
An Innovative Scalar Multiplication Method
Based on Improved m-ary

WenXue Tan , YiYan Fan , XiPing Wang and XiaoPing Lou

Institute of Network Technology
Hunan University of Arts and Science, Changde, 415000, Hunan, Mainland of P.R.China

College of Computer Science and Technology
Hunan University of Arts and Science, Changde, 415000, Hunan, Mainland of P.R.China

College of Economy and Management
Hunan University of Arts and Science, Changde, Hunan, 415000, Mainland of P.R.China

College of Computer Science and Technology
Hunan University of Arts and Science, Changde, Hunan, 415000, Mainland of P.R.China

Email: {papertwx}@163.com;{24045483,916284112,34197140}@qq.com

Abstract— On purpose to elevate the efficiency of elliptic
curve scalar multiplication in the device with weak com-
putation power and to improve computational security, in
this paper we pioneer a novel algorithm named Improved-
m-ary, which is based on the depth first addition chain
scheme and the improved m-ary mechanism compatible with
a flexible width window. At first, we research and analyze
the advantages of addition-chain-method, m-ary and other
algorithms respectively in terms of speeding computation by
comparison. It is discovered that the proportion of atomic
operation and window width are 2 key factors which keep
the speed of scalar multiplication and its computation cost
in a leash. Then, an innovative scalar-point-multiplication
algorithm is designed by the project crew on the basis of
findings of project research. At last, the results of theoretical
analysis and experimentation statistics demonstrate that by
this algorithm the average of hamming weight of the scalar
as a multiplicator could be undercut and the computation
cost of point-scalar-multiplication could be lowered to an
amazing extent. In addition, because of its built-in scheme
whereby the window width is randomized constantly it
presents a favorable strong immunity against most attack
methods hinged on power analysis . As a whole, it is potential
that Improved-m-ary be a practical and promising fast
scalar multiplication method alternative.

Index Terms— Addition Chain; Scalar Multiplication; Flex-
ible Window Width; ECC; Information Security.

I. INTRODUCTION

Eclipse Curve Cryptograph (abbreviated by ECC) is
a well-known public key encryption algorithm with a
great future in the range of information security of E-
Commerce based on Internet [1] and a host of Computer-
ization Information System [2], [3]. It has been catching
eyes of most scholars and researchers who are engaged
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in the research area of involving some better algorithms
and attack algorithms. Considering the speeding crypto-
operation, scalar multiplication has been playing an im-
portant role in Eclipse Curve Cryptograph. So, a list of
fast scalar multiplication algorithms are designed in a
heap of references.

A. Pending Questions Advanced in Ready-made Refer-
ences

[4] initiated a scalar multiplication algorithm named
NNAF. That algorithm is able to reduce the scalar which
as a multiplicator into a series of ones of shorter length,
and by the information provided by theoretical analysis
is only a fewer computation power in need. While, the
related anti-attack performance and running speed demon-
strated in reality faces a further survey, as a result of
wanting a plenty of convincing experimentation statistics
[5].

A method based a special addition-chain which was
proposed in [6], and by which the proportion of point-
addition-number and point-doubling-number can be opti-
mized on the precondition of keeping the total of atomic
operations stable basically. In other words, that is to
decrease doubling operations and to increase addition
operations. It is self-evident that addition often costs a
fewer power than doubling operation, and a mediate result
of which is a reduction of whole computation power-cost.
However, the concerned algorithm based on the special
addition-chain is only applicable to Montgomery Ecliptic
Curve and a transformation is in demand before its being
applied in the cases concerned the Ecliptic Curve of
other forms. Certainly, extra computation is added in the
course of transformation whereby the point-multiplication
efficiency is discounted probably.

[7] designed a method of coordinate transformation, on
Ecliptic Curves expressed by different reference frames,
which can run at a faster speed on executing the addition-
point and doubling-point. The cause is that the inverse-
operations involved in point-multiplication is able to be
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decreased even canceled out by coordinate transformation,
instead, some square-operations and multiplications are
increased. In the end, computation power of every indi-
vidual point-multiplication is cut down to a given extent.
But some signals or high frequency electromagnetic wave
which manifest a sharp difference in energy-consumption
are eradiated on executing [8].

