
Specifying Knowledge in Cognitive Multiagent
Systems using a Class of Hierarchical Petri Nets

Eder Mateus Nunes Gonçalves
Center for Computational Sciences - C3

Federal University of Rio Grande - FURG
Rio Grande, RS, Brazil

Email: edergoncalves@furg.br

Abstract—Nowadays, problems demands new computa-
tional paradigms to solve them. New computational systems
must consider features which before was not. Among these
new features is the distributed nature of some systems.
Nevertheless, even problems with a centralized nature has
so high complexity that the best solution is to break them in
small blocks. To deal with this problems, multiagent systems
(SMA) and agents are seen as an excellent alternative as a
framework to model, specify and codify solutions. However,
there is not a standard framework to aid in building such
systems. In this paper, it is proposed a framework based on a
specific Petri Net to model, specify and codify the knowledge
since the social level of the system until the agents reactive
levels. This approach is based on a explicit separation
between the knowledge level and the mechanisms which
will manipulate it. The Petri net model proposed presents
an implied specification language which permit to deal with
any knowledge representation formalisms, since production
rules, ontology or even database structures. Besides that,
the Petri net proposed has tools to analyse and validate
the system about issues like redundancy, deadlocks and
conditions associated to agents tasks.

Index Terms—multiagent systems, petri nets, specification,
knowledge-based systems

I. I NTRODUCTION

There is a class of problems that demands new
paradigms to model, specify and implement computa-
tional systems to solve them. Some problems present a
distributed nature, i.e., it is composed by sub-systems
whose operation is viable only by integration of its parts.
Example of this kind of problems are the recomposition
of an electrical network after a blackout, the monitoring
and control of the natural environment of a forest park, the
management of a distant education system, or the control
of a team of robots that should play a football game.

In general, problems like this share the following
characteristics:

• they are physically and/or conceptually distributed,
in the sense that their global state is composed by
the aggregation of partially independent local states,

This paper is based on “An Approach to Specify Knowledge in Multi-
agent Systems using Petri Nets,” by E. M, Gonçalves, which appeared
in the Proceedings of the 4th International Conference on Network and
System Security (NSS), Melbourne, Australia, 2010.c© 2010 IEEE.

This work was supported in part by Fundação de Amparòa Pesquisa
do Estado do Rio Grande do Sul (FAPERGS) .

• the tasks involved in solving these problems refer to
different levels os abstractions, varying from global
coordination protocols to local perception/action pro-
cedures, that use sensors to perceive the world state
and effectors to act in the world.

In this case, it is natural to use an approach based on
distributed systems. Special attention exists in systems
carried out by multiagent systems [1], an area that in-
tegrate distributed systems with techniques from artifi-
cial intelligence, specially the agents technology. In fact,
multiagent systems is classified as an area of Distributed
Artificial Intelligence [2].

A multiagent system is composed by a set of agents.
The power of a multiagent system is the agent integration
in the sense to solve a computational problem. An agent
can be seen as an entity which see its world from its
perceptions and act on it by its actions. Besides that,
an agent is an autonomous entity once it deliberate by
yourself [3].

In the context proposed in this work, an agent has
local goals and knowledge associated to local states of the
problem. Also, they share global goals with other agents
to determine how local states are assembled in a global
state [1]. Nevertheless, the system complexity is splited
into different decisions levels that can be structured inter-
agents or intra-agents.

According to the abstraction levels necessary to de-
scribe a problem, one for each decision level, an agent
can be designed by an hierarchical strategy based in one
or more Knowledge-Based Systems (KBS). In this work, a
KBS is a generic formalism to encapsulate and implement
an agent which is able to manipulate and infer about any
knowledge level, since deliberative planning until reactive
tasks. Its only constraint is to present mechanisms to
detach implementation aspects and the needed knowledge
to codify a solution [4].

Each intelligence aspect of an agent, like planning,
environment state classification or actions coordination, is
implemented by a specific KBS. The multiple agents must
coordinate their actions in the sense of acting intelligently
in the environment. Besides, the agents must coordinate
their actions to achieve common goals.

According to this approach a system is constituted by
two main levels: asocial level, where is defined the
system collective strategies; andindividual levels, where

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2405

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.11.2405-2414

the social knowledge is instantiated according the agent
tasks and roles in the environment.

In this paper, it is proposed an approach to specify the
social and individual levels using the same formalism.
This formalism is based on a high-level Petri Net designed
to work as an interface between the expert in the domain
and the framework(s) used to implement the system. The
Petri net proposed presents a specification language and
generic mechanisms to manipulate different knowledge
representation formalism using different inference mech-
anisms. Besides that, the Petri net proposed permits to
create and verify a formal mapping between the social and
individual levels through a hierarchical formalism which
integrate the knowledge of the whole system.

