
IPD-CMMI Model of Embedded Software
Engineering under IEC-CDIO Framework

Tiejun Pan

Zhejiang Wanli University, Ningbo, 315100, China
Email:pantiejunmail@126.com

Leina Zheng

Zhejiang Wanli University, Ningbo, 315100, China
Corresponding Author Email: mdsryx@126.com

Abstract—With the increase of the embedded system in the
post-PC era of computing, the Innovation & Enterprise
Capability training becomes a task of high priority. The
drawback of the current software engineering to Higher
Education is systematically analyzed and the IPD-CMMI
(Integrating Product Development based on CMMI) is
proposed by integrating the hardware and software
engineering and tailoring unnecessary software process for
teaching. Then, according to the Long-term Education
Reform and Development Plan, IEC-CDIO (Innovation &
Enterprise Capability-CDIO) framework is proposed
stressing engineering education in the context of
Conceiving—Designing—Implementing—Operating (CDIO)
real-world systems and products. In the end, a support
system is created based on ODC (Orthogonal Defect
Classification) reference model which includes activity,
trigger, severity attributes and defect origin, content, type.
It can carry on Process and Quality analysis by ODC
database and forecast the Plan Progress which helps the
teacher to schedule the balance of study and work term.

Index Terms—Capability Maturity Model Integration,
CDIO, software engineering, embedded system, ODC,
innovation

I. INTRODUCTION

For decades, solving the software crisis was paramount
to researchers and companies producing software tools.
Seemingly, they looked for the new technology and
practice as a silver bullet to solve the software crisis.
Tools, discipline, formal methods, process, and
professionalism were regard as silver bullets: Tools:
Especially emphasized object-oriented programming,
CASE tools, documentation, and standards.

Discipline: Excellent discipline of programmers.
Formal methods: Some believed that if formal

engineering methodologies would be applied to software
development.

Process: Many advocated the use of defined processes
and methodologies like the Capability Maturity Model
(CMM).

Professionalism: This led to work on a code of ethics,
licenses, and professionalism.

Fred Brooks (1986) published the No Silver Bullet
article, arguing that no individual technology or practice
would ever make a 10-fold improvement in productivity
within 10 years. Eventually, almost everyone accepted
that no silver bullet would ever be found. Yet, claims
about silver bullets pop up now and again, even today. [1]

In spite of whether silver bullets exist or not, the
popularity of CMMI (Capability Maturity Model
Integration), XP (Extreme Programming) and other
software engineering technology would be very helpful to
improve our software process.

The post-PC era is seeing the emergence of embedded
systems consist of software and relevant hardware, such
as small and portable computer, Smartphone, Information
appliances and computers embedded in everyday
applications. Everyone always make an individual
interact with several computers every day, so that it is
necessary to study the coordination of the software
engineering for the embedded system.

An embedded system is a computer system designed to
do one or a few dedicated and/or specific functions often
with real-time computing constraints. It is embedded as
part of a complete device often including hardware and
mechanical parts. By contrast, a general-purpose
computer, such as a personal computer (PC), is designed
to be flexible and to meet a wide range of end-user needs.
Embedded systems control many devices in common use
today. [2]

Since the embedded system is dedicated to specific
tasks, design engineers can optimize it to reduce the size
and cost of the product and increase the reliability and
performance. Some embedded systems are mass-
produced, benefiting from economies of scale.

In general, "embedded system" is not a strictly
definable term, as most systems have some element of
extensibility or programmability. For example, smart
phone share some elements with embedded systems such
as the operating systems and microprocessors that power
them, but they allow different applications to be loaded
and peripherals to be connected. Moreover, even systems
that do not expose programmability as a primary feature
generally need to support software updates. On a
continuum from "general purpose" to "embedded", large

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2501

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.11.2501-2510

application systems will have subcomponents at most
points even if the system as a whole is "designed to
perform one or a few dedicated functions", and is thus
appropriate to call "embedded".

In the post-PC era of computing, the use of computer
systems based on real-time and embedded technologies
has already touched every facet of our life and is still
growing at an unprecedented pace. While embedded
processing and Internet-enabled device have now
captured everyone’s imagination, they are just a small
fraction of applications that have been made possible by
real-time systems. [3]

The search for a single software solution to success
never worked in embedded system. All known
technologies and practices have only made incremental
improvements to productivity and quality. Yet, there are
no standard solutions for a verity of embedded system,
either. Others interpret no ultimate model as proof that
embedded software engineering has finally matured and
recognized that projects succeed due to hard work,
especially in the repaid developing embedded system. [4]

However, it could also be said that there are, in fact, a
range of good model and technologies today, including
lightweight methodologies, Personal Software Process
(PSP), Team Software Process (TSP), CMMI and
Rational Unified Process (RUP) that solve all kinds of
problems in embedded system development in different
level. Nevertheless, the field of embedded software
engineering appears too complex and diverse to improve
most issues, and each issue accounts for only a small
portion of all software problems. In this paper, we pay
more attention to the software and hardware coordination
model in embedded software engineering, the engineering
capability Training and relevant supporting system.