In response to the matter above, an attack mechanism
so-called “ bypassing-channel-attack ” was machinated in
[9]. By means of the power diversity mentioned above,
bypassing-channel-attack can restructure some secret pa-
rameters of encryption communication and succeed in
attacking ECC scheme. Accordingly, speed and security
of point-multiplication are ranked as two key evaluation
indexes which involve the security of encryption system
in depth [10].

If only is speed concerned, undercutting the ham-
ming weight of scalar, balancing the proportion of basic
operations and reducing computation power-cost is a
potential mainbody of technology of accelerating point-
multiplication. It is convinced universally that proportion
of atomic operation could be optimized through taking
advantage of addition-chain. Window-method is effective
to low hamming weight of scalar. But according to
practice, the window width often is set to 2 or 2r, which
results in that when hamming weight downs to a certain
limit the mechanism of addition-chain is excluded.

B. Main Contributions of this work

In this paper, we pioneer to introduce depth first addi-
tion chain into point-multiplication whereby to determine
an optimal addition-chain by which scalar may be decom-
posed into a pretty proposition of basic operation after a
list of preprocess measures. At the same time, a flexible-
width window is embedded into the computation of point-
multiplication when multiplications of the composites of
scalar are extracted.

On the basis of m-ary method and improvements
made in [11], we initiate an innovative scalar-point-
multiplication method so-called Improved m-ary, which
is abbreviated by I-m-ary. In terms of bypassing-attack,
we advise to discard the ideal pursuit for the maximum
computation speed, and try to shade the energy difference
of signals eradiated from computation device through
a mechanism of using a lot of random-flexible-width
windows in turn. It is practical that selecting a best
window with a moderate computation consumption in
random, and shifting its width in turn in a pool of width
candidates when running on precondition of keeping the
total cost of computation stable by and large.

At last, the proposed algorithm is programmed and
experimented in a simulation background through a horde
of scalars and curves, and the gleaned statistics is sys-
tematically analyzed and compared with some up-to-date
point-multiplication algorithms in parallel as to speeding
performance, security, other aspects and so on.

II. PRELIMINARIES OF ECC AND TRADITIONAL
SCALAR ALGORITHMS

A. Preliminaries of ECC and Scalar Point Multiplication

The so-called elliptical curve we refer is a 2-dimension
curve which originates from Weierstrass equation denoted
by (1). Shift the focus to the integer field, and let a
prime p > 3, define a set denoted by S, which covers
all points (x, y) satisfy (2) which subject to a, b ∈
GF (p) and 4a3 + 27b2 6= 0 mod p and the infinite far
point O. On S, an addition operation denoted by ⊕ is
defined [12]. From the angle of group theory,E < ⊕, S >
forms an Abelian group, which is often named by Ecliptic
Curve group on Finite Field, denoted by E. On ecliptic
curve E, let P1 be point (x1, y1),and let P2 be point
(x2, y2), P1 is added to P2 and as a result, P3 is returned
which is defined by (3), (4) and (5).

y2a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

y2 ≡ x3 + ax + b mod p (2)

P1(x1, y1)⊕ P2(x2, y2) = P3(x3, y3) (3)

{
x3 = λ2 − x1 − x2

y3 = (x1 − x3)− y1

(4)

Here, slope λ is extracted as (3)

λ =

{
3x2

1+a
2y1

if x1 = x2 and y1 = y2

y1−y2
x1−x2

if other cases
(5)

If P1 = P2, point-addition is renamed doubling-point
operation, computing the slope of doubling point needs
two times of square-operation which is denoted by Ŝ,
one time of inverse-operation which is denoted by Î and
two times of multiplication-operation which is denoted by
M̂ . Relatively, point-addition costs one time of inverse-
operation, two times of multiplication and one time of
square.

