and all variables are used in a same 
level so that the data sets are masked with irrelevant 
information. As a result, the classification performance of 
KFDA for fault diagnosis degenerates when the samples 
of the normal data and the fault data are overlapped[7]. 
Focusing on the multi-classification where data are 
overlapped, the paper proposes a variable-weighted 
schema into the general KFDA. Secondly, in the training 
stage of KFDA, it requires to store and manipulate the 
kernel matrix, the size of which is the square of the 
sample number. When the sample number becomes large, 
the eigen-decomposition and the matrix inversion 
calculation will be time-consuming, and then reducing 
the calculation time is very important. In this paper, a 
feature vector selection scheme based on a geometrical 
consideration[8] is given to reduce the computational 
complexity of KFDA when the number of training 
samples becomes large.  

This paper is organized as follows. In Section 2, 
KFDA is explained. In Section 3, Improved KFDA is 
proposed. Fault diagnosis results of the above schemes 
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are given by simulations in Section 4. Finally in Section 5, 
the main points are summarized. 

II.  KFDA 

The basic idea of KFDA is to solve the problem of 
linear FDA in an implicit feature space F. However, it is 
difficult to do so directly because the dimension h of the 
feature space F can be arbitrarily large or even infinite. In 
implementation, the implicit feature vector in F does not 
need to be computed explicitly, while it is just done by 
computing the inner product of two vectors in F with a 
kernel function. 

Let the dimensionality of original sample feature space 
be m  and the number of sample classes be C , the total 
original sample },...,,{ 21 CXXXX = , the jth (j = 1, 2,. . . ,C) 
class 

jX contains 
jN  samples, namely 

},...,,{ 21
jjj

j jN
XXXX = . Here, m

j
RXXX j

N
jj ∈,...,, 21  is used 

to denote the jN  training samples(column vectors) of 

class j  for KFDA learning. N is the total number of 
original training samples, and then ∑ =

=
C

j jNN
1

. 

By the nonlinear mapping φ , the measured inputs are 
extended into the hyper-dimensional feature space as 
follows 

                         
hm FxRx ∈→∈ )(: φφ               (1) 

The mapping of sample ix  is simply noted 

as iix φφ =)( , the total mapped sample set and the jth 
mapped class are given by 
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Performing FDA in F means maximizing the between 
class scatter matrix BS  and minimizing the within-class 

scatter matrix WS . This is equivalent to maximizing the 
following function 

                 
||
||max arg)(

w wSw
wSwwJ

W
T

B
T

=                        (4) 

The problem of KFDA is converted into finding the 
leading eigenvectors of BW SS 1− .  Here, the dimension of 

BW SS 1−  can be infinite, and it cannot be calculated directly. 
Since any solution Fw∈  must lie in the span of all the 
samples in F, there exists coefficients 

},...,2,1,{ nii == αα , such that 

                            ∑
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i
iiw

1
φα                                   (5) 

Combine with (5), we can write 

                         αα B
T

B
T KwSw =                               (6) 
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Here, BK  and wK  are in the form of matrix {k(x, y)}, 
the kernel matrix of the samples (x, y), and k(x, y) is the 
kernel function. Where 
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So the solution of Eq. (4) can be obtained by 
maximizing 
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Then, the problem of KFDA is converted into finding 
the leading eigenvectors of BW KK 1− . Let column vectors 

iβ  (i = 1,2, . . .,N) be the eigenvectors of BW KK 1− . To a 
new columnvector sample newx , the mapping to the 

feature space is )( newxφ . The projection of newx  onto the 

eigenvectors iβ =( 1iβ , 2iβ ,…, iNβ )(i = 1, 2,. . .,N) is t  = 

( 1t , 2t , . . ., Nt )T, and it is also called KFDA-transformed 
feature vector 

,...,N, ixxkxwt jnew
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j
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When KFDA is used for feature extraction, a problem 
arises that the matrix 

WK cannot be guaranteed to be 
nonsingular. Several techniques have been proposed to 
handle this problem for numerical computation. In this 
paper, when the matrix 

WK  is singular, it is replaced with 

IKW μ+ , where μ is a very small constant and I is an 
identity matrix[3,9,10]. 
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III.  IMPROVED KFDA(IKFDA) 

A.  Variable Weighting  Vector 
To fault identification, the variable weighting 

determines key variables responsible for the fault from 
the datasets masked with much irrelevant information by 
maximizing separation between the normal and each fault 
data sets. The variable weighting maximizes separation 
between the normal and each fault data. By making full 
use of the normal data information, the weight vector of 
each fault can be obtained. After fault data are weighted 
by the corresponding weight vectors, KFDA is performed 
on these weighted fault data, which offers important 
supplemental classification information to KFDA.  