II. IPD-CMMI MODEL

With the expanding demand for embedded software in
many smaller organizations, the need for inexpensive
software solutions led to the growth of simpler, faster
methodologies that developed running software, from
requirements to deployment, quicker & easier. The use of
rapid-prototyping evolved to entire lightweight
methodologies, such as Extreme Programming (XP),
which attempted to simplify many areas of software
engineering, including requirements gathering and
reliability testing for the growing, vast number of small
software systems. Very large software systems still used
CMMI methodologies, with many volumes in the
documentation set; To embedded system development,
however, the tailored CMMI is necessary that should
have a simpler, faster alternative approach to managing
the development and maintenance of software and
hardware integration, including calculations and
algorithms, information storage/retrieval and display.

Embedded Software engineering is the application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software
based on relevant hardware, and the study of these
approaches; that is, the application of engineering to

embedded software. The best theory result may be the
CMMI that is a process maturity model used by software
organizations to ascertain the current maturity level of
their development processes and to provide measures for
achieving higher maturity levels [6]. CMMI certification
is popular in IT organization, so that it is reasonable to
design the embedded software engineering model
integrating software and hardware product developing
according to CMMI named IPD-CMMI.

Figure 1. IPD-CMMI process

IPD-CMMI is mainly designed for the profession
capability training of college students developing
embedded system shown in Fig.1. It includes the phases
Planning, Design, Code, Compile, Test, Build and
Postmortem. Software and hardware design are separately
divided into High Level Design (HLD) for conception
and Low Level Design (LLD) for realization. Test is
divided into Unit Test (UT), Integrated Test (IT) and
System Test (ST). In general, the embedded software
requirements analysis always is backward in time with
the hardware’s because the stable hardware platform is a
prerequisite for software development. So that, the
software requirements specification (SRS) relevant
hardware may be planed during the hardware’s High
Level Design (HLD) phases, so does the other procedure
of embedded software development until the build stage.
The baselines are always setup at four milestones

2502 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

including TR1 at project startup point, TR2 at hardware
design specification checkpoint, TR3 at embedded system
HLD checkpoint, TR4 at embedded system test (ST)
checkpoint. IPD-CMMI is used throughout the
development lifecycle. The radar chart (Kiviat) is used as
quantitative measurement to evaluate software quality
and describe the evolution of the IPD-CMMI graphically.
(solid dots represent evaluation grades of quality
characteristics, the solid five-pointed star represent
comprehensive evaluation grades of embedded software
quality). It offers relevant assessment staff an intuitive
and effective method to examine comprehensive
evaluation result of software quality and the quality level
of each quality characteristic. This Essential of IPD-
CMMI focuses on organizing a project, integrating
software and hardware development.

IPD-CMMI help college students’ deal with quality
attributes by providing integration methodology to
cooperate or coordinate software and hardware process in
the product development. IPD-CMMI describes how all
development actions should behave in particular
circumstances (Higher Education). For example,
embedded system software development should add
scheduling, debugging, logging, or locking control into
all objects of particular hardware.

IPD-CMMI is a development model that was created
after study of data collected from universities, enterprises
and organizations that contracted with the Chinese
Ministry of Education, who founded the research. It can
be viewed as a set of structured levels that describe how
well the behaviors, practices and processes of an
organization can reliably and sustainably produce
required embedded system product. IPD-CMMI may
provide: a place to start for the freshman in IT fields, the
benefit of a university’s prior experiences, a framework
for prioritizing actions and a way to define what
improvement means for university or IT organization. It
can be used as a benchmark for comparison and as an aid
to assess different organizations where there is something
in common that can be used as a basis for comparison. In
the case of the IPD-CMMI, the basis for comparison
would be the university's embedded system teaching
processes.

IPD-CMMI involves the following five aspects
according to CMMI for development whose architecture
shown in Fig. 2:

Figure 2. IPD-CMMI Maturity levels

Maturity Levels: a 5-level process maturity continuum
- where the uppermost (5th) level is a notional ideal state
where processes would be systematically managed by a
combination of teaching process optimization and
continuous process improvement. However, IPD-CMMI
maturity level ratings are awarded for levels 2 through 5
because of the relatively perfect teaching system.