Therefore, the computation cost totals of two cases
are 1Î + 2Ŝ + 2M̂ ,1Î + 1Ŝ + 2M̂ respectively. Given a
certain hardware setting, three sorts of instruction present
an approximate linear relationship as respect to time-cost
as follows, Î = 6M̂ , Ŝ = 0.8M̂ . Accordingly, both
equivalent sum of cost are TP⊕P = 9.6M̂ , TP1⊕P2 =
8.8M̂ respectively. A certain point P (x, y) is added k
times to O and point Q is returned, which is defined as
point-scalar-multiplication, denoted by Q = kP .

B. Sliding-Window Algorithm

In Sliding-Window algorithm, if meet the “ 0 ” digit
then slide the cache window across r bits [13]. However,
because in each step there are s bits in demand of process,
if treat it as a window, the algorithm regresses to a
fix-length window mechanism. Sliding-window algorithm
which is shown as Figure 1 makes a good use of the high
digits of k in a system of binary number, thus efficiency
of pre-computation is elevated to a great extent. By means

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2471

© 2012 ACADEMY PUBLISHER



R1) Input: a Scalar k ,its m-ary
decomposition form expressed by an
Integer Array digit[d],Point P on E.

R2) Output:Q = kP.
R3) Q = O;
R4) Point p[m + 1];
R5) p[0] = O, p[1] = P,p[2] = 2P;
R6) For (i = 1; i < 2r−1; i + +)
R7) p[i] = iP;
R8) For (i = d− 1; i > −1; i−−)
R9) p[2i + 1] = p[2i− 1] + p[2];
R10) temp = m; r = 0; i = d− 1;
R11) while(temp >>= 1) r + +;
R12) while(i > −1)
R13) if(digit[i] == 0)
R14) Q = 2Q; i−−;
R15) else
R16) t = i− (r − 1);
R17) while(digit[t] == 0) t + +;
R18) w = 1; h = 0; temp = t;
R19) for(;t < i + 1;t + +)
R20) h+ = (digit[t] ∗ w);w∗ = 2;
R21) for(int n = 1;n < i− temp + 2;n + +)
R22) Q = 2Q;
R23) Q = Q + p[h]; i = temp− 1;
R24) Output Q.

Figure 1. Sliding-Window Algorithm.

of analysis course mentioned above, computation cost of
Sliding-Window could be expressed by (6).

Because the difference of computation consumption
and energy-cost is embodied with respect to both
doubling-point and point-addition, it directly mirrors dis-
tribution of “ 0 ” and “ 1 ”, i.e. structure of scalar digit.
This phenomena is extra universal in the environment with
a weak computation power or thin client. If the eradiated
signal is sniffed and the profile of energy is restored by
means of a certain technology, it is possible to restructure
and find scalar k,which provides an entry accessible to
power-attack.

N(n, r) = 2r−1 + n +
n

r + 1
− 2 (6)

C. m-ary method of multiplication

Let m = 2r, r ≥ 1,a scalar k is represented in a system
of numbers which includes m number-symbols as (7).
As to a scalar composite i subject to 1 ≤ i ≤ 2r,point-
multiplication iP is computed at first, which is name pre-
computation, then extract kP . If r = 1,it regresses to
binary method [14].

the word of English, “ unary ” expresses a system
of numbers which includes one number symbol, and the
English word “ binary ” connotates a system of numbers
which includes two number symbols. Analogously, a
system of numbers which includes m number symbols
is expressed by the word “ m-ary ”. In the step of
pre-computation, there are m scalars to compute point-
multiplication at most. So this method is often referred
by “ m-ary ” method, which is exhibited as Figure 2.

k =
d−1∑

j=0

digit[j]mj , 0 ≤ digit[j] ≤ m− 1 (7)

R1) Input: a Scalar k ,its m-ary
decomposition form expressed by an
Integer Array digit[d],Point P on E.