Fault diagnosis is often characteristic of large scale and 
nonlinear behavior. When all variables are used in a same 
level, the data sets are masked with irrelevant information, 
which results in the classification performance 
degenerating. Correctly representing the corresponding 
variable's contribution to a special fault, the weight vector 
is helpful to extract discriminative features from 
overlapping fault data which effectively improves the 
multi-classification performance of KFDA. 

FDA is a well-known linear technique for reducing 
dimensions and pattern classification. It determines a set 
of Fisher optimal discriminant vectors that maximize the 
scatter between the classes while minimizing the scatter 
within each class. Different from traditional selection 
methods where the deleted variables and the selected 
variables are essentially weighted with discrete values: 0 
and 1, respectively, the variable weighting is to weight 
the variables with continuous non-negative values[10]. 
Pair-wise FDA is performed on normal data and each 
class of fault data to gain the Fisher optimal discriminant 
vector, here named the fault direction. Each fault 
direction associated with a special fault optimally 
separates the fault data from normal data. Taking into 
account nonlinear characteristics of most industrial 
processes, we investigate the nonlinear pair-wise variable 
weighting. The weight vector of each fault maximizes the 
distance between the normal and each class of fault data. 

The concept of kernel target alignment was proposed 
by Cristianini et al. to evaluate the similarity between two 
kernel matrices. Since kernel-based learning methods are 
based around kernel matrix, its properties reflect the 
relative positions of the points in the feature space. For 
the two-class (the normal class and the fault class 
classification problem { }1,1,0 −→∈ fxx , consider the 

kernel target matrix Tyy , where T
nn ffy ],[

00
−=  then the 

kernel target alignment is given by  

         
F

T

F
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Thus, Eq. (12) can be rewritten by 
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To obtain the weight vector fw , the width of 
Gaussian kernel σ  first requires to be determined using 
cross validation with pair-wise KFDA on fx ,0  by 
minimizing the total classification error rate, and then the 
optimization problem, i.e. Eq. (13), should be solved. The 
process is repeated until all c fault classes are analyzed 
and all weight vectors ),......,( 1 cf www are obtained[11-

14]. 
Consider Gaussian kernel function, any element of 

the kernel matrix 
fwK  of  ix~  can be given by 
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where fx ,0 or fx ,0~  is the ith row of fx ,0 or fx ,0~ . 
Due to depending on only the kernel matrix 

FWK , the 
kernel target alignment is selected as the variable 
weighting criteria. Due to depending on only the kernel 
matrix 

FWK , the kernel target alignment is selected as the 
variable weighting criteria. Thus, the weight vector can 
be obtained by solving the following optimal problem. 
Therefore, the Rayleigh quotient is selected as the 
variable weighting criteria. Then the variable weighting 
becomes the following optimal problem:    

             

m1,...,i  0)(    w..
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)(;
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f WW
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               (15) 

In the above equation, Rayleigh quotient depends on 
not only the kernel matrix but also the optimal 
discriminant vector 

fWK such that KFDA should be re-

performed to obtain the optimal discriminant vector α  
during the optimization procedure, which would be 
computationally expensive. Instead of the Rayleigh 
quotient in KFDA, the kernel target alignment is selected 
as the variable weighting criteria.  

B.  Feature Vector Selection 
In this paper, a preprocessing scheme called feature 

vector selection (FVS) is adopted to reduce the 
computational complexity of KFDA whereas preserve the 
geometrical structure of the whole data in F. 

In Eq. (5), all the training samples in F , iφ  (i = 1, 
2,…,n), are used to represent eigenvector w . In practice, 
the dimensionality of the subspace spanned by iφ is just 
equal to the rank of kernel matrix K , and the rank of 
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K is often less than n, that is )(Krank < n. The FVS 
scheme is look for vectors that are sufficient to express 
all of the data in F as a linear combination of those 
selected vectors in F. Suppose a basis of the feature 
vectors, 

ibφ (i=1, 2, . . ., )(Krank ; ],1[ nbi ∈ ) is known,  
then Eq. (5) can been rewritten as follows: 

                             
)(

1
bi

Krank

i
biw φα∑

=

=                            (16) 

Since )(Krank <<n, this will largely reduce the 
computational complexity. In order to obtain such a basis 
of the feature vectors in F, a geometrical consideration 
based method[15] is used in our research. The idea is to 
look for a subset of the samples whose mappings in F are 
sufficient to express all of the data in F as a linear 
combination of them.   