Key Process Areas: a Key Process Area (KPA)
identifies a cluster of related teaching or training
activities that, when performed together, achieve a set of
goals considered important. Some unnecessary KPAs for
teaching are removed from IPD-CMMI.

Goals: the goals of a key process area summarize the
states that must exist for that key process area to have
been implemented in an effective and lasting way. The
extent to which the goals have been accomplished is an
indicator of how much capability the organization has
established at that maturity level. The goals signify the
scope, boundaries, and intent of each key process area.

"Education and training of outstanding engineers plan"
published by Ministry of Education in China is the goal
of IPD-CMMI, which implement the "Long-term
Education Reform and Development Plan (2010-2020)"
and "Long-term talent development program (2010-2020
years), " It is not only a major reform projects, but also to
promote engineering education in China. The program
aims to train a large number of engineers having
innovative ability to adapt to economic and social
development needs of various types of high-quality
engineering and technical personnel for the country to
take a new path of industrialization, serving the strategy
of building an innovative country.

Common Features: common features include practices
that implement and institutionalize a key process area.
There are five types of common features: commitment to
Perform, Ability to Perform, Activities Performed,
Measurement and Analysis, and Verifying
Implementation. The 12 standards of CDIO, the famous
engineering education methodology, are integrated into
the instruction to training the embedded system engineer.

Key Practices: The key practices describe the elements
of infrastructure and practice that contribute most
effectively to the implementation and institutionalization
of the KPAs. The CDIO systematic training projects are
designed to help the students practice.

There are four levels defined along the continuum of
the IPD-CMMI except the initial Level,

Managed - the process is at least documented
sufficiently such that repeating the same steps may be
attempted which is important to the ordinary teaching or
training.

Defined - the process is defined/confirmed as a
standard teaching or training process, and decomposed to
levels 1 and 2 (the latter being Teaching Instructions).

Managed - the process is quantitatively managed in
accordance with agreed-upon metrics which can match
the CDIO capability/process metrics for the excellent
engineer training.

Optimizing - process management includes deliberate
process optimization/improvement. It is a characteristic

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2503

© 2012 ACADEMY PUBLISHER

of processes at this level that the focus is on continually
improving process performance through both incremental
and innovative technological changes/improvements,
which is our ultimate goal.

Within each of these maturity levels are Key Process
Areas (KPAs) which characterize that level, and for each
KPA there are five definitions identified: Goals,
Commitment, Ability, Measurement, and Verification.

There are four maturity levels in IPD-CMMI. However,
Higher Education system has setup the software training
process according to the national education standard in
China, so that IPD-CMMI maturity level ratings are
awarded for levels 2 through 5. The process areas below
and their maturity levels are listed for Higher Education
model in which unnecessary process areas is cut off:

Maturity Level 2 – Managed

CM - Configuration Management
MA - Measurement and Analysis
PMC - Project Monitoring and Control
PP - Project Planning
PPQA - Process and Product Quality Assurance
REQM - Requirements Management

Maturity Level 3 - Defined

DAR - Decision Analysis and Resolution
IPM - Integrated Project Management
OT - Organizational Training
PI - Product Integration
RD - Requirements Development
RSKM - Risk Management
TS - Technical Solution

Maturity Level 4 - Quantitatively Managed

QPM - Quantitative Project Management

Maturity Level 5 - Optimizing

CAR - Causal Analysis and Resolution

SAM (Supplier Agreement Management) in the

Maturity Level 2 is not necessary because the logistical
department of University has setup the comprehensive
supply chain system for Higher Education. What IPD-
CMMI can do is only providing the interoperating
interface to access the logistical system. Moreover, the
university has its comprehensive HR system and
management of organizational process, the evaluation if
organizational process and its performance are beyond
the range of capability training for embedded software
engineering, so that it is not necessary of OPD
(Organizational Process Definition), OPF (Organizational
Process Focus) in the Maturity Level 3, OPP
(Organizational Performance Management) in the
Maturity Level 4 and OPM in the Maturity Level 5.
Owing to the training lab is relatively closed environment,
and the train projects are relatively simple to the real

world, so that VAL (Validation) and VER (Verification)
in the Maturity Level 3 are simply. We pay more
attention to the teaching framework to train the college
student’s innovative and enterprise capability.