R2) Output:Q = kP.
R3) R = O;
R4) Point p[m];
R5) For(i = m− 1;i > −1;i−−)
R6) p[i] = iP;
R7) For (i = d− 1;i > −1;i−−)
R8) R = mR;
R9) R = R + p[digit[i]];
R10) Output R.

Figure 2. m-ary Scalar Point-Multiplication.

R1) Input:k
R2) Output NAF (k)=(bL−1, bL−2, · · · , b2, b1, b0).
R3) i = 0; n = k;
R4) while(n > 0)
R5) if(n mod 2) bi = 2− n mod 4; n− = bi;
R6) else bi = 0;
R7) n = n/2;i + +;
R8) Output(bL−1, bL−2, · · · b2, b1, b0).

Figure 3. Non-Adjacent Form Decomposition of Scalar.

m-ary method is simple and easy to implement. It
requires (d− 1)r doubling-point operations. Let l denote
the length of array digit, and represent k in a system
number with 2r symbols, then d = dl/re, which is
the number of digits. Suppose w denotes the number of
non-zero symbols in k, that is to say that w represents
Hamming weight. According to m-ary method, scalar-
point-multiplication needs w point-addition operations
and pre-computation costs 2r − 2 point operations.

The total computation cost of m-ary may be described
by (8),which suggests that an aptitude adjustment of mag-
nitude of r could vary the total computation consumption
toward the decreasing tendency.

N(n, r) = (d− 1)r + W + 2r − 3 (8)

D. NAF Algorithm

In the course of Sliding-Window algorithm, if some
bit is “ 0 ”,on which point-addition operation is omitted.
Suppose “ 0 ” bits could be increased, meantime “ 1 ” bits
could be decreased on condition that magnitude of scalar
is kept invariable. That is to say Hamming weight of
scalar is lowered. Hinted by this idea, someone pioneers
a decomposing method of scalar based on the system of
binary numbers [15], i.e. Non-Adjacent Form, abbreviated
by NAF. Denote the Non-Adjacent Form decomposition
of scalar k NAF (k),which is extracted by the algorithm
exhibited by Figure 3.

NAF decomposition of scalar is characterized by fol-
lows. 1.The multiplication of adjacent 2 digits of decom-
position always equals 0,i.e. bi×bi+1 = 0. In other words,
there does not exist a phenomena that 2 non-zero digits
is adjacent in NAF (k),so it is named “ Non-Adjacent
Form ”. 2.Hamming density of NAF (k) is a third of
that of regular binary decomposition of k, which means
point-addition operations by NAF decomposition also is
a third of scalar multiplication of binary-ladder algorithm.

As a result, energy cost reduces by a long way. For
example,NAF of k = 159 is shown as Table I. NAF
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R1) Input:NAF (k)=(bL−1, bL−2, · · · , b2, b1, b0),Point
P on E

R2) Output Q = kP.
R3) Q = O;R = P;
R4) For (i = 0;i < numbits(k);i + +)
R5) If(bi 6= 1) Q+ = biP;
R6) Q+ = Q;
R7) Output Q;

Figure 4. Non-Adjacent Form Scalar Multiplication.

scalar multiplication algorithm is exhibited as Figure 4.

TABLE I.
NAF DECOMPOSITION OF K = 159

Weights 27 26 25 24 23 22 21 20

Binary 1 0 0 1 1 1 1 1

NAF(159) -1 0 0 0 0 1 0 1

However, energy-cost profile of NAF method is similar
with Binary Ladder Algorithm. It isn’t random irregular
at all, which anchors its weakness against Side Channel
analysis and Power-Attack.

III. RELATED DEFINITIONS & ALGORITHMS OF
ADDITION-CHAIN

Improving the decomposition method of scalar k and
decreasing the times of point-addition operation poten-
tially save the power-cost of scalar point-multiplication
to a certain extent. However, when the times of point-
addition is reduced to a critical point where a further effort
toward that direction difficultly makes progress.

