
A Reuse-based Environment to Build Ensembles
for Time Series Forecasting

Claudio V. Ribeiro

EMGEPRON/Engineering Department, Rio de Janeiro/RJ, Brazil
Email: claudiovas02@yahoo.com.br

Ronaldo R. Goldschmidt

UFRRJ/Technology and Languages Department, Nova Iguaçu/RJ, Brazil
Email: ronaldo.rgold@gmail.com

Ricardo Choren

IME/Computer Engineering Department, Rio de Janeiro/RJ, Brazil
Email: choren@ime.eb.br

Abstract—Several works show that ensembles improve the
performance of time series forecasting solutions. However,
developing an ensemble is not an easy task. Usually, the
analyst has to develop each ensemble as a separate project,
designing, implementing and configuring the individual and
the ensemble methods for each experiment. This paper
proposes a change to this common view. It argues that it is
possible and necessary to also look from a reuse perspective.
Combining ideas from reuse and time series forecasting
requirements, this paper proposes an environment to enable
reusability for ensemble development. The environment
intends to provide a flexible tool for the analyst to include,
configure and execute individual methods and to build and
execute ensemble experiments.

Index Terms—ensembles, time series forecasting, reuse,
environment

I. INTRODUCTION

The ability to model and perform decision modeling
and analysis is an essential feature of many applications,
e.g. financial trading, energy and water distribution, and
military command systems. In such systems, almost all
managerial decisions are based on forecasts: the decision-
maker uses forecasting models to assist in decision-
making process. Indeed, forecasts are needed continually
and their impact on actual performance should be
regularly measured.

In this sense, time series forecasting methods intend to
predict, with the best accuracy possible, future unknown
data values based on historical patterns in the existing
data. A number of techniques have been developed in an
attempt to predict time series from a simple linear
Autoregressive Moving Average models (ARMA) [1]
through conditional models like ARCH or GARCH [1]
up to the complex nonlinear models [2]

A number of machine learning techniques have been
widely used as a promising alternative approach to time
series forecasting and on a number of occasions showed

considerable improvement compared to traditional
regression models [3]. Neural networks are particularly
good at capturing complex nonlinear characteristics of
time series [4]. The most popular neural networks used in
forecasting are the single multi-layer feed forward model
or multi-layer perceptron (MLP) [5]. However, since
there is no guideline for choosing the appropriate MLP
model structure for practical applications. A trial-and-
error approach or cross-validation experiment is often
adopted to help find the 'best' model. Typically a large
number of neural network models are considered: the one
with the best performance in the validation set is chosen
as the winner, and the others are discarded [5].

Moreover, it is generally accepted that every time
series forecasting technique has its weaknesses at some
aspects. In this sense, individual models that work alone
are usually regarded as unable to produce satisfactory
results [6]. Thus it is natural to consider combining
multiple models to generate better data forecasting. Such
a combined system is commonly referred as an ensemble.
Ensemble methods aim at leveraging the performance of
a set of models to achieve better forecasting accuracy
than that of the individual models [7]. Ensembles have
been explored by many researchers such as [8, 9, 10].

Nonetheless, the trial-and-error approach is still
adopted when using ensemble methods, with another
drawback: it is also necessary to develop the ensemble
model. Thus the analyst will need to develop not only a
large number of individual methods, but possibly a
number of combination methods to experiment with
ensembles. When an analyst wants to experiment with
particular algorithms to create ensembles, it is usually
necessary to build each ensemble separately, viewing
each one as a different analysis project.

Software reuse is the process of building or assembling
software applications from previously developed software
parts designed for reuse (assets). Therefore, almost any
software application can be assembled from predefined
assets, provided those assets were designed to be "plug

2450 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.11.2450-2459

compatible". Usually, software reuse is practiced to save
time and money, and to improve quality [11].

This paper presents an environment for ensemble
configuration and execution that uses a reuse perspective.
The idea is to indicate the features of an ensemble
application for time series forecasting and to use reusable
assets to implement those features. The use of features is
motivated by the fact that engineers often speak of
product characteristics in terms of "features the product
has and/or delivers" [12]. They expose requirements or
functions in terms of features and, to them, features are
distinctively identifiable functional abstractions that must
be implemented.

