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Abstract—Several works show that ensembles improve the 
performance of time series forecasting solutions. However, 
developing an ensemble is not an easy task. Usually, the 
analyst has to develop each ensemble as a separate project, 
designing, implementing and configuring the individual and 
the ensemble methods for each experiment. This paper 
proposes a change to this common view. It argues that it is 
possible and necessary to also look from a reuse perspective. 
Combining ideas from reuse and time series forecasting 
requirements, this paper proposes an environment to enable 
reusability for ensemble development. The environment 
intends to provide a flexible tool for the analyst to include, 
configure and execute individual methods and to build and 
execute ensemble experiments. 
 
Index Terms—ensembles, time series forecasting, reuse, 
environment 
 

I.  INTRODUCTION 

The ability to model and perform decision modeling 
and analysis is an essential feature of many applications, 
e.g. financial trading, energy and water distribution, and 
military command systems. In such systems, almost all 
managerial decisions are based on forecasts: the decision-
maker uses forecasting models to assist in decision-
making process. Indeed, forecasts are needed continually 
and their impact on actual performance should be 
regularly measured. 

In this sense, time series forecasting methods intend to 
predict, with the best accuracy possible, future unknown 
data values based on historical patterns in the existing 
data. A number of techniques have been developed in an 
attempt to predict time series from a simple linear 
Autoregressive Moving Average models (ARMA) [1] 
through conditional models like ARCH or GARCH [1] 
up to the complex nonlinear models [2] 

A number of machine learning techniques have been 
widely used as a promising alternative approach to time 
series forecasting and on a number of occasions showed 

considerable improvement compared to traditional 
regression models [3]. Neural networks are particularly 
good at capturing complex nonlinear characteristics of 
time series [4]. The most popular neural networks used in 
forecasting are the single multi-layer feed forward model 
or multi-layer perceptron (MLP) [5]. However, since 
there is no guideline for choosing the appropriate MLP 
model structure for practical applications. A trial-and-
error approach or cross-validation experiment is often 
adopted to help find the 'best' model. Typically a large 
number of neural network models are considered: the one 
with the best performance in the validation set is chosen 
as the winner, and the others are discarded [5]. 

Moreover, it is generally accepted that every time 
series forecasting technique has its weaknesses at some 
aspects. In this sense, individual models that work alone 
are usually regarded as unable to produce satisfactory 
results [6]. Thus it is natural to consider combining 
multiple models to generate better data forecasting. Such 
a combined system is commonly referred as an ensemble. 
Ensemble methods aim at leveraging the performance of 
a set of models to achieve better forecasting accuracy 
than that of the individual models [7]. Ensembles have 
been explored by many researchers such as [8, 9, 10]. 

Nonetheless, the trial-and-error approach is still 
adopted when using ensemble methods, with another 
drawback: it is also necessary to develop the ensemble 
model. Thus the analyst will need to develop not only a 
large number of individual methods, but possibly a 
number of combination methods to experiment with 
ensembles. When an analyst wants to experiment with 
particular algorithms to create ensembles, it is usually 
necessary to build each ensemble separately, viewing 
each one as a different analysis project. 

Software reuse is the process of building or assembling 
software applications from previously developed software 
parts designed for reuse (assets). Therefore, almost any 
software application can be assembled from predefined 
assets, provided those assets were designed to be "plug 

2450 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.11.2450-2459



compatible". Usually, software reuse is practiced to save 
time and money, and to improve quality [11]. 

This paper presents an environment for ensemble 
configuration and execution that uses a reuse perspective. 
The idea is to indicate the features of an ensemble 
application for time series forecasting and to use reusable 
assets to implement those features. The use of features is 
motivated by the fact that engineers often speak of 
product characteristics in terms of "features the product 
has and/or delivers" [12]. They expose requirements or 
functions in terms of features and, to them, features are 
distinctively identifiable functional abstractions that must 
be implemented. 

The environment allows for individual methods 
development, configuration, selection and execution. 
Then the environment allows for combination method 
development, configuration and execution. Besides, the 
environment allows for result analysis, providing a way 
to compare different ensemble experiments. The idea is to 
provide a flexible tool that can reuse method components 
to experiment with several configurations of ensembles 
for time series forecasting. 