Obviously, the power-cost of doubling-point is more
than that of point-addition. If on the condition that the
sum of operation is kept stable and a certain number
of doubling-point operations could be substituted by
some equivalent point-addition operation, it is possible
to save running-time of scalar point-multiplication. It is
well known that any scalar k could be returned by a
certain times of addition, subtraction, doubling of some
base numbers which are membership of a given set.
On the basis of that idea, we advise to introduce an
improved addition-chain which is helpful to transforms
scalar into a series of ordered additions and subtractions
and etc, operations of a finite time. While subtraction and
doubling operation may be unified into addition operation,
accordingly name it addition-chain.

A. Chain Base

Given a certain odd integer m, define the set denoted
by Bm = {±1,±2,±3,±5, · · · ,±(m − 2),±m} as the
Chain Base of m, which includes the even primes, odds
less than or equal to m and their additive inverses. m
represents the window width of B.

B. Depth-First Addition-Chain

If n is an even which isn’t a member of Bm, denote
its chain node Nm(n),which could be computed as (9). If

R1) Input:Integer k,Bm.
R2) Output: Depth denoted by h,Order of

element posr.
R3) maxD = 0;
R4) for (i = 0; i < upbound(Bm); i + +)
R5) h = 0;temp = k + Bm(i);
R6) while(temp %2 == 0) {temp = temp/2; d + +;}
R7) if(h > maxD) maxD = h;posr = i;
R8) return maxD, posr;

Figure 5. Extraction Limit-Depth : maxDepth(k, maxD, posr).

n is an odd which isn’t a member of Bm,its chain node
denoted by Nm(n),then select a base element from Bm

denoted by r which makes n+ r with a addition chain of
maximum depth, and its chain-node could be computed as
(10). Similarly,the step recurs uninterruptedly until that 1
is returned, and a series of nodes as Nm(n) which consist
of a addition-chain, so-called the Depth-First-Addition-
Chain.

Nm(n) : n = n÷ 2 (9)

Nm(n) : n = (n + r)− r (10)

C. Base Addition-Chain

If an integer n is an element of Addition-Chain Base
Bm of which width is m,its addition-chain node denoted
by Nm(n),which may be computed as (11).

Nm(2) : 2 = 2(1)

Nm(3) : 3 = (2 + 1)

Nm(5) : 5 = (3 + 2) · · ·
Nm(m) : m = (m− 2 + 2)

(11)

The computation chain consists of (m + 1)/2 times of
addition operation,which is named pre-computation pro-
cess. In general, addition-chain of integer n is constructed
on precondition of this pre-computation.

D. Construction of Addition-Chain

The limit depth of chain is denoted by maxD,which
should be defined before computation of addition-chain.
We design an algorithm to return the limit-depth maxD
and an element of Bm which satisfies n + r with the
addition chain of maximum depth. This algorithm is
exhibited as Figure 5,which is used in computation of
addition-chain.

For example,m = 5, n = 326485,let Addition-Chain
Base be N5(326485),and its addition-chain is extracted
as Figure 6.

This addition-chain only is in need of 3 times of point-
addition operations and 16 times of doubling-point oper-
ations. While NAF method costs 4 times point-additions
and 18 times of doubling-point operations. And 19 times
of point-additions and 20 doubling-point operations are
needed as to m-ary mechanism.

Thus it is accepted that a pretty proportion of atomic
operation could be produced by an optimally sin-
gled addition-chain [16]. If substitute point-addition and
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326480=163240*2

81620=40810*2 163240=81620*2

40810=20405*2 20405=20400+5

10200=5100*2 20400=10200*2

5100=2550*2 2550=1275*2

1280=640*2 1275=1280-5

640=320*2 320=160*2

80=40×2 160=80*2

40=20×2 20=10×2

End 10=5×2

326485=326480+5

Figure 6. Addition-Chain of N5(326485) .