The environment allows for individual methods
development, configuration, selection and execution.
Then the environment allows for combination method
development, configuration and execution. Besides, the
environment allows for result analysis, providing a way
to compare different ensemble experiments. The idea is to
provide a flexible tool that can reuse method components
to experiment with several configurations of ensembles
for time series forecasting.

The remainder of the paper is organized as follows. In
the next section, the theory underlying ensembles and
time series forecasting is briefly reviewed. In the section
that follows, the research methodology is covered. This
includes description of the features and a detailed
discussion of the reuse approach employed. Section V
contains the experimental results of two simple ensemble
exercises designed to use the current method tool and the
final section presents the conclusions.

II. ENSEMBLES AND TIME SERIES FORECASTING

Time-series forecasting is an important research and
application area. Much effort has been devoted over the
past several decades to develop and improve the time-
series forecasting models [13]. Recently a tendency for
combining of linear and nonlinear models for forecasting
time series has been an active research area [14].

Most ensembles for time series forecasting are based
on artificial neural networks. For example, Kuan and Liu
[15] examined the forecasting ability of neural networks
on five exchange rates against the US dollar. Borisov and
Pavlov [16] applied neural networks to forecast the
Russian ruble exchange rate. Both neural networks and
exponential smoothing models were used to predict the
exchange rates. Zhang, [14] proposed to use a hybrid
ARIMA (Box–Jenkins model) and neural network model
for time-series forecasting problem, applying it to the
Mackey-Glass time series.

Such works show the potential of using ensembles for
time series forecasting, but they only investigate the
potential of combining multiple neural network models
for time series forecasting. Thus they try to show that, by
appropriately combining different neural forecasters,
forecasting performance of the individual network can be
improved.

The ensemble idea is to combine several forecasters.
However, these forecasters may not all be instances of the
same algorithm. In this sense, the ensemble is used for

fine-tuning, since small changes in the training set and/or
parameter selection of a neural network, for example, can
produce large changes in the predicted output.

III. THE REUSE-BASED ENVIRONMENT

This section describes the proposed reuse-based
environment for time series forecasting using ensembles.
The environment divides the ensemble development in
two levels: individual and combination (Fig. 1). It
provides five main features: data set division; individual
method development, configuration and execution;
method selection; combination strategy configuration and
execution, and; forecasting analysis.

Figure 1. The environment general architecture.

A. Time Series Selection and Data Set Division
To start developing an ensemble using the proposed

environment, the analyst should select the time series.
The environment requires the time series to be stored in a
database so that it can read its schema. Since the
environment was developed using Java, any DBMS
which has a Java-based connection driver can be used.
The environment reads the schema and presents the series
attributes. The analyst needs to select at least two
attributes: one that will indicate the time ordering, and;
one that will be predicted.

After selecting the time series, the analyst should
indicate the data sets that will be used by both the
individual and combination strategy methods. These
methods can use two or three sets to execute: a training
set; a validation set (optional), and; a test set. The training
set (seen data) is used to build the model (i.e. to
determine its parameters) and the test set (unseen data) to
measure its performance, holding the parameters constant.
Sometimes, the analyst also needs a validation set to tune
the model. The validation set cannot be used for testing
(as it's not unseen). All three data set have to be
representative samples of the data that the model will be
applied to.

The environment allows the analyst to divide the time
series data set into three different strategies, as seen in
Fig. 2. The first strategy divides the available data into
two sets: training and test. The second strategy defines
the three possible sets, but uses the same set of data for

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2451

© 2012 ACADEMY PUBLISHER

the training and the validating phases. Finally, the third
strategy defines different sets for each phase.

Figure 2. Data set division strategies.

B. Individual Method Features
The proposed environment intends to provide a reuse

approach for ensemble development. As an ensemble is
composed of individual methods, these methods should
be developed for reuse. This is mostly because it would
be almost impossible to provide a complete list of
individual method implementations. Thus, such methods
should be designed and implemented as configurable
components.

The re-usability of components depends on the support
of component abstraction in order to make components
available through libraries and on the support of
adaptation techniques to adapt library components to
actual requirements, i.e. to glue service provider and user
together [17]. The proposed environment provides an
abstract interface to deliver a component abstraction.
Every individual method should be developed according
to this interface in order to be able to be included in the
environment library and thus be reused in different
ensemble projects.