III. IEC-CDIO FRAMEWORK

CDIO (Conceive—Design—Implement—Operate) is
an engineering education initiative that was formally
founded by Massachusetts Institute of Technology [1] in
the late 1990s. In 2000 it became an international
collaboration, with universities around the world adopting
the same framework. CDIO collaborators recognize that
an engineering education is acquired over a long period
and in a variety of institutions, and that educator in all
parts of this spectrum can learn from practice elsewhere.
They setup CDIO network therefore welcomes members
in a diverse range of institutions ranging from research-
led internationally acclaimed universities to local colleges
dedicated to providing students with their initial
grounding in engineering.

Throughout the world, CDIO collaborators have
adopted CDIO as the framework of their curricular
planning and outcome-based assessment which is
prevalent in the United States and Western Europe, and
being accepted and respected by the higher education
sector in China. During the "Post-crisis" period,
innovation and enterprise capability cultivation is the
only way of upgrading industry from "made in China" to
" invented in China", so that IEC-CDIO (Innovation &
Enterprise Capability-CDIO) is proposed by T. J. Pan
(2010) which is an innovative educational framework for
producing the next generation of engineers. The
framework provides students with an education stressing
engineering fundamentals set in the context of
Conceiving—Designing—Implementing—Operating
(CDIO) real-world systems and products. The essence of
IEC-CDIO is adopting product life cycle as the carrier,
theory course as knowledge "point", module-level
practical courses for direction "line", actual enterprises
needs as application "surface" , the "point, line, surface"
integrating project is running throughout the education
system of information engineering. In the conception and
design stage, "research-teaching" methodology is used to
train innovating thought, and in the implementation and
operation stages "cooperative teaching" methodology is
used to train entrepreneurship, thereby improving the
student's overall ability, this capability includes not only
the individual's theoretical knowledge and professional
skills, but also innovation and entrepreneurship. [4]

IEC-CDIO framework includes innovation and
entrepreneurial goal-oriented training, integration and
improvement of curriculum, revised syllabus, which
remodeling teaching system as course - course group -
integrated application based on CDIO standards, forming
IEC-CDIO project throughout training practice such as
smart meters, mobile payments and other items oriented
new generation IT industry, and breaking down these
large projects into relatively independent, but inter-
related sub-projects for different courses shown in Fig. 3.

2504 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

At the same time, IEC-CDIO project is repeated
referenced in the theoretical teaching.

Figure 3. IEC-CDIO Framework

Figure 4. IEC-CDIO Framework of Information Engineering

The module core curriculum, capacity requirements
and teaching arrangements of Information Engineering
major that pay more attention to embedded system
development is shown in Fig. 4. A mobile online 3D
game (V-Campus) is the one systematic IEC-CDIO
project oriented mobile application development belongs

to embedded software engineering throughout the
wireless application model. And the other project of new
generation of multifunctional smart meter system (V-
Meter) oriented the Strong Smart Grid pay more attention
the integrating development of software and hardware
throughout the embedded system model. Both projects
are parts of the Industry, academia and research
cooperation project. All relevant courses are organic
composition of the knowledge points to support IEC-
CDIO Framework.

V-Campus is broken into V-Campus for 2D which
integrating theory teaching by Digital Media course and
engineering practice by Multimedia software applications,
V-Campus for 3D which integrating theory teaching by
Multimedia technology (Maya) course and engineering
practice by Mobile game development, V-Campus Client
which integrating theory teaching by Wireless
Application Development (J2ME) course and engineering
practice by Engineering training, and V-Campus Server
which integrating theory teaching by Software
Architecture (J2EE) course and engineering practice by
Graduation design, the enterprise tutors train the college
students throughout the start point Game design basis to
Online Game Design end points, so that the available
graduates can directly be recruited by the enterprise
seamlessly shown in Fig. 5.

V-Meter is broken into V-Meter for C51 which
integrating theory teaching by MCU System(C51) course
and engineering practice by SCM curriculum design, V-
Meter for ARM which integrating theory teaching by
Embedded System (ARM) course and engineering
practice by Embedded Systems Engineering Training, V-
Meter for FPGA which integrating theory teaching by
FPGA System course and engineering practice by
Engineering training, and V-Meter for ucLinux which
integrating theory teaching by Embedded OS course and
engineering practice by Graduation design, the enterprise
tutors train the college students throughout the start point
Data acquisition and processing technology to Smart
Home end points, so that the available graduates can
directly be recruited by the enterprise seamlessly shown
in Fig. 5.