Assume that },...,,{
21 SLSSS xxxS =  is a selected sample 

set, where LS is the number of selected vectors. The 
estimation of the mapping of any vector ix  is regarded as 
a linear combination of the samples in S , and it can be 
written as follows: 

                              iSi τφφ ⋅=
∧

                                   (17)  

Now we aim to find the coefficient vector iv , so as to 
make the estimated mapping iφ as close to the real 

mapping 
i

∧

φ  as possible. This can be achieved by  
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Putting the derivatives with respect to iv  to zero, and 
rewriting it in matrix form, obtains  

                        1)min(
1
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where ),( iiii xxkk = ,  ),,((
qp SSSS xxkk =  SLp1 ≤≤ , 

)Lq1 S≤≤ is a square matrix of dot products of the 
selected vectors, and )Lp1  ),,(( S≤≤= iSSi xxkk

p
 is the 

vector of dot product between ix  and the selected set S. 
Letting Eq. (20) satisfy all the samples, we can get 

                     ∑=
ix ii
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T
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Si

SS k
KKK

n
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The solution of the problem can be obtained by an 
iterative process, and the process stops when SSK  is no 
longer invertible or a predefined number of selected 
vectors is reached [16-18]. 

IV.  IKFDA AND GMM FOR FAULT DIAGNOSIS 

After calculate the optimal discriminant vectors in F, 
the IKFDA discriminant vectors of the p types of pattern 

data can be obtained. Assume },...,...{ ,,1, imikiii zzzz , i 
= 1,. . . ,p are the first-two dimension feature vectors of 
the IKFDA discriminant score vectors, which are the 
output of IKFDA based feature extraction and input of 
Gaussian mixture model (GMM)  based pattern 
classification. 

In IKFDA-GMM, for the p patterns for fault isolation, 
we can have a set of GMMs. The density estimation of 
class i is made by mixture of Gaussians density estimate. 
The GMM of class i can be written as:        

                       ),;(
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where M is the number of mixtures, i
jw  j =1,. . . ,M, 

are the mixture weights with the constraint that 

∑
=

=
M

j

i
jw

1

1 , ∑ jji uz ),;(pi
j

 means the normal distribution 

with mean 
ju

 and covariance matrix ∑ j
 of pattern i. 

The optimal number of mixtures should be considered. 
In order to determine the number properly, both the 
precise of the model and modeling time should be taken 
into consideration. As the number of the local models 
increases, the data distribution is described more 
correctly, at the same time, the number of estimated 
parameters and the time of modeling are increasing. 

The parameters of the GMM i
jw , ju  and ∑ j

 can be 

estimated by the expectation-maximization algorithm, 
which yields a maximum likelihood estimation. 
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The classification performance can be evaluated by the 
test dataset, and the class label of test data can be 
calculated through: 

                 GMMi
p
ii PzClassify ,1maxarg)( −=               (24) 

The procedure of the fault diagnosis system is 
summarized below. 

(1) Real-time unclassified process sample imports. 
(2) Project to IKFDA first-two dimension feature 

subspace. 
(3) Classify the pattern by GMM. 
(4) Fault isolation and diagnosis. 

V.  APPLICATIONS 

In this section, Tennessee Eastman (TE) process 
description and simulation design are presented firstly, 
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and then, simulation results and discussion of slight and 
serious imbalance problems are presented. 

A. Tennessee Eastman (TE) Process 
Tennessee Eastman (TE) Industrial Challenge Problem 

is designed to provide a realistic industrial process by the 
Eastman Chemical Company. The process consists of 
five major unit operations: a product condenser, a recycle 
compressor, a reactor, a product stripper, and a vapor–
liquid separator. As a well-known benchmark simulation, 
it has been widely used to compare and evaluate the 
performance of various monitoring approaches.  

There are 41 measured variables and 12 manipulated 
variables in the TE process, in this paper, the selected 33 
monitoring variables include 22 measured variables and 
11 manipulated variables shown in table I. There are 22 
process patterns (1 normal operating condition and 21 
faulty conditions) in the TE process. In order to design 
the simulation study reasonably, in this paper, the TE 
process simulator is used to generate the normal and five 
classes of fault data, i.e. fault 4, 8, 13, 14 and 19. These 
five faults covering all the fault types in TE process are 
divided into two simulation studies. 

Each pattern combination includes the normal pattern 
and three different faults. These selected process patterns 

for simulation study are listed in Table II. For each 
pattern, there are 960 observations, and all faults are 
introduced in the process at sample 160. The simulation 
data are separated into two parts: the training and testing 
dataset. The training and testing data amount of these two 
cases are also listed in Table I. 