This feature was developed using the dependency
injection (or inversion of control) approach [18]. In this
approach, the developer of the method implementation
should extend a predefined interface (i.e. the environment
uses interface injection). Without dependency injection, a
consumer (combination) component that needs a
particular provider (individual method) in order to
accomplish a combination task will depend not only on
the interface of the service, but on the details of a
particular implementation of it as well. The user
component has to handle both its use and the life cycle of
that service – creating an instance, opening and closing
streams, etc. Using dependency injection, however, the
life-cycle of a service is handled by a dependency
provider rather than the consumer. The dependency
provider is an independent, external component that is
part of the proposed environment and that links the
consuming component and the providing component. The
consumer would thus only need a reference to an
implementation of the service that it needed in order to
accomplish the necessary task.

Since the environment is the dependency provider and
any individual method must implement a predefined
interface, it is possible to populate an environment
method library. Whenever an analyst needs a method to

create an ensemble, it should be possible to select and
configure a method component of the library.

The analyst can select any method in the library to be
an individual method in an ensemble. After selecting the
method, the analyst needs to configure its parameters.
Although the methods have the same interface, which
will be used by the environment to invoke its execution
(inversion of control), the configuration is particular for
each method. In this sense, besides implementing the
same interface, the method developer should provide a
configuration interface for the method.

Once the individual methods are configured, they can
be executed. The environment controls this execution and
it stores the execution results. The environment provides
an interface for the analyst to view the execution results
of the individual methods in a graphical way. These
results are also available in a table format for analysis a
posteriori

Storing the execution of a particular configuration of
an individual method execution also fosters reusability. If
an analyst wants to perform ensembles forecasting
experiments with a time series, the prior results can be
directly reused, without the need to re-execute a
particular method configuration.

C. Individual Method Selection
The individual method results should have their

performance analyzed so that the analyst can make an
informed decision as to whether a particular method will
be a seed for the ensemble (combination) or not. In this
sense, the environment provides five approaches to help
an analyst to select which individual methods will be
used in the ensemble. The approaches are:
• All methods selection: in this approach, the results

of all the executed individual methods will be used
in the ensemble combination method;

• Particular method selection: in this approach, the
analyst will specifically indicate which individual
methods will be used in the ensemble combination
method;

• Maximum error index selection: in this approach,
the analyst indicates, to the environment, a value
for a maximum error index. Then, the
environment will automatically select those
individual methods that presented results with an
error smaller than the value provided by the
analyst. This approach can only be used if the time
series data set was divided with a validation set
(second and third division strategies – see Fig. 2)
since the error index of an individual method will
be calculated using the data in this set;

• Percentage error index selection: this approach is
very similar to the above. The difference is that
the analyst indicates a percentage error index,
instead of indicating an absolute error index;

• Automatic selection: in this approach, the analyst
will allow the environment to automatically select
the individual methods that should be used in the
ensemble. The environment executes a series of
simulations, using simple averaging combination,

2452 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

to assess the combination of the available results.
The simulation uses the following process: (i) a
temporary result set is created by combining, with
simple averaging, the results of all individual
methods; (ii) iteratively, the result of an individual
method is removed and a new combination is done,
generating another temporary result set. If this
result set is better than the created in step (i), this
method is discarded definitely. Otherwise, the
method remains and another method is chosen to
re-execute step (ii). The iteration continues until
every method has been tested for removal.

D. Combination Strategy Features
The environment provides two types of combination

strategies which the analyst can select: linear and
nonlinear combination. The provided linear combination
strategies implement simple combination methods, based
on averaging. There are two linear combination strategies
in the environment: simple and weighted averaging.
Simple averaging calculates an average of the results
computed by the selected individual methods for a given
time index. This calculation is the result of the ensemble
forecast.

Weighted averaging weights each selected individual
method result in the average computation. Weights are
calculated using a prediction error metric selected by the
analyst. The environment provides six prediction error
metrics for selection: U-Theil coefficient, mean squared
error (MSE); root mean squared error (RMSE); sum of
squares error (SSE); mean absolute error (MAE), and;
mean absolute percentage error (MAPE). The weights are
calculated using:

∑
= n

i

ii

V

VW

1

1

1
. (1)

Where:
• Vi: is the value calculated by the metric for the ith

individual method result;
• n: is the number of selected individual methods

selected to be used in the ensemble;
• Wi: is the weight for individual method i.

Table 1 shows an example of weight computation.
TABLE 1.