V-Meter for
C51

V-Meter

V-Meter for
ARM

V-Meter for
FPGA

MCU

System(C51)

Embedded

System (ARM)
FPGA System

SCM
curriculum

design

Embedded
Systems

Engineering
Training

Graduation
Design

Engineering
training

V-Meter for
ucLinux

Embedded
OS

C C C/C++

V-Campus
for 2D

V-Campus
for 3D

V-Campus
Client

Digital Media
Multimedia
technology

Maya

Wireless
Application
Development

J2ME

Multimedia
software

applications

Mobile game
development GraduationEngineering

training

V-Campus
Server

Software
Architecture-

J2EE

png M3g Java

Data acquisition
and processing

technology
Smart Home

Online Game
Design

Game design
basis

V-Campus

Figure 5. IEC-CDIO project break down.

Inquiry-based learning and Co-operative education is
consistently throughout the IEC-CDIO project. In the stage
of Conceive and Design phase, Inquiry-based learning

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2505

© 2012 ACADEMY PUBLISHER

accounts for more than Co-operative education because the
requirements analysis is always the innovative ideas and
possibility. Gradually, in the stage of Implement and
Operate phase, Co-operative education accounts for more
than Inquiry-based learning because the implement and
operate are always the engineering activities.

When the IPD-CMMI model is applied to an existing
organization's embedded software development processes,
it allows an effective approach toward improving the
developer profession capability. Eventually it became
clear that the model is an abstraction of an existing
system which could be applied to Higher Education
processes. This gave rise to a more general concept that is
applied to staff training. Further, How to implement the
IPD-CMMI model of embedded software engineering
under IEC-CDIO Framework is still a problem to solve.
We proposed a systemic methodology integrating
PSP/TSP/CMMI software engineering theory and
practice into the IEC-CDIO Framework. With each
discipline, the IPD-CMMI/IEC-CDIO defines activities
to help manage and control your development process
shown in Fig. 6.

Figure 6. IEC-CDIO reference model

In study stages of IPD-CMMI, Students using the PSP
to develop software follow defined processes and collect
detailed metrics on the time required to complete mini
project, the defects that were injected and removed at
various stages in development, and the size of the
finished product. These metrics are then analyzed using
statistical methods, enabling students to produce highly
accurate estimates based on historical data, track progress
and quality of a project in progress, predict schedule
impacts, and predict the quality of a finished software
product. The PSP encourages students to quantitatively
determine ways to improve their process [7]

In the Co-operative Studies of IPD-CMMI, students
using the TSP which scales well and can be used by
teams of 3 to 20 students to develop IEC-CDIO project of
significant size and complexity.

In the engineering practice of, students using the CMMI
for Development (CMMI-DEV), which addresses product
and service development processes.

IPD-CMMI requires the collection and analysis of
metrics at a very fine-grained level to IEC-CDIO project.
Further, TSP requires teams to roll-up individual metrics
to produce team metrics. Once data are collected at this

level, statistical analyses of the data permit remarkable
planning, tracking, prediction, and control of IEC-CDIO
project [3].

These metrics collection and analysis processes,
however, are not trivial. In any IEC-CDIO projects, tool
support for the PSP and TSP become important
considerations. Although studies have demonstrated that
students can maintain their productivity when using the
PSP without tool support, the "frustration factor" inherent
with such an approach tries the patience of all but the
most disciplined engineers, making PSP behaviors
difficult to sustain. Ideally, IPD-CMM practitioners would
like to have a support tool that:

• Allows data at the personal level to be collected
quickly and easily, with minimal frustration.

• Can be integrated with existing development
environments and project management tools.

• Allows individuals to collaborate on the execution
of a process (even if they are geographically
distributed).

• Allows data at the individual level to be rolled up to
produce team-level or organizational-level metrics.

• Protects the privacy of individuals, and prevents
unauthorized people from seeing or using their data.

• Supports powerful analyses of data at the individual,
team, organizational, and enterprise levels, and
allows existing (external) applications to access the
data (while still maintaining the security mentioned
above).

IV. SUPPORTING SYSTEM

IPD-CMMI Supporting System (IPDSS) has been
designed from the ground up to support IPD-CMM
processes. IPDSS process definition framework provides a
great deal of flexibility and power for process automation by
scripts and forms which are not hard-coded into the tool.
Instead, they are dynamically loaded from simple XML files.
Thus, it is possible to create your own custom process scripts,
forms, and data that will be dynamically integrated into the
IPDSS, even if your process definition is still immature and
evolving. IPDSS is designed for supporting the following
functions shown in Fig.7:

Figure 7. IPDSS system design

• Planning - Integrated scripts, templates, forms, and
summaries, PROBE, earned value. A powerful,
streamlined tool is provided to facilitate project
launch planning sessions

• Data Collection - Time, defects, size; plan vs. actual
data

2506 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

• Data Analysis - Charts and reports aid in the
analysis of historical data trends. Roll up time,
defect, size, and earned value data from any number
of individuals, team projects.