The remainder of the paper is organized as follows. In 
the next section, the theory underlying ensembles and 
time series forecasting is briefly reviewed. In the section 
that follows, the research methodology is covered. This 
includes description of the features and a detailed 
discussion of the reuse approach employed. Section V 
contains the experimental results of two simple ensemble 
exercises designed to use the current method tool and the 
final section presents the conclusions. 

II.  ENSEMBLES AND TIME SERIES FORECASTING 

Time-series forecasting is an important research and 
application area. Much effort has been devoted over the 
past several decades to develop and improve the time-
series forecasting models [13]. Recently a tendency for 
combining of linear and nonlinear models for forecasting 
time series has been an active research area [14]. 

Most ensembles for time series forecasting are based 
on artificial neural networks. For example, Kuan and Liu 
[15] examined the forecasting ability of neural networks 
on five exchange rates against the US dollar. Borisov and 
Pavlov [16] applied neural networks to forecast the 
Russian ruble exchange rate. Both neural networks and 
exponential smoothing models were used to predict the 
exchange rates. Zhang, [14] proposed to use a hybrid 
ARIMA (Box–Jenkins model) and neural network model 
for time-series forecasting problem, applying it to the 
Mackey-Glass time series. 

Such works show the potential of using ensembles for 
time series forecasting, but they only investigate the 
potential of combining multiple neural network models 
for time series forecasting. Thus they try to show that, by 
appropriately combining different neural forecasters, 
forecasting performance of the individual network can be 
improved. 

The ensemble idea is to combine several forecasters. 
However, these forecasters may not all be instances of the 
same algorithm. In this sense, the ensemble is used for 

fine-tuning, since small changes in the training set and/or 
parameter selection of a neural network, for example, can 
produce large changes in the predicted output. 

III.  THE REUSE-BASED ENVIRONMENT 

This section describes the proposed reuse-based 
environment for time series forecasting using ensembles. 
The environment divides the ensemble development in 
two levels: individual and combination (Fig. 1). It 
provides five main features: data set division; individual 
method development, configuration and execution; 
method selection; combination strategy configuration and 
execution, and; forecasting analysis. 

 
Figure 1. The environment general architecture. 

A.  Time Series Selection and Data Set Division 
To start developing an ensemble using the proposed 

environment, the analyst should select the time series. 
The environment requires the time series to be stored in a 
database so that it can read its schema. Since the 
environment was developed using Java, any DBMS 
which has a Java-based connection driver can be used. 
The environment reads the schema and presents the series 
attributes. The analyst needs to select at least two 
attributes: one that will indicate the time ordering, and; 
one that will be predicted. 

After selecting the time series, the analyst should 
indicate the data sets that will be used by both the 
individual and combination strategy methods. These 
methods can use two or three sets to execute: a training 
set; a validation set (optional), and; a test set. The training 
set (seen data) is used to build the model (i.e. to 
determine its parameters) and the test set (unseen data) to 
measure its performance, holding the parameters constant. 
Sometimes, the analyst also needs a validation set to tune 
the model. The validation set cannot be used for testing 
(as it's not unseen). All three data set have to be 
representative samples of the data that the model will be 
applied to. 

The environment allows the analyst to divide the time 
series data set into three different strategies, as seen in 
Fig. 2. The first strategy divides the available data into 
two sets: training and test. The second strategy defines 
the three possible sets, but uses the same set of data for 
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the training and the validating phases. Finally, the third 
strategy defines different sets for each phase. 

 
Figure 2. Data set division strategies. 

B.  Individual Method Features 
The proposed environment intends to provide a reuse 

approach for ensemble development. As an ensemble is 
composed of individual methods, these methods should 
be developed for reuse. This is mostly because it would 
be almost impossible to provide a complete list of 
individual method implementations. Thus, such methods 
should be designed and implemented as configurable 
components. 

The re-usability of components depends on the support 
of component abstraction in order to make components 
available through libraries and on the support of 
adaptation techniques to adapt library components to 
actual requirements, i.e. to glue service provider and user 
together [17]. The proposed environment provides an 
abstract interface to deliver a component abstraction. 
Every individual method should be developed according 
to this interface in order to be able to be included in the 
environment library and thus be reused in different 
ensemble projects. 