SAMPLE WEIGHT COMPUTATION.

The ensemble forecast for time index k will then be:

 ∑=
n

ii WkSkf
1

*)()(. (2)

Where:
• Si(k): is the prediction for time index k calculated

by individual method i.
If the analyst decides to use a nonlinear combination

strategy, any method in the environment method library
can be used in the ensemble. In addition, the environment
allows the analyst to configure the combination training
and input strategies. Since the combination method can
be any method from the environment library, the analyst
can configure the training strategy, just like it was done
for the individual methods (see Fig. 2).

There are two input strategies offered in the
environment: simple input and sophisticated input. In the
simple input, only the results of the selected individual
methods will be used as inputs for the combination
method. In the sophisticated input, the time series is also
used as input (so the combination method can make an
association with the individual results and the series
pattern).

Then, the environment executes the combination
method. While executing the combination method the
environment may need to make some adjustments if some
individual method used the prediction window concept
(e.g. a regression method). This is because the prediction
windows of the individual methods should be aligned to
indicate the initial time index to be used in the training
phase of the combination method. If the combination
method itself uses a prediction window, this window
should be considered in the alignment as well. Fig. 4
shows an example of the window alignment phase in the
environment.

Figure 3. Prediction window alignment.

In Fig. 3(a), the prediction windows of the methods
(that could include the combination method) are shown.
The prediction window sizes are 10, 3 and 5 for methods
A, B and C respectively. Then the first target element
method A predicts is the eleventh element. In this sense,
methods B and C do not need to use its prediction
windows until the eleventh element. Fig. 3(b) shows the
final alignment.

E. Ensemble Forecasting Analysis
The results of the combination method execution are

stored, similarly to what was done for each individual
methods. These results are used for analysis and the

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2453

© 2012 ACADEMY PUBLISHER

environment provides a graphical interface for the analyst
to perform the analysis.

The analysis interface is a separate feature of the
environment. This means that the analyst can experiment
with several ensembles and then open the analysis
interfaces of all desired experiments to verify their
performance.

IV. THE ENVIRONMENT PROTOTYPE

The current version of the environment prototype was
developed using Java. There are several frameworks that
provide a Java implementation, such as neural networks.
Moreover, the popularity of object-oriented development
(OOD) brought the notion of reuse to the forefront.

Currently, the method library is not a whole separate
component of the environment. Thus it is not possible to
create an integrated library of the new components. The
component interface is provided and the developer should
develop the method according to the provided interface.
Then it is necessary to build the environment again so
that it can recognize the new added method. There is a
build mechanism that helps the developer to add the
method component into the environment. Moreover, the
environment already has some ‘pre-installed’ methods
that include Naïve Forecasting, Moving Average,
Exponential Smoothing, Wang-Mendel Method [19] and
Backpropagation.

To begin using the environment prototype for building
an ensemble for time series forecasting, the analyst
should create an ensemble project. This project is a space
that will hold all configuration information about the
experiment, such as the time series data, the individual
methods and their configuration, and so on.

Once defined the ensemble project, the analyst should
select the time series (i.e., indicate the database that
stores the time series data). Once the analyst selected the
database containing the time series, the environment
presents a list of attributes. The analyst must indicate
which attribute is to be predicted and which one should
be considered the time index. After this initial
configuration the prototype shows the time series data to
the analyst (Fig. 4).

Figure 4. Selecting a time series.

Then, it is necessary to divide the data set. The analyst
must indicate a training set and a test set and, optionally,
indicate a validation set. To do so, the analyst should
indicate the indexes stating the start and end tuples of the
database that describe each subset. These indexes refer to
the time index attribute selected previously. Fig. 5 shows
the subset configuration in the prototype. The percentages
are automatically calculated according to the record spam
of the provided indexes.

Both features (time series data import and data set
division) are provided directly by the environment. This
information is stored and it will be used by all individual
methods that will compose the ensemble.

Then, the analyst should select and configure the
individual methods to be used. As mentioned before,
method configuration interfaces should be done along
with the method development. In this paper, we will
discuss only the interfaces of the pre-installed method
components.

Figure 5. Data set division.