B.  Simulation Results and Discussion 
In both of the two cases, we select radial basis kernel 

function in KPCA and choose the width of Gaussian 
kernel as 500m, where m is the dimension of the inputs. 
KPCA based feature extraction is applied with 85% 
variation of eigenvalue, and the confidence limit in the 
Gaussian distribution is 98%. 

Firstly, IKFDA based first-three dimension projections 
of the four patterns (normal, fault 3, 7 and 14) are 
presented. According to the first–third dimension 
projection, fault 3 has overlapped with fault 7. As the fact 
that the rare classes have less impact on accuracy than the 
common classes, and the pattern determination is apt to 
the majority one. 

Fault diagnosis results are listed in Table III, we can 
find that 28% of fault 7 data are misclassified as the 
normal pattern by general KFDA. Such high rate error 
will endanger the process, even results in serious 

accidents. Considering the data amount of each pattern, 
normal pattern is the majority class. The average 
diagnosis rates of general KFDA are listed in Table III. 

Comparing the performance of IKFDA-GMM with 
general KFDA and PCA, the diagnosis rate of normal 
pattern reaches to 99%, but the diagnosis performances of 
fault 7 and 14 are even a litter poorer. The diagnosis 
performances of all the three fault patterns are improved 
compared those of general KFDA and KPCA. The 
diagnosis rate of normal pattern descends form 99% to 
66%. For example, the rate of misclassifying fault 7 as 
normal pattern falls from 47% to 2%. It is obvious that 
the IKFDA is instable. Comparing to general KFDA, the 

TABLE II.  
SELECTED PROCESS PATTERNS FOR SIMULATION 

Pattern Fault description Type Number of 
training data

Normal   400(300) 

Fault 3 Reactor cooling water inlet 
temperature Step 200(300) 

Fault 7 A,B,C feed composition Random 
variation 250(300) 

Fault 13 Reactor cooling water valve Sticking 300(300) 

 

TABLE I. 
MONITORED VARIABLES IN TE PROCESS 

Number Measured variables No Measured variables No Manipulated Variables 

1 A feed 11 Product separator 
temperature 21 D feed flow valve 

2 D feed 12 Product separator 
level 22 E feed flow valve 

3 E feed 13 Product separator 
pressure 23 A feed flow valve 

4 Total feed 14 Product separator 
underflow 24 Total feed flow7 valve 

5 Recycle flow 15 Stripper level 25 Compressor recycle valve 

6 Reactor feed rate 16 Stripper pressure 26 Purge valve 

7 Reactor pressure 17 Stripper underflow 27 Separator pot liquid flow7 
valve 

8 Reactor level 18 Stripper 
temperature 28 Stripper liquid product flow 

valve 

9 Reactor temperature 19 Stripper steam 
flow 29 Stripper steam valve 

10 Purge rate 20 Compressor work 30 Reactor cooling water flow 
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performances of the proposed IKFDA approaches are 
better in some cases. 

VI.  CONCLUSIONS 

In recent years, KFDA has been utilized directly for 
nonlinear process fault diagnosis, and it has been proven 
to outperform conventional FDA method. This paper 
focuses on the improvement of KFDA for fault diagnosis 
from two aspects, which provides effective tools for fault 
diagnosis of nonlinear multivariate process. 

Firstly, the classification performance of KFDA may 
degenerate as long as overlapping samples exist. The 
nonlinear variable weighting finds out the weight vector 
of each fault by maximizing the variable weighting 
criteria. Each weight vector maximizes separation 
between the normal data and each class of fault data. By 
weighting fault data with the corresponding weight vector, 
the proposed method extracts discriminative features 
more effectively than the traditional KFDA from 
overlapping fault data. 

Secondly, a feature vector selection scheme based on a 
geometrical consideration is adopted for sample vector 
selection before KFDA calculation. Simulations 
conducted on TE process have shown that, IKFDA based 
on feature vector selection has nearly the same fault 
recognition rates as KFDA method. Moreover, IKFDA 
based on feature vector selection method can reduce the 
computational complexity significantly, especially when 
the training sample set is very large. 

Finally, Gaussian mixture model (GMM) is applied for 
fault isolation and diagnosis on the KFDA subspace. 
Experimental results show that the proposed method 
outperforms traditional kernel principal component 
analysis (KPCA) and general KDA algorithms. 
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TABLE III. 
FAULT DIAGNOSIS RESULTS(%) 

Methods Normal Fault 3 Fault 7 Fault 14

KPCA 66 71 53 62 

KFDA 79 76 68 70 
IKFDA-
GMM 99 98 98 97 
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