This feature was developed using the dependency 
injection (or inversion of control) approach [18]. In this 
approach, the developer of the method implementation 
should extend a predefined interface (i.e. the environment 
uses interface injection). Without dependency injection, a 
consumer (combination) component that needs a 
particular provider (individual method) in order to 
accomplish a combination task will depend not only on 
the interface of the service, but on the details of a 
particular implementation of it as well. The user 
component has to handle both its use and the life cycle of 
that service – creating an instance, opening and closing 
streams, etc. Using dependency injection, however, the 
life-cycle of a service is handled by a dependency 
provider rather than the consumer. The dependency 
provider is an independent, external component that is 
part of the proposed environment and that links the 
consuming component and the providing component. The 
consumer would thus only need a reference to an 
implementation of the service that it needed in order to 
accomplish the necessary task. 

Since the environment is the dependency provider and 
any individual method must implement a predefined 
interface, it is possible to populate an environment 
method library. Whenever an analyst needs a method to 

create an ensemble, it should be possible to select and 
configure a method component of the library. 

The analyst can select any method in the library to be 
an individual method in an ensemble. After selecting the 
method, the analyst needs to configure its parameters. 
Although the methods have the same interface, which 
will be used by the environment to invoke its execution 
(inversion of control), the configuration is particular for 
each method. In this sense, besides implementing the 
same interface, the method developer should provide a 
configuration interface for the method. 

Once the individual methods are configured, they can 
be executed. The environment controls this execution and 
it stores the execution results. The environment provides 
an interface for the analyst to view the execution results 
of the individual methods in a graphical way. These 
results are also available in a table format for analysis a 
posteriori  

Storing the execution of a particular configuration of 
an individual method execution also fosters reusability. If 
an analyst wants to perform ensembles forecasting 
experiments with a time series, the prior results can be 
directly reused, without the need to re-execute a 
particular method configuration. 

C.  Individual Method Selection 
The individual method results should have their 

performance analyzed so that the analyst can make an 
informed decision as to whether a particular method will 
be a seed for the ensemble (combination) or not. In this 
sense, the environment provides five approaches to help 
an analyst to select which individual methods will be 
used in the ensemble. The approaches are: 
• All methods selection: in this approach, the results 

of all the executed individual methods will be used 
in the ensemble combination method; 

• Particular method selection: in this approach, the 
analyst will specifically indicate which individual 
methods will be used in the ensemble combination 
method; 

• Maximum error index selection: in this approach, 
the analyst indicates, to the environment, a value 
for a maximum error index. Then, the 
environment will automatically select those 
individual methods that presented results with an 
error smaller than the value provided by the 
analyst. This approach can only be used if the time 
series data set was divided with a validation set 
(second and third division strategies – see Fig. 2) 
since the error index of an individual method will 
be calculated using the data in this set; 

• Percentage error index selection: this approach is 
very similar to the above. The difference is that 
the analyst indicates a percentage error index, 
instead of indicating an absolute error index; 

• Automatic selection: in this approach, the analyst 
will allow the environment to automatically select 
the individual methods that should be used in the 
ensemble. The environment executes a series of 
simulations, using simple averaging combination, 
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to assess the combination of the available results. 
The simulation uses the following process: (i) a 
temporary result set is created by combining, with 
simple averaging, the results of all individual 
methods; (ii) iteratively, the result of an individual 
method is removed and a new combination is done, 
generating another temporary result set. If this 
result set is better than the created in step (i), this 
method is discarded definitely. Otherwise, the 
method remains and another method is chosen to 
re-execute step (ii). The iteration continues until 
every method has been tested for removal. 

D.  Combination Strategy Features 
The environment provides two types of combination 

strategies which the analyst can select: linear and 
nonlinear combination. The provided linear combination 
strategies implement simple combination methods, based 
on averaging. There are two linear combination strategies 
in the environment: simple and weighted averaging. 
Simple averaging calculates an average of the results 
computed by the selected individual methods for a given 
time index. This calculation is the result of the ensemble 
forecast. 

Weighted averaging weights each selected individual 
method result in the average computation. Weights are 
calculated using a prediction error metric selected by the 
analyst. The environment provides six prediction error 
metrics for selection: U-Theil coefficient, mean squared 
error (MSE); root mean squared error (RMSE); sum of 
squares error (SSE); mean absolute error (MAE), and; 
mean absolute percentage error (MAPE). The weights are 
calculated using: 

 

∑
= n

i

ii

V

VW

1

1

1
. (1) 

Where: 
• Vi: is the value calculated by the metric for the ith 

individual method result; 
• n: is the number of selected individual methods 

selected to be used in the ensemble; 
• Wi: is the weight for individual method i. 