For the Naive Forecasting, there are no parameters to
configure since it predicts the value of ki+1 element as
being the same as the ki element. For the Moving
Average, the analyst should configure the prediction
window. For the Exponential Smoothing, the analyst
should configure the smoothing factor (α). The formula
for the Exponential Smoothing component method in the
environment prototype implementation is the following:

)(* 11

00

−− −+=
=

tttt SXSS
XS

α
. (3)

The analyst must configure the number of sets and the
size of the prediction window for the Wang-Mendel
method. In the available implementation of the method,
the membership function is triangular. Finally, for the
Backpropagation method, the analyst should configure

2454 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

the parameters for a multilayer perceptrons neural
network, including number of epochs, type of activate
functions, momentum term, learning rate, and so on.

The analyst can configure as many individual methods
as it is necessary, regardless of their type. For instance,
the analyst can configure two backpropagation methods
to be used in the ensemble experiment. This configuration
is stored at the ensemble project.

After configuring the individual methods, the analyst
can have the environment execute them. Using the
inversion of control mechanism, the environment starts
the execution of each selected and configured individual
method and stores its results. Currently, the environment
does not present a multi-thread execution mechanism,
which means that each individual method will be
executed serially. The results are stored and they can be
used in other ensemble experiments. For instance, the
analyst creates an ensemble project with two individual
methods. These methods are configured and executed.
Then the whole ensemble is executed. If the analyst
wants to make another experiment using the two previous
individual methods and add another one, it will only be
necessary to configure and execute this distinct individual
method. The ensemble method can then be re-executed
using this new individual method and the results stored
for the previous ones, reusing their execution results.

Before executing the ensemble method, the analyst can
make a selection of the individual methods that will be
used by the combination method. As mentioned in
subsection 3.C, the analyst can use five different
strategies to select the subset of individual methods that
will be used. In the current version of the prototype, the
metrics that can be used if the analyst chooses the
selection by a maximum index or the selection by
percentage index strategies are: U-Theil; mean square
error (MSE); root mean square error (RMSE); sum of
squares error (SSE); mean absolute error (MAE), and;
mean absolute percentage error (MAPE). Other metrics
are foreseen to be included by the analyst in the new
prototype version. Fig. 6 and 7 show the selection by a
maximum index and the individual selection approach,
respectively.

Following the selection of the individual methods, the
analyst must configure and execute the combination
method. The configuration is done in a similar fashion to
the individual methods configuration. At this moment, the
analyst can indicate if the time series data will be used as
an input to the combination method or if it will only use
the results of the selected individual methods. This
feature is available in the nonlinear combination strategy.

Then, the environment executes the combination
method. If necessary, the environment adjusts the
prediction windows before executing. After executing the
combination method, the environment stores the results
that were generated for analysis.

Figure 6. Selection by a maximum index strategy.

Figure 7. Individual selection strategy.

V. USAGE RESULTS

This section discusses the empirical results of the
effectiveness of ensemble methods using the proposed
environment. It presents the results from two experiments
designed to determine whether the ensembles created in
the environment are better, or worse, than the individual
methods currently provided by the environment (see
section 4). The first example shows an ensemble for the
forecasting of the Mackey-Glass time series [20]. The
second illustrates an example of the Sun Spots time series
[20] forecasting.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2455

© 2012 ACADEMY PUBLISHER

A. The Mackey-Glass Experiment
The data used in the Mackey-Glass experiment

encompassed 1500 records: the lowest series value was
0.212559300 and the highest value was 1.378507200. In
this experiment, all available individual methods were
used, with the following configurations:
• Naïve Forecasting: no configuration needed;
• Moving Average: prediction window size = 3;
• Exponential Smoothing: smoothing factor = 0,9;
• Wang-Mendel Method:

prediction window size = 7;
number of fuzzy sets = 7;

• Backpropagation:
learning rate = 0,6;
momentum factor = 0,3;
number of epochs = 5000;
input layer:

number of neurons = 9;

activation function = linear;
hidden layer:

number of neurons = 9;
activation function = sigmoid;

output layer:
number of neurons = 1;
activation function = linear;

For the individual methods, the series data were
divided into the following sets (according to strategy
depicted in Fig. 2(b)): 70% training; 70% validation, and;
30% test. For the combination method, the series data
were divided into the following sets (according to
strategy depicted in Fig. 2(a)): 70 % training and; 30%
test.

Table 2 reports the detailed results of the individual
methods. Overall, from Table 2, it is observed that the
backpropagation method provided the best individual
result, while the moving average method provided the
worst result.