• Tracking - Powerful earned value support and
defect repair.

IPDSS operates well in both Inquiry-based learning and
irregular Co-operative studies owing to the RRS (reliable,
reconfigurable, and scalable) design and implement
architecture.

As to Planning, we adopted the Microsoft Project2010 as
the external tools for the team which can support ordinary
plan of IEC-CDIO project shown in Fig.8, such as V-
Campus, V-Meter and so on, and support information
exchange with the help of share point technology. [8, 9]

Figure 8. IPDSS integrating Microsoft project

 As to Data Collection and Data Analysis, we adopt a set
of Orthogonal Defect Classification (ODC) technology
which creates a powerful software engineering measurement
in embedded software development process. It works by
leveraging information contained in software bugs often
abundantly available in any software development process.
[10, 11] ODC follows principles that categories never
overlap each other and categories cover the whole defect
space. Every defect can belong to one and only one
category in the same dimension. Since the software defect
distribution of different trades or organizations are very
different, the defect classification can only be made,
adjusted and perfected by senior experts in the
corresponding trade. An ODC methodology was first
tried as way to more objectively characterize and quantify
defects so that priority could be given to addressing the
larger problem areas. Teachers could do their work more
quickly using ODC, form a coherent explanation of the
facts, and make more convincing recommendations for
software engineering process improvements. In order to
increase the feasibility and effectiveness of the ODC
application in collage software engineering, we give a
software defect classification reference model which has
carried on Omni-directional analysis and description of
the reason and consequence of defects though the stages
of verification and development respectively shown in
Fig. 9. [6, 12]

Trigger Impact

Type
Source

Activity

Qualifier

Severity

Location

Development

Reason Consequence

Identify

Verification

Content-Type

Age

Figure 9. ODC attributes

Activity attribute describe the student’s activities in the
IPD-CMMI. Triggering factor and activities is not the
same concept here. The contrasts between the activities
and triggering factors are shown in Table I.

Trigger attribute pays attention to mechanism to detect
the defect. The main triggering factor is shown in Table II.

Impact attribute analyzes the effect that defects had or
would have on the customer. The following criteria should
be followed to evaluate the influence of the defect during
development, versification and maintenance. [13]

1) As for defect that is found in the course of product
development, its impact should be judged as the level of
consequence that would take place in the future.

2) As for the question happened when running, choose
the actual impact of the deficiency caused by the defect.

3) When deficiency has the impact on customer in
many aspects, choose the most serious impact category
among them.

Impact attribute includes reliability, standardization,
information security, function, performance, extension
/Compatibility, maintainability, maneuverability/usability,
installable, local language support etc.

Severity attribute is of the impact from the customer's
perspective and when the fix is known, and is divided into

TABLE I.
ACTIVITY ATTRIBUTE

Type Activities Triggering Factors

1
Requirements Review,
Information Review,
Test Plan Review

Accuracy, Completeness,
Coherence, Organization,

Feasibility, Style, Task Orientation,
Graph Design/ Esthetics etc.

2 Design Review,
Code Inspection

Design Coherence, Program
Criterion, Compatibility,

Synchronization, Internal Security,
Language Particularity, Side Effect,

Rare Situation etc.

3 GUI Review and Test

GUI Design Coherence, Windows
Acquit, Screen Words/Characters,

Input Facility, Navigation, GUI
Behavior etc.

4 Unit Test Single Path, Combination Path etc.

5 Function Test

Single Function Covered Verify,
Single Function Boundary/ Valid

Assurance, Multiply Function
Serial Execution, Multiply Function

Interaction etc.

6 System Test

Working load/Stress Test, Restore
from Invalidation, Start/Restart,

Hardware Configuration, Software
Configuration etc.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2507

© 2012 ACADEMY PUBLISHER

five grades including fatal, emergent, severe, ordinary and
ignorant according to relevant standard. Alarms can be
Critical, Major, or Minor grade to signify the different
levels of severity of a situation. When software deficiency
happens, alarms will be sent.