R1) Input:Integer k,width m,Bm.
R2) Output: A list of Nm(k).
R3) while (k > m)
R4) maxDepth(k, maxD, posr);
R5) Nm(k) : k = k + Bm(posr);
R6) While( k mod 2==0)
R7) k = k/2;
R8) Nm(k) : k = 2× (k/2);
R9) Return;

Figure 7. Computation of Addition-Chain.

doubling-point for both addition and multiplication re-
spectively, and compute by inverse-order, it is fit to be
used for ECC scalar-point-multiplication kP , correspond-
ing algorithm is depicted by Figure 7.

IV. IMPROVED-m-ARY ALGORITHM BASED ON
ADDITION-CHAIN AND THEORETICAL ANALYSIS

A. Improved-m-ary Algorithm Based on Addition-Chain

As to m-ary algorithm,we find that if decompose scalar
k by means of a system numbers with m symbols,not
subject to 2r symbols then the const array p could be
omitted and some computation-load may be saved. In
addition, substitute depth-first-chain method for point-
multiplication of the power in a form of 2r in the
major loop of algorithm, this algorithm is defined as the
Improved-m-ary algorithm,abbreviated by I-m-ary. It is
exhibited by Figure 8.

B. Analysis of Improved-m-ary.

Lemma 1. Let l(k) be the length of m-decomposition
of k in the algorithm I-m-ary, then have (12) satisfied.

dlogm ke ≤ l(k) ≤ dlogm ke+ 1 (12)

Lemma 2. Given a positive integer scalar k, denote
its average Hamming weight of m-decomposition Averw,

R1) Input:Integer array K[d] as (3),P on E.
R2) Output: Q = kP.
R3) R = O;
R4) For(j = 1; j <= d; j + +)
R5) If(digit[j]) Extract the node series of

depth-first addition-chain Nw(digit[j];
R6) Point temp;
R7) For(j = d− 1;j > −1;j −−)
R8) If(digit[j]0)
R9) temp = digit[j]P;
R10) Extract node series of depth-first

addition-chain Nw(digit[j]
R11) AddChain(Nw(digit[j]),&temp);
R12) R+ = temp;
R13) R = 2R;
R14) Output Q = R.

Figure 8. Improved-m-ary Algorithm of Scalar Multiplication.

then (13) could be satisfied.

Averw = dlogm ke m− 1
m + 1

(13)

Theorem 1. Let m = 2r,Averc(2,m) denotes the
average computation-load of point-multiplication kP per
bit, then they are characteristic of as (14) to (16).

if E on GF (p) and r mod 2 = 0

ave c(2,m) = (1/2 + 2r−1
r(2r+1) )Î

+(9/2− 5×2r−5
r(2r+1) )Ŝ + (9/2− 2×2r−2

r(2r+1) )M̂

= (11.1 + 4×2r−1
r(2r+1) )M̂

(14)

if E on GF (p) and r mod 2 = 0

ave c(2,m) = (1/2 + 1
2r )Î

+(9/2− 2.5
r )S + (9/2 + 4.5×2r−9.5

r(2r+1) )M̂

= (11.1 + 5.5×2r−8.5
r(2r+1) )M̂

(15)

if E on GF (p) lim
r→∞

ave c(2,m) = 11.1M̂ (16)

Proof. Let GF (p) be a limit field and r mod 2 = 0.
c(4P ) denotes the computation power to extract 4P and
some similar symbols connotate the same implication and
some midterm results are extracted as follows.

∵ c(4P ) = Î + 9Ŝ + 9M̂.

∴ c(4P + Q) = 2Î + 4Ŝ + 11M̂.

∴ c(2rP ) = c(4r/2P ) = (r/2)× c(4P )

= (r/2)Î + (9× r/2)Ŝ + (9× r/2)M̂.

∴ c(2rP + Q) = c(4(4r/2−1P ) + Q)

= (r/2− 1)× c(4P ) + c(4P + Q)

= ((r + 2)/2)Î + ((9× r − 1)/2)Ŝ

+((9× r + 13)/2)M̂.