The methodology, basically, works in the following
way. In a first level, we have a multiagent specification.
The Petri Net, in this case, represents the various plans
that can be executed by the agents. This specification
does not have a real implementation, but it just guides
the agents strategies, standing in a conceptual and opera-
tional level. From this multiagent specification, each agent
instantiate its own specification, also in a Petri Net model.
This instantiation consider the agent role and its possible
actions in the environment. The agent can have multiple
nets hierarchicly structured, one net for each intelligence
aspect, or one net for each KBS. The adopted Petri Net
model makes possible to use any knowledge representa-
tion formalism, such as frames, logic or production rules.
The token, in a general description, is a data structure,
that can assume any knowledge base form.

This paper is structured in this way. The next sec-
tion presents a synthesis about the use of Petri Nets
in multiagent systems and agents specification. Section
III describes the specification language integrated in a
high-level Petri net model to specify different levels of a
multiagent system. Section IV presents some applications
examples of the proposed approach and section V presents
the conclusions and some future works from this stage of
work.

II. RELATED WORK

In the development of agents, Petri nets can be used to
specify, model and simulate either in social or individual
levels. They are a good formalism once they simple to use
and understand, they have a powerful expressivity and a
substantial baggage. However, there are a few works that
use it in both levels in a integrated framework.

Considering the use in the multiagent specification,
Petri nets are an convenient tool once that can represent
parallel and synchronization activities. The main ideia is
to represent the multiagent system through the composi-
tion of multiple nets, where each one represents a single
agent in the environment.

In [5] and [6] Petri nets are used to represent parallel
activities in multiagent plans. The main argument for
this work is to represent explicit parallelism in the sense
to reduce the necessary communication and coordination
between the agents. The approach permits a mapping

between a Planning Graph, as Graphplan [7], and a
Predicate/Transition net.

In [8] is provided a formalism to specify multi-model
nets. In this case, each net represents an agent, while the
inter-net specifications describe the cooperation structure
of the corresponding agents. System components are
modeled by objects or agents, whose behavior is modeled
by Petri nets. It is provided a means to abstract from
“how” of agent communication, emphasizing the “what”
of agent interdependencies.

In [9], Coloured Petri nets are used as a formal de-
scription model, for composite behaviors among agents.
In this model, it is possible to express data and control
dependency between agents explicitly. The model also
permits to structure the model in a hierarchical manner.

In [10] it is presented an application in which Petri
nets are used to specify the social system in a interactive
learning environment, MATHEMA [11]. The Petri net is
used to specify the relationship between the necessary
tasks to communication process between the agents in
SATA (Society of Artificial Tutoring Agents). In the
MATHEMA, each SATA component is responsible by a
knowledge domain, and the interaction is used to treat
multidisciplinary requests. Thus, Coloured Petri nets are
used to model, analyze and simulate the social system.
A model more generic of this approach is presented
in [12] where the multiagent system is implemented
through the coordination of individual actions considering
different agents architecture and a not controllable and not
deterministic environment.

In the individual context of the multiagent develop-
ment, i.e., in the development of the agent itself, Petri
nets are used, in the most cases, in the verification and
validation of the knowledges bases. However the model
used to represent a rule-based system should respect some
principles in the sense to avoid some inconsistencies that
can cause errors in the final system.

In [13] it is proposed a rule-base system verification
using Petri nets through its structural connectivity among
rules clauses, that is determined through the reachability
properties of the net. Intuitively, a rule in a Petri net is
formed by a transition, whose input places represents the
rule antecedents and the output place represents the rule
consequent. However, in this model, it is introduced a
partitioned set of places that representsexternalclauses,
inferred clauses andgoal clauses. From this partitioned
model, it is introduced a new marking scheme in the net,
which alters the reachability analyses. Now, according to
the type of anomaly investigated is generated a submark-
ing reachability analyses, based on one, or more than one,
partition of the place set. The limitation of the approach,
however, is on the model used, ordinary Petri nets. In this
case, it is only permitted the use of classical logical as
knowledge representation in a only one abstraction level.

An another approach for the verification of knowledge
bases is PREPARE [14]. PREPARE is based on modeling
a knowledge base by using a Predicate/Transition net
representation, whose anomalies are detect as patterns

2406 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

of the net model through a syntactic pattern recogni-
tion method. These patterns are formed through strings
associated to places and transitions of the net, which
by free-context grammar identify the anomalies to be
detect. The main advantage of this model is the simplicity,
once that the mapping between the knowledge base and
Predicate/Transition net is formally defined in first-order
logic. However, the model is very difficulty to use in
knowledge bases with hybrid knowledge representation,
and with more quantity of knowledge.