Origin, content and type of defect are shown in Table III.
The origin objects causing the question are the names of the
entities including design specification or other earliest
matters resulting in deficiencies, which need to be revised
[6]. The defect type signifies the classification of technical
key elements including the technological characteristics to
revise the defect. The defect content type signifies the
content nature of the defect. After the revising project is
finished, origin object causing the question, defect type and
defect content type can be classified according to the actual
revising result, so as to ensure the uniqueness of the
classification.

IPDSS can support arbitrary processes configuration and
integrate arbitrary new process management tools, the
default software process embedded according to CDIO
standard. Every process is divided by a serial of activities
and the customized well-configured IPD-CMMI process for
IEC-CDIO project. The IPDSS also makes many graphical
charts of various kinds of available analysis for IEC-CDIO
project shown as Fig.10: [6, 14]

• Defect analysis - rates of injection and removal of
defects in the different process phases, defect injection and
removal percentages in the different process phases, and pie
charts showing the distribution of defect types.

• Plan analysis - comparisons of planned time and size
with actual planned time and size, planning error of both
time and size, and breakdowns of the amount of time spent
in the different development phases.

• Process analysis - comparisons of productivity rates,
defect removal yields, and appraisal to failure cost ratios.

• Quality analysis - various looks at the quality metrics
of defect removal yield, failure and appraisal cost of quality,
and LOC reviewed per hour rates.

TABLE III.
TRIGGER ATTRIBUTE

Type
Trigger attribute

Trigger Weight Phase

1
The necessary environment or
conditions for the exposure of
defects.

15 Requirement

2 Thought of discovering defects in
evaluation and inspection. 20 Design

3
Environment or conditions in other
unexpected activities causing the
system deficiency.

10 Test

4 Actual running environment in
maintenance stage. 10 Implementation

5 Test use-cases. 40 Test

6

If there is no way of knowing the
triggering factor, the defect is
classified according to
reappearance condition in the
laboratory.

5 Test

TABLE II.
CLASS OF DEFECT CAUSE

Type
Defect Cause Class

Origin Defect Type Defect Content
Type

1 Requirement
Analysis

(as the mentioned impact
classification) -

2
Design
Specification,
Code

Evaluation, Check,
Arithmetic

achievement, Function
model or Class Design,

Relevancy,
Synchronization or

Concurrency,
Serialization Design,

Interface, Local
Language Support

-

3 Information
Development

Edit, Technology,
Navigation,

Local Language Support

Reference,
Task, Example

Represent
Means,

Conception

4
Configuration
Management
Standard

Process Coherence,
Delivery Conformity,

Maintains Dependency,
Assistant Script/Package,

Feature Install or
Upgrade Dependency

-

5 Test Plan/Project

Improper Resource
Arrangement, Resource

Arrangement non-
optimization, Incorrect
Agenda, Agenda non

optimization, Improper
infrastructure or tools,
Document Criterion,

Single Path Test,
Combination Path Test,
Single Function Cover
Test, Single Function

Cover boundary/Invalid
Input Test, Multiply

Function Serial Execute
Test, Multiply Function

Interaction Test,
Working Load/Stress

Test, Restore Test,
System Start/Restart

Test, Hardware
Configuration Test,

Software Configuration
Test, Local Language

Support

Feature List,
Requirement
Trace, Object

Analysis,
Resource Plan,

Agenda,
Strategy,
Model,

Methods, Use-
Case, Code,

Infrastructure
or Tools etc.

2508 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Figure 10. IPDSS project postmortem analysis

 With the list of tasks and the calendar of available time in
place, the IPDSS will calculate planned completion dates for
each task. As students work, accurately log time against
tasks should be collected. While looking at the earned value
plan for a team, it might be necessary to look at the schedule
for a single individual - for example, to see when their work
is forecast to complete. According to the amount of data
collected by IPDSS, we setup the baseline and millstone of
every Co-operative education team which can be used to
forecast the finish dates and ensure the success of Co-
operative education projects shown as Fig.11. This is also
helpful for the teachers to schedule the balance of study and
work term.

Figure 11. IPDSS project management

IV. CONCLUSION

IEC-CDIO is the core of developing the creative
entrepreneurial talent in higher education of China, which
is rethinking of the philosophy, aim and model of
engineering education by fully combining advocating
innovation of application and pursuing excellence of
application with CDIO engineering education philosophy.

On this basis, the hierarchy of cultivation orientation, aim,
cultivation plan, course group, experiment and practice
system, evaluation and assessments, teaching methods
and quality assurance system of information engineering
program are completely conceived and designed and an
integrated talents cultivation scheme of combining
knowledge, ability and quality oriented education, by
which students are taught and layered naturally according
to their aptitude, is developed. The proposed scheme is
put into practice and the results have shown its
effectiveness in Zhejiang Wanli University which is
CDIO engineering education pilot universities in China.