Table 1 shows an example of weight computation. 
TABLE 1.  

SAMPLE WEIGHT COMPUTATION. 

 
The ensemble forecast for time index k will then be: 

 ∑=
n

ii WkSkf
1

*)()( . (2) 

Where: 
• Si(k): is the prediction for time index k calculated 

by individual method i. 
If the analyst decides to use a nonlinear combination 

strategy, any method in the environment method library 
can be used in the ensemble. In addition, the environment 
allows the analyst to configure the combination training 
and input strategies. Since the combination method can 
be any method from the environment library, the analyst 
can configure the training strategy, just like it was done 
for the individual methods (see Fig. 2). 

There are two input strategies offered in the 
environment: simple input and sophisticated input. In the 
simple input, only the results of the selected individual 
methods will be used as inputs for the combination 
method. In the sophisticated input, the time series is also 
used as input (so the combination method can make an 
association with the individual results and the series 
pattern). 

Then, the environment executes the combination 
method. While executing the combination method the 
environment may need to make some adjustments if some 
individual method used the prediction window concept 
(e.g. a regression method). This is because the prediction 
windows of the individual methods should be aligned to 
indicate the initial time index to be used in the training 
phase of the combination method. If the combination 
method itself uses a prediction window, this window 
should be considered in the alignment as well. Fig. 4 
shows an example of the window alignment phase in the 
environment. 

 
Figure 3. Prediction window alignment. 

In Fig. 3(a), the prediction windows of the methods 
(that could include the combination method) are shown. 
The prediction window sizes are 10, 3 and 5 for methods 
A, B and C respectively. Then the first target element 
method A predicts is the eleventh element. In this sense, 
methods B and C do not need to use its prediction 
windows until the eleventh element. Fig. 3(b) shows the 
final alignment. 

E.  Ensemble Forecasting Analysis 
The results of the combination method execution are 

stored, similarly to what was done for each individual 
methods. These results are used for analysis and the 
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environment provides a graphical interface for the analyst 
to perform the analysis. 

The analysis interface is a separate feature of the 
environment. This means that the analyst can experiment 
with several ensembles and then open the analysis 
interfaces of all desired experiments to verify their 
performance. 

IV.  THE ENVIRONMENT PROTOTYPE 

The current version of the environment prototype was 
developed using Java. There are several frameworks that 
provide a Java implementation, such as neural networks. 
Moreover, the popularity of object-oriented development 
(OOD) brought the notion of reuse to the forefront. 

Currently, the method library is not a whole separate 
component of the environment. Thus it is not possible to 
create an integrated library of the new components. The 
component interface is provided and the developer should 
develop the method according to the provided interface. 
Then it is necessary to build the environment again so 
that it can recognize the new added method. There is a 
build mechanism that helps the developer to add the 
method component into the environment. Moreover, the 
environment already has some ‘pre-installed’ methods 
that include Naïve Forecasting, Moving Average, 
Exponential Smoothing, Wang-Mendel Method [19] and 
Backpropagation. 

To begin using the environment prototype for building 
an ensemble for time series forecasting, the analyst 
should create an ensemble project. This project is a space 
that will hold all configuration information about the 
experiment, such as the time series data, the individual 
methods and their configuration, and so on. 

Once defined the ensemble project, the analyst should 
select the time series (i.e., indicate the database that 
stores the time series data). Once the analyst selected the 
database containing the time series, the environment 
presents a list of attributes. The analyst must indicate 
which attribute is to be predicted and which one should 
be considered the time index. After this initial 
configuration the prototype shows the time series data to 
the analyst (Fig. 4). 

 
Figure 4. Selecting a time series. 

Then, it is necessary to divide the data set. The analyst 
must indicate a training set and a test set and, optionally, 
indicate a validation set. To do so, the analyst should 
indicate the indexes stating the start and end tuples of the 
database that describe each subset. These indexes refer to 
the time index attribute selected previously. Fig. 5 shows 
the subset configuration in the prototype. The percentages 
are automatically calculated according to the record spam 
of the provided indexes. 