According to Lemma 2,the average Hamming weight
of m-decomposition Averw satisfies (13). On the base of
formula of base-substitution, we have (17).

dlogm ke m− 1
m + 1

= dlog2 ke m− 1
(m + 1)r

(17)
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then as follows.

ave c(2,m) = (dlog2 ke m− 1
(m + 1)r

c(2rP + Q)

+
2 dlog2 ke
(m + 1)r

c(2rP ))/ dlog2 ke (18)

.

ave c(2,m) = (
1
2

+
2r − 1

r(2r + 1)
)Î +

(
9
2
− 5× 2r − 5

r(2r + 1)
)Ŝ + (

9
2
− 2× 2r − 2

r(2r + 1)
)M̂

= (11.1 +
4× 2r − 1
r(2r + 1)

)M̂ (19)

(19) is equivalent to (14).
Let GF (p) be a limit field and r mod 2 = 0.

∵ c(4P ) = Î + 9Ŝ + 9M̂.w(2P ) = Î + 2Ŝ + 2M̂.

c(2P + Q) = Î + 2Ŝ + 9M̂.

∴ as follows.

c(2rP ) = c(2(4(r−1)/2P ))

= ((r − 1)/2)× c(4P ) + c(2P )

= ((r + 1)/2)Î + ( (9r−5)
2 )Ŝ + ( (9r−5)

2 )M̂

(20)

c(2rP + Q) = c(2(4(r−1)/2P ))

= ((r − 1)/2)c(4P ) + c(2P + Q)

= ((r + 1)/2)Î + ( (9r−5)
2 )Ŝ + ( (9r+9)

2 )M̂

= (11.1 + 5.5×2r−8.5
r(2r+1) )M̂

(21)

(21) is equivalent to (15).
Given r,r mod 2 = 1 or r mod 2 = 0,either always

exists. then (20) and (21), either is always satisfied.

lim
r→∞

4× 2r − 1
r(2r + 1)

= 0 (22)

lim
r→∞

5.5× 2r − 8.5
r(2r + 1)

= 0 (23)

If some part of (14) and (15) is replaced by it,(24) is
returned, which also is (16).

lim
r→∞

ave c(2, r) = 11.1M̂ (24)

Proof ends.
It is made clear that on the condition of extra memory

units over 2r,scalar multiplication could be improved
more efficiently by means of NAF mechanism with the
window width of 2r. Contrarily,NAF method does not
contribute to the efficient of scalar multiplication.

Theorem 1 points it out that as to the limit field GF (p)
based on prime,the computation power of I-m-ary method
could be estimated by (14) and (15) on condition that its
window width is a power of 2.While the power nears to
∞ the average of computation power nears to a certain
limit. In other words, when the power increases to some
critical point, it has no immediate effect on the reduction
of computation load of scalar multiplication.

However, substitute flexible window width of m for 2r,
the average Hamming weight of scalar can be lowered in
a large scale on precondition that the length of scalar
integer is not changed nearly, which is demonstrated in
the I-m-ary method. In addition, beside the mechanism
of flexible window width, addition-chain is introduced
into I-m-ary algorithm, which can save computation cost
of scalar multiplication from different angles by taking
advantages of both above.

V. EXPERIMENTATION AND CONTRAST OF
PERFORMANCE

In this section, computation cost of scalar multipli-
cation demonstrated in experimentation is compared in
detail as to I-m-ary algorithm and some algorithms pro-
posed heretofore. Algorithm subjects are implemented on
the basis of program library so-called NTL [17].Take an
example of some 160-bits ecliptic curve and compute a
certain number of scalar-point multiplication randomly.
The number of scalar sample k is in condition that
their bit total approximates 400 Kb, and computation
cost of multiplication is collected in unit M̂ . On this
condition, computation consumption per bit(M̂ /Bit,unit of
Y-coordinate) is computed and analyzed in parallel.

A. Comparison of I-m-ary and Montgomery-Ladder on
Binary Curve

3 cases of I-m-ary with different window width are
singled out and denoted respectively by I-m-ary-32, I-
m-ary-256 and I-m-ary-1024. In a certain range, they
are representatives of the maximum cost, the minimum
cost and a moderate cost respectively, details of cost are
exhibited in Figure 9.