In the future, we would like to extend our work in the
following directions. 1) We will try other methods to
measure CDIO effects in Innovation & Enterprise
Capability training for IT talent long-term development. 2)
IPD-CMMI model should be further improved and
extended to enterprise applications to enhance embedded
software engineering performance. 3) We will extend the
scale of ODC database to establish data warehouse to
support further intelligent decision-making.

ACKNOWLEDGMENT

This work is funded by the Ministry of Education
Humanities and Social Sciences Fund (11YJC790141),
Ningbo Soft Science Fund (2011A1012) and Ningbo
Natural Science Foundation (2011A610106), Zhejiang
new generation mobile Internet client innovation
team(2012R10009-07), Major projects of national science
and technology(2011ZX03002-004-02), and National
Soft Science Fund (2011GXS2D036), Zhejiang
Education Reform Project (2011-3), Education Reform
Zhejiang Wanli University (2010).

REFERENCES

[1] N. Sharma, Kawaljeet Singh and D. P. Goyal, “Experience
Based Software Process Improvement: Have We Found the
Silver Bullet?” Communications in Computer and
Information Science. London, vol. 141, pp. 71–80,
February 2011.

[2] Li Kewen, Gong Lina, Kou Jisong, Predicting software
quality by fuzzy neural network based on rough set ,
Journal of Computational Information Systems, v 6, n 5,
p1439-1448, May 2010.

[3] T.M.Khoshgoftaar, P.Rebous, N. Seliya, “Software Quality
analysis by combining multiple projects and learners,”
Software Quality Journal vol. 17, pp. 25-49, 2009.

[4] M. Young, Programming embedded systems: with C and
GNU development tools. O'Reilly, ISBN 9780596009830,
2006.

[5] Q.S.Chen, X.W.Chen and Y.Wu, “Optimization Algorithm
with Kernel PCA to Support Vector Machines for Time
Series Prediction,” Journal of Computers,vol.5, pp.380-
387,2010

[6] P. Tie Jun, Research of High-quality innovative and
pioneering undergraduate training model of Software
Engineering, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73.

[7] P. Baraldi, and E. Zio. “A combined Monte Carlo and
possibilistic approach to uncertainty propagation in event
tree analysis,” Risk Analysis, vol. 28, pp.1309–1326,
October 2008. “doi:10.1111/j.1539-6924.2008.01085.x”

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2509

© 2012 ACADEMY PUBLISHER

[8] Dong Jianli, Ningguo Shi, “Multilayer Matter-Element
Extension Synthesis Evaluation of Software Quality,”
IEEE, ICBECS 2010, pp.693-697.

[9] YANG FuQing, “Thinking on the Development of
Software Engineering Technology,” Journal of Software
(in Chinese), 2005, 16(1), pp.1-7.

[10] YIN Ping, “The Analyze of Software Quality Evaluation
Based on ISO(in Chinese),” Software Engineering and
Standardization, 2005, No.12, pp.37-41.

[11] D. M. Ahern, C. Aaron, R. Turner. CMMI Distilled: A
Practical Introduction to Integrated Process Improvement.
Addison Wesley, 2003.

[12] T. Menzies, J. Greenwald, and A. Frank, “Data Mining
Static Code Attributes to Learn Defect Predictors,” IEEE
Transactions on Software Engineering, vol.33, pp.2-13,
2007.

[13] Burak, “Improving the Performance of Software of Defect
Predictors with Internal and External Information
Sources,” Bogazici University, 2008.

[14] B. C. Andréde, P. Aurora and R.V. Silvia, “A symbolic
fault-prediction model based on multi objective particle
swarm optimization,” The Journal of Systems and Software,
vol. 83, pp. 868-882, 2010.

Tiejun Pan (Henan,1972-) received the
MS and PhD degrees in modern
mechanical engineering from Zhejiang
University , Hangzhou, China, in 1997
and 2001, respectively. He is currently a
Master Tutor associate professor in the
Department of Computer Science and
Information Engineering at Zhejiang
Wanli University. His research interests
include software engineering, embedded

system, theory and application of networked control system.

Leina Zheng (Liaoning, 1981-)
received the MS degree in School of
Management from Wuhan University of
Technology, Wuhan, China, in 2008.
She is currently a Lecturer in the
Department of Business at Zhejiang
Wanli University. Her research interests
include management engineering,
Innovation & Enterprise education, and

Performance Evaluation.

2510 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