TABLE 2.

INDIVIDUAL LEVEL METHOD FORECASTING RESULTS.

For the ensemble experiment, it was decided to use the

nonlinear combination (backpropagation algorithm). This
decision is due to the fact that the Linear combination
will not produce good results when the most individual
results are weak.. It was also decided to use all individual
method results as input to the ensemble. The results of the
three different configurations of the backpropagation
ensemble models are given in Table 3. Although the
differences between the ensembles and the best individual
method are relatively small, the ensemble method
consistently gives better performance.

TABLE 3.

ENSEMBLE FORECASTING RESULTS.

B. The Sun Spots Experiment

The second experiment used the Sun Spots time series
and was used to experiment with only backpropagation
methods (both at individual and combination levels).
Given the apparent autocorrelations of time series data,

the predictions from backpropagation methods built from
the same data are often highly correlated, which reduces
the effectiveness of the ensemble method [5]. Therefore,
this experiment was used to verify if the ensemble is still
a good solution.

This experiment used five different configurations of
the backpropagation method as individuals. Their
configurations were the following:
• Backpropagation: configuration number 1

learning rate = 0,9;
momentum factor = 0,1;
number of epochs = 3000;
input layer:

number of neurons = 4;
activation function = linear;

hidden layer:
number of neurons = 5;
activation function = sigmoid;

output layer:
number of neurons = 1;
activation function = linear;

• Backpropagation: configuration number 2
learning rate = 0,9;
momentum factor = 0,1;
number of epochs = 3000;
input layer:

number of neurons = 6;

2456 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

activation function = linear;
hidden layer:

number of neurons = 5;
activation function = sigmoid;

output layer:
number of neurons = 1;
activation function = linear;

• Backpropagation: configuration number 3
learning rate = 0,9;
momentum factor = 0,1;
number of epochs = 3000;
input layer:

number of neurons = 7;
activation function = linear;

hidden layer:
number of neurons = 8;
activation function = sigmoid;

output layer:
number of neurons = 1;
activation function = linear;

• Backpropagation: configuration number 4
learning rate = 0,9;
momentum factor = 0,1;
number of epochs = 3000;
input layer:

number of neurons = 6;
activation function = linear;

hidden layer number 1:
number of neurons = 7;
activation function = sigmoid;

hidden layer number 2:
number of neurons = 4;
activation function = sigmoid;

output layer:
number of neurons = 1;
activation function = linear;

• Backpropagation: configuration number 5

learning rate = 0,9;
momentum factor = 0,1;
number of epochs = 10000;
input layer:

number of neurons = 4;
activation function = linear;

hidden layer number 1:
number of neurons = 6;
activation function = sigmoid;

hidden layer number 2:
number of neurons = 3;
activation function = sigmoid;

output layer:
number of neurons = 1;
activation function = linear;

For the individual methods, the series data were
divided into the following sets (according to strategy
depicted in Fig. 2(b)): 85% training; 85% validation, and;
15% test. For the combination method, the series data
were divided into the following sets (according to
strategy depicted in Fig. 2(a)): 85 % training and; 15%
test.

Three backpropagation method ensembles were
created for this experiment. The first used only the
individual method results. The second one used the
individual method results that and another input
configured with the smallest individual prediction
window size (in this experiment, size 4). Finally, the third
one used the individual method results and another input
configured with the largest individual prediction window
size (in this experiment, size 7).

Table 4 reports the results of the individual methods.
Some observations can be made from Table 4. First, the
results are very similar in nearly all cases. Secondly, the
methods using two hidden layers performed slightly
better than the others.

TABLE 4.

INDIVIDUAL LEVEL METHOD FORECASTING RESULTS.

The results of ensemble models created with the three

different configurations of the backpropagation method
are given in Table 5. When compared to the individual
methods, the first ensemble did not present any increase
in the performance, although performed better than the
majority. The second and third ensembles performed a
little better in almost all the metrics.

TABLE 5.
ENSEMBLE FORECASTING RESULTS.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2457

© 2012 ACADEMY PUBLISHER

C. Some Discussion
It is likely that ensembles can achieve better results

than the best individual found in the forecasting task (as
happens in classification), but this needs to be confirmed
empirically [21]. Yet, the results in the two experiments
indeed show that the ensemble models can have a
significant improvement over individual methods.