Both features (time series data import and data set 
division) are provided directly by the environment. This 
information is stored and it will be used by all individual 
methods that will compose the ensemble. 

Then, the analyst should select and configure the 
individual methods to be used. As mentioned before, 
method configuration interfaces should be done along 
with the method development. In this paper, we will 
discuss only the interfaces of the pre-installed method 
components. 

 
Figure 5. Data set division. 

For the Naive Forecasting, there are no parameters to 
configure since it predicts the value of ki+1 element as 
being the same as the ki element. For the Moving 
Average, the analyst should configure the prediction 
window. For the Exponential Smoothing, the analyst 
should configure the smoothing factor (α). The formula 
for the Exponential Smoothing component method in the 
environment prototype implementation is the following: 

 
)(* 11

00

−− −+=
=

tttt SXSS
XS

α
. (3) 

The analyst must configure the number of sets and the 
size of the prediction window for the Wang-Mendel 
method. In the available implementation of the method, 
the membership function is triangular. Finally, for the 
Backpropagation method, the analyst should configure 
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the parameters for a multilayer perceptrons neural 
network, including number of epochs, type of activate 
functions, momentum term, learning rate, and so on. 

The analyst can configure as many individual methods 
as it is necessary, regardless of their type. For instance, 
the analyst can configure two backpropagation methods 
to be used in the ensemble experiment. This configuration 
is stored at the ensemble project. 

After configuring the individual methods, the analyst 
can have the environment execute them. Using the 
inversion of control mechanism, the environment starts 
the execution of each selected and configured individual 
method and stores its results. Currently, the environment 
does not present a multi-thread execution mechanism, 
which means that each individual method will be 
executed serially. The results are stored and they can be 
used in other ensemble experiments. For instance, the 
analyst creates an ensemble project with two individual 
methods. These methods are configured and executed. 
Then the whole ensemble is executed. If the analyst 
wants to make another experiment using the two previous 
individual methods and add another one, it will only be 
necessary to configure and execute this distinct individual 
method. The ensemble method can then be re-executed 
using this new individual method and the results stored 
for the previous ones, reusing their execution results. 

Before executing the ensemble method, the analyst can 
make a selection of the individual methods that will be 
used by the combination method. As mentioned in 
subsection 3.C, the analyst can use five different 
strategies to select the subset of individual methods that 
will be used. In the current version of the prototype, the 
metrics that can be used if the analyst chooses the 
selection by a maximum index or the selection by 
percentage index strategies are: U-Theil; mean square 
error (MSE); root mean square error (RMSE); sum of 
squares error (SSE); mean absolute error (MAE), and; 
mean absolute percentage error (MAPE). Other metrics 
are foreseen to be included by the analyst in the new 
prototype version. Fig. 6 and 7 show the selection by a 
maximum index and the individual selection approach, 
respectively. 

Following the selection of the individual methods, the 
analyst must configure and execute the combination 
method. The configuration is done in a similar fashion to 
the individual methods configuration. At this moment, the 
analyst can indicate if the time series data will be used as 
an input to the combination method or if it will only use 
the results of the selected individual methods. This 
feature is available in the nonlinear combination strategy. 

Then, the environment executes the combination 
method. If necessary, the environment adjusts the 
prediction windows before executing. After executing the 
combination method, the environment stores the results 
that were generated for analysis. 

 
Figure 6. Selection by a maximum index strategy. 

 
Figure 7. Individual selection strategy. 

V.  USAGE RESULTS 

This section discusses the empirical results of the 
effectiveness of ensemble methods using the proposed 
environment. It presents the results from two experiments 
designed to determine whether the ensembles created in 
the environment are better, or worse, than the individual 
methods currently provided by the environment (see 
section 4). The first example shows an ensemble for the 
forecasting of the Mackey-Glass time series [20]. The 
second illustrates an example of the Sun Spots time series 
[20] forecasting. 
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A.  The Mackey-Glass Experiment 
The data used in the Mackey-Glass experiment 

encompassed 1500 records: the lowest series value was 
0.212559300 and the highest value was 1.378507200. In 
this experiment, all available individual methods were 
used, with the following configurations: 
• Naïve Forecasting: no configuration needed; 
• Moving Average: prediction window size = 3; 
• Exponential Smoothing: smoothing factor = 0,9; 
• Wang-Mendel Method:  

prediction window size = 7; 
number of fuzzy sets = 7; 