Statistics and the illustration establish it clear that the
minimum cost of I-m-ary is about 58% of Montgomery-
Ladder, and a moderate cost is 59 % or so of
Montgomery-Ladder. As a result, they save 42% and 41%
computation cost respectively.
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Figure 9. Comparison of I-m-ary and Montgomery.
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B. Speed Comparison Based on Prime Field Curve

Take an example of an average ecliptic curve E on
GF (p), which is expressed by (1). Its parameters a, b,
base (Bx, By) and order #(E) are listed in Table II in
a hex form. By means of the same analysis course, the
window width of I-m-ary is chosen at random every time.
The recorded statistics is exhibited by Figure 10 in detail.

It has been accepted that both double base-chain and
m-ary are two scalar-point multiplication algorithms with
a rather high speed. By comparison, the speed of double-
base-chain is 84.8% of I-m-ary and 83.4% one of m-ary
is 83.4% that of I-m-ary, while 15.2% and 16.3% are
elevated respectively.

TABLE II.
PARAMETERS OF THE ECLIPTIC CURVE

a 0X 39860000726400005FFC0000134000007959

b 0X 0FF800007B63000066590000502B0000707E

Bx 0X 153C000012DB00002EA600000BB3000001EB

By 0X 12950AEBB4F005A80C506272FC9A2F94F794326D

#(E) 0X 01000000000000000000003D292A9AE0C99D9C2937

LRL NAF DBS m−ary SW Imr

60
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LRL:L−R binary−Ladder
NAF:Non Adjacent Form

DBS:Double Base Chain
m−ary:m−ary
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Figure 10. Comparison Based on Prime Field Curve.

C. Security Performance Analysis

Power attack is one of major bypassing attack methods,
which has been a destructive threat against the security
of ECC applied in device with weak computation power
[18], [19]. Nowadays, mainstream of power-analysis are
the Simple Energy-Analysis and the Differential-Power
Analysis, and corresponding counteractant measures are
demonstrated in evening and randomizing scalar multipli-
cation cost [20], [21].

I-m-ary algorithm which introduces a randomizing-
mechanism to determine the window-width and makes
use of some width of which the density is rather big in
parallel with other most window width and which makes a
moderate power-consumption and inclines to be accepted
by computation environment, is discussed and analyzed

systematically in the paper. As to “ 0 ” bit and “ 1 ”
bit of scalar k, the same instruction series are executed,
which shades the difference of energy-cost of both.

In addition, the width like the mentioned above has
a large number and can be picked out easily, in the
meantime window width may be altered timely in the
course of running which keeps power-cost graph in a
random profile from beginning to end on precondition
that the total power cost is invariable by and large.
Accordingly, I-m-ary is capable of establishing a strong
immunity against bypassing attack [22]–[24].

VI. CONCLUSIONS

In this work, we design an innovative scalar-point-
multiplication algorithm so-called I-m-ary based on
depth-first-addition and flexible window width, and it is
applicable to the Ecliptic curve in Montgomery form and
the curve defined on prime field GF (p).

The theoretical analysis elucidates it clear that it could
effectively decrease the average Hamming weight of
scalar and computation consumption. Related experimen-
tation and statistics analysis demonstrates that its compu-
tation cost is about 59% of one of Montgomery method
and 75.3% of one of NAF algorithm, 84.8% of one of
Double-Base-Chain,and that it is of a better efficiency in
parallel with other similar algorithms.

As to security performance, because its window width
can be adjusted at random on executing, the power-
cost difference of point-addition and point-doubling is
screened effectively, and the profile of energy-cost is
evened. As a result, it can put an effective damper to
bypass analysis and power-attack.

To summarize the text above, if a farther detail valida-
tion research is unfolded smoothly, I-m-ary is a potential
of practical and predominant scalar-point-multiplication
algorithm to be introduced in the information security
application of Ecliptic Curve Cryptography.
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