Although the examples described above intend to
evaluate the environment it shows that ensemble models
to rime series forecasting have potential. The results
obtained from the environment are consistent with the
current state of the art:
• Individual level performance: individual nonlinear

methods present better performance when
compared to individual linear methods, especially
in non-stationary times series;

• Linear method performance: linear combination
ensembles present better performance when
compared to individual methods which results are
near and have small errors;

• Combination level performance: nonlinear
combination methods show an improvement over
linear combination methods despite the kind of the
individual level methods used;

• MLP combination: MLP combination methods,
usually, are the most applicable combination
method.

VI. CONCLUSIONS

Time series analysis and prediction is an important
task in all fields of science for applications like financial
forecasting, weather forecasting, electricity power
demand forecasting, process monitoring and control,
research, medical sciences, etc [22]. There have been
several approaches showing that ensembles of neural
networks can improve the performance over any one
individual.

Results show that by appropriately combining different
neural networks, forecasting accuracy of individual
networks can be largely improved [5]. However, it is not
easy to determine the number of individual forecasting
models that should participate in an ensemble [22]. It was
reported that, “the more, the best” rule cannot be applied
effectively for all circumstances [23]. The number of
individual models to be combined for forecasting and
their parameters has to be determined. Moreover, in some
circumstances, the linear combination approach can be
appropriate – thus, it is necessary to experiment with it.

Nonetheless, experimenting is not an easy task. The
analyst needs to try several combinations of individual
methods, with another number of ensemble methods.
Usually, each ensemble experiment is devised from
scratch, requiring an extra amount of work. Although
several studies evaluates the benefits and potentials of
ensemble models for time series forecasting research
efforts should also be devoted to the techniques and tools
that can further reduce the workload required to
experiment with ensembles.

The main idea of this paper is not to investigate several
strategies to form ensemble models neither to actually
measure their performance improvements. The idea is to
show an environment to help the analyst to experiment
with ensembles, following a reuse-based approach. Reuse
is identified as a promising technology that uses the
cumulative experience of previous designs to enhance
later designs. In this case, reuse approach is the process
of implementing or updating ensemble systems using
existing software assets that can be both at individual or
combination levels.

This paper describes an approach to the design of tools
to help analysts build repositories of method components,
locate potentially reusable methods in those repositories
and facilitate the development of ensemble experiments.
Thus the environment presented here provides features
for creating and managing a method implementation
library, method configuration and selection, execution
results storage and result analysis. All these features have
the purpose of providing a tool to help the analyst work
of devising ensemble experiments.

There are points for improvements in the proposed
environment. The library of methods needs to become
more extensible and it could provide retrieval tools to
help the analyst to find the needed components. The
prototype presented is also just a first approximation and
it requires some investment to become a stable usable
tool.

ACKNOWLEDGMENT

This work was supported, in part, by a grant from The
Brazilian Council for Scientific and Technological
Development (CNPq) for Ricardo Choren.

REFERENCES

[1] R. S. Tsai, "Analysis of financial time series", John Wiley
& Sons, 2002.

[2] M. Casdagli, "Nonlinear prediction of chaotic time series",
Physica, vol. 35, pp. 335–356, 1989.

[3] F. E. H. Tay and L. J. Cao, "Modified support vector
machines in financial time series forecasting,"
Neurocomputing, vol. 48, n. 1, pp. 847–861, 2002.

[4] Z. Vojinovic, V. Kecman, and R. Seidel, "A data mining
approach to financial time series modelling and
forecasting," International Journal of Intelligent Systems in
Accounting, Finance & Management, vol. 10, n. 4, pp.
225–239, 2001.

[5] G. P. Zhang and V. L. Berardi, "Time series forecasting
with neural network ensembles: An application for
exchange rate prediction," The Journal of the Operational
Research Society, vol. 52, n. 6, pp. 652–664, 2001.

[6] W. Wang, G. Richards, and S. Rea, "Hybrid data mining
ensemble for predicting osteoporosis risk," in Proceedings
of the 27th IEEE Engineering in Medicine and Biology
Conference, 2005, pp. 886–889.

[7] A. Bouchachia and S. Bouchachia, "Ensemble learning for
time series prediction," in Proceedings of the International
Workshop on Nonlinear Dynamic Systems and
Synchronization, 2008.