• Backpropagation:  
learning rate = 0,6; 
momentum factor = 0,3; 
number of epochs = 5000; 
input layer: 

number of neurons = 9; 

activation function = linear; 
hidden layer: 

number of neurons = 9; 
activation function = sigmoid; 

output layer: 
number of neurons = 1; 
activation function = linear; 

For the individual methods, the series data were 
divided into the following sets (according to strategy 
depicted in Fig. 2(b)): 70% training; 70% validation, and; 
30% test. For the combination method, the series data 
were divided into the following sets (according to 
strategy depicted in Fig. 2(a)): 70 % training and; 30% 
test. 

Table 2 reports the detailed results of the individual 
methods. Overall, from Table 2, it is observed that the 
backpropagation method provided the best individual 
result, while the moving average method provided the 
worst result. 

TABLE 2.  

INDIVIDUAL LEVEL METHOD FORECASTING RESULTS. 

 
 
For the ensemble experiment, it was decided to use the 

nonlinear combination (backpropagation algorithm). This 
decision is due to the fact that the Linear combination 
will not produce good results when the most individual 
results are weak.. It was also decided to use all individual 
method results as input to the ensemble. The results of the 
three different configurations of the backpropagation 
ensemble models are given in Table 3. Although the 
differences between the ensembles and the best individual 
method are relatively small, the ensemble method 
consistently gives better performance. 

TABLE 3.  

ENSEMBLE FORECASTING RESULTS. 

 
B.  The Sun Spots Experiment 

The second experiment used the Sun Spots time series 
and was used to experiment with only backpropagation 
methods (both at individual and combination levels). 
Given the apparent autocorrelations of time series data, 

the predictions from backpropagation methods built from 
the same data are often highly correlated, which reduces 
the effectiveness of the ensemble method [5]. Therefore, 
this experiment was used to verify if the ensemble is still 
a good solution. 

This experiment used five different configurations of 
the backpropagation method as individuals. Their 
configurations were the following: 
• Backpropagation: configuration number 1 

learning rate = 0,9; 
momentum factor = 0,1; 
number of epochs = 3000; 
input layer: 

number of neurons = 4; 
activation function = linear; 

hidden layer: 
number of neurons = 5; 
activation function = sigmoid; 

output layer: 
number of neurons = 1; 
activation function = linear; 

• Backpropagation: configuration number 2 
learning rate = 0,9; 
momentum factor = 0,1; 
number of epochs = 3000; 
input layer: 

number of neurons = 6; 
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activation function = linear; 
hidden layer: 

number of neurons = 5; 
activation function = sigmoid; 

output layer: 
number of neurons = 1; 
activation function = linear; 

• Backpropagation: configuration number 3 
learning rate = 0,9; 
momentum factor = 0,1; 
number of epochs = 3000; 
input layer: 

number of neurons = 7; 
activation function = linear; 

hidden layer: 
number of neurons = 8; 
activation function = sigmoid; 

output layer: 
number of neurons = 1; 
activation function = linear; 

• Backpropagation: configuration number 4 
learning rate = 0,9; 
momentum factor = 0,1; 
number of epochs = 3000; 
input layer: 

number of neurons = 6; 
activation function = linear; 

hidden layer number 1: 
number of neurons = 7; 
activation function = sigmoid; 

hidden layer number 2: 
number of neurons = 4; 
activation function = sigmoid; 

output layer: 
number of neurons = 1; 
activation function = linear; 

• Backpropagation: configuration number 5 

learning rate = 0,9; 
momentum factor = 0,1; 
number of epochs = 10000; 
input layer: 

number of neurons = 4; 
activation function = linear; 

hidden layer number 1: 
number of neurons = 6; 
activation function = sigmoid; 

hidden layer number 2: 
number of neurons = 3; 
activation function = sigmoid; 

output layer: 
number of neurons = 1; 
activation function = linear; 

For the individual methods, the series data were 
divided into the following sets (according to strategy 
depicted in Fig. 2(b)): 85% training; 85% validation, and; 
15% test. For the combination method, the series data 
were divided into the following sets (according to 
strategy depicted in Fig. 2(a)): 85 % training and; 15% 
test. 