[8] K. Brazier and W. Wang, "Implicit fitness sharing
speciation and emergent diversity in tree classifier
ensembles," in Proceedings of the 5th Conference on

2458 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

Intelligent Data Engineering and Automated Learning,
2004, pp. 333–338.

[9] T. G. Dietterich, "Ensemble methods in machine learning,"
in Proceedings of the 1st International Workshop on
Multiple Classifier Systems, LNCS 1857, 2000, pp. 1–15.

[10] L. K. Hansen and P. Salamon, "Neural network
ensembles," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 12, n. 10, pp. 993–1001, 1990.

[11] IEEE, "IEEE Standard for Information Technology—
Software Life Cycle Processes—Reuse Processes", IEEE
Standard 1517—1999, 1999.

[12] K. C. Kang, S. Kim, J. Lee, K. Kim, G. J. Kim, and E. Shin,
"FORM: A feature-oriented reuse method with domain-
specific reference architectures," Annals of Software
Engineering, vol. 5, pp. 143-168, 1998.

[13] Y. Chen, B. Yang, J. Dong, and A. Abraham, "Time-series
forecasting using flexible neural tree model," Information
Sciences: an International Journal, vol. 174, n.3–4, pp.
219–235, 2005.

[14] G. P. Zhang, "Time series forecasting using a hybrid
ARIMA and neural network model," Neurocomputing, vol.
50, pp. 159–175, 2003.

[15] C. M. Kuan and T. Liu, "Forecasting exchange rates using
feedforward and recurrent neural networks," Journal of
Applied Econometrics, vol. 10, pp. 347–364, 1995.

[16] A. N. Borisov and V. A. Pavlov, "Prediction of a
continuous function with the aid of neural networks,"
Automatic Control and Computer Sciences, vol. 29, pp.
39–50, 1995.

[17] G. T. Leavens and M. Sitamaran, "Foundations of
component-based systems," Cambridge University Press,
2000.

[18] M. Fowler, "Inversion of control containers and the
dependency injection pattern," available at:
http://martinfowler.com/articles/injection.html, 2004.

[19] L. X. Wang and J. M. Mendel, "Generating fuzzy rules by
learning from examples," IEEE Transactions on Systems,
Man and Cybernetics, vol. 22, n. 6, pp. 1414–1427, 1992.

[20] E.A. Wan, "Time series data", Department of Computer
Science and Electrical Engineering at Oregon Health &
Science University, available at
http://www.cse.ogi.edu/~ericwan/data.html, 2001.

[21] V. M. Landassuri-Moreno and J. A. Bullinaria, "Neural
network ensembles for time series forecasting," in
Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, 2009, pp. 1235-1242.

[22] A. Chitra and S. Uma, "An ensemble model of multiple
classifiers for time series prediction," International Journal
of Computer Theory and Engineering vol. 2, no. 3, pp.
454-458, 2010.

[23] K. V. G. Rao, P. P. Chand, and M. V. R. Murthy, "Soft
computing-neural networks ensembles", Journal of
Theoretical and Applied Information Technology, vol. 3, n.
4, pp. 45-50, 2007.

Claudio V. Ribeiro is an Electronic
Engineer at the Naval Design Company.
His main research interests are in data
fusion algorithms and time series
forecasting. He has published two papers
in international conferences. He has a
Master of Science degree in Systems and
Computing at the Military Institute of
Engineering of Rio de Janeiro, Brazil.

Ronaldo R. Goldschmidt is an
associate professor at the
Multidisciplinary Institute of the Federal
Rural University of Rio de Janeiro,
Brazil. His main research interests are in
artificial intelligence and data mining.
He has published over 40 papers in
journals, book chapters, conferences,
and workshops, and has co-edited 6

books on artificial intelligence, data mining, computer science
and education. He is also a member of the Brazilian Computer
Society.

Ricardo Choren is an associate
professor at the Computer Engineering
Department of the Military Institute of
Engineering. His main research interests
are in software engineering techniques
for autonomous software systems,
particularly multi-agent systems. He has
published over 70 papers in journals,
book chapters, conferences, and
workshops, and has co-edited 3 LNCS

volumes on software engineering for multi-agent systems. He
has been PC or senior PC member for a number of events. He is
a member of the ACM and of the Brazilian Computer Society.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2459

© 2012 ACADEMY PUBLISHER