Three backpropagation method ensembles were 
created for this experiment. The first used only  the 
individual method results. The second one used the 
individual method results that and another input  
configured with the smallest individual prediction 
window size (in this experiment, size 4). Finally, the third 
one used the individual method results and another input 
configured with the largest individual prediction window 
size (in this experiment, size 7). 

Table 4 reports the results of the individual methods. 
Some observations can be made from Table 4. First, the 
results are very similar in nearly all cases. Secondly, the 
methods using two hidden layers performed slightly 
better than the others. 

TABLE 4.  

INDIVIDUAL LEVEL METHOD FORECASTING RESULTS. 

 
 
The results of ensemble models created with the three 

different configurations of the backpropagation method 
are given in Table 5. When compared to the individual 
methods, the first ensemble did not present any increase 
in the performance, although performed better than the 
majority. The second and third ensembles performed a 
little better in almost all the metrics. 

TABLE 5.  
ENSEMBLE FORECASTING RESULTS. 
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C.  Some Discussion 
It is likely that ensembles can achieve better results 

than the best individual found in the forecasting task (as 
happens in classification), but this needs to be confirmed 
empirically [21]. Yet, the results in the two experiments 
indeed show that the ensemble models can have a 
significant improvement over individual methods. 

Although the examples described above intend to 
evaluate the environment it shows that ensemble models 
to rime series forecasting have potential. The results 
obtained from the environment are consistent with the 
current state of the art: 
• Individual level performance: individual nonlinear 

methods present better performance when 
compared to individual linear methods, especially 
in non-stationary times series; 

• Linear method performance: linear combination 
ensembles present better performance when 
compared to  individual methods which results are 
near and have small errors; 

• Combination level performance: nonlinear 
combination methods show an improvement over 
linear combination methods despite the kind of the 
individual level methods used; 

• MLP combination: MLP combination methods, 
usually, are the most applicable combination 
method. 

VI.  CONCLUSIONS 

Time series analysis and prediction is an important 
task in all fields of science for applications like financial 
forecasting, weather forecasting, electricity power 
demand forecasting, process monitoring and control, 
research, medical sciences, etc [22]. There have been 
several approaches showing that ensembles of neural 
networks can improve the performance over any one 
individual. 

Results show that by appropriately combining different 
neural networks, forecasting accuracy of individual 
networks can be largely improved [5]. However, it is not 
easy to determine the number of individual forecasting 
models that should participate in an ensemble [22]. It was 
reported that, “the more, the best” rule cannot be applied 
effectively for all circumstances [23]. The number of 
individual models to be combined for forecasting and 
their parameters has to be determined. Moreover, in some 
circumstances, the linear combination approach can be 
appropriate – thus, it is necessary to experiment with it. 

Nonetheless, experimenting is not an easy task. The 
analyst needs to try several combinations of individual 
methods, with another number of ensemble methods. 
Usually, each ensemble experiment is devised from 
scratch, requiring an extra amount of work. Although 
several studies evaluates the benefits and potentials of 
ensemble models for time series forecasting research 
efforts should also be devoted to the techniques and tools 
that can further reduce the workload required to 
experiment with ensembles. 

The main idea of this paper is not to investigate several 
strategies to form ensemble models neither to actually 
measure their performance improvements. The idea is to 
show an environment to help the analyst to experiment 
with ensembles, following a reuse-based approach. Reuse 
is identified as a promising technology that uses the 
cumulative experience of previous designs to enhance 
later designs. In this case, reuse approach is the process 
of implementing or updating ensemble systems using 
existing software assets that can be both at individual or 
combination levels. 

This paper describes an approach to the design of tools 
to help analysts build repositories of method components, 
locate potentially reusable methods in those repositories 
and facilitate the development of ensemble experiments. 
Thus the environment presented here provides features 
for creating and managing a method implementation 
library, method configuration and selection, execution 
results storage and result analysis. All these features have 
the purpose of providing a tool to help the analyst work 
of devising ensemble experiments. 

There are points for improvements in the proposed 
environment. The library of methods needs to become 
more extensible and it could provide retrieval tools to 
help the analyst to find the needed components. The 
prototype presented is also just a first approximation and 
it requires some investment to become a stable usable 
tool. 
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