[15] propose a enhanced high-level Petri net for
verification and validation of rule-based system whose
differential is the possibility to represents variable and
negative sentences. Just like other models, the verification
and validation process is based on reachability analyses,
even in the matrix representation. To represent variables
and negative sentences, it is used special colors and
inhibitors arcs in the net, causing little differences in
the net modeling. The main advantage of the model is
the formal rigor in the net construction, but equal to the
other model, it is limited to representation in first-order
logic. Besides that, the use of hierarchic models are not
obvious once that the Colored Petri net model undergoes
an extension process that change its structure.

There are a lot of work in the specification and veri-
fication of fuzzy knowledge bases using different models
of fuzzy Petri nets [16] [17] [18] [19] [20] [21]. Basically,
these works propose the representation of a weighted
fuzzy production rules in a Petri net model that is enabled
to express certainty factor of the rule, thresholds and
weights. The difference among the models is the way
to represent these factors. Besides that, the models also
contain a reachability analyses to structural verification
of the knowledge. In these cases, of course, these models
are appropriated for fuzzy systems. In all of these works,
there are not models that considers the insertion in a
multiagent context.

The works presented until here consider the use of Petri
nets just in the verification and validation phases, even in
the individual or the social development of agents. The
works presented below describes different roles to Petri
nets in the development of intelligent systems.

In [22], it is proposed the use of high-level Petri net
in task structures with the objective to verify knowledge
based-system. Task structures acquire and organize do-
main knowledge, functional requirements, and problem
solving methods around the general notion of tasks. For
a requirements specification driven by task structures,
pieces of the specification can be refined iteratively and
verification can be performed for a single layer or between
layers [23]. According the author, this approach permits
an analyze in a semantic context and not only in a
structural context. This is possible once that the analysis
is performed in the specification level of the system
requirements. According to the principles established in
the Software Engineering, the verification process must
happens in two different levels: model and process level.
The model verification refers to static properties of the

systems (domain model), meanwhile the process specifi-
cation refers to dynamic properties of the system (func-
tionality). The use of Petri nets is viable from a mapping
in task structures. In this way, the model specification
is represented through a constraint net, and the process
specification is performed through a reachability analyses.
The constraint net and the reachability analyses guarantee
the system consistence about its requirements, and it is
permitted a global vision of the system.

In [24], it is proposed a method to validation of a
knowledge-based system specification through the trans-
fer of its informal conceptual model in KADS in a formal
operationalization model using Petri nets. Basically, it is
the same approach cited above, where the task structures
are switched by informal conceptual model in KADS.
In this case, the operational model is used to simulate
the system and, consequently, the specification validation.
The operational model is obtained through the transfor-
mation of the inference model and tasks in Petri nets,
whose relationship are formally established. The main
drawback of the model is the possibility of a whole vision
of the system. However, its formalization is limited to the
use in a decentralized environment, without multiagent
strategies.

The main conclusion about the related work analysis is
that there is not a framework that integrates the social and
individual specification. Besides that, there are specifics
demand in each development level, social and individual.
All the works consider only one knowledge representation
formalism, normally a logic one. Nevertheless, the system
made are very simple since the models do not consider
hierarchic structures.

III. PETRI NETS ASSPECIFICATION LANGUAGE TO

MULTIAGENT SYSTEMS AND AGENTS

The approach presented in this section consider a
development based on the explicit distinction between
the knowledge level and the inference mechanisms [25],
according to a generic description of a KBS. In this
scenario, the approach proposed must be used to model
and specify the knowledge level of a multiagent system
(MAS) in all levels.

In this scenario, one can have a specific framework to
formalize the MAS, and another framework to codify the
agents which belong to the MAS, or, one can have differ-
ent frameworks to codify agents, considering its internal
architecture. Example of a framework to develop MAS
is the Moise model [26], and a example of framework
and/or language to develop agent itself is Jason [27].

In fact, in this model, MAS is considered an abstract
formalism that must define the guidelines in the agent
development. These guidelines, according to the MAS
model used, can be based on concepts like goals, plans,
roles and collective actions in a environment. An MAS is
implemented by the agents which compose and act in the
environment.

Nevertheless, an agent can present an architecture with
many different decision levels, according to the environ-
ment complexity in which it will act. These decision levels

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2407

© 2012 ACADEMY PUBLISHER

can encapsulate different aspects of intelligence necessary
to percept and act in the environment.

From an initial knowledge elicited with the aid of an
expert in the domain, and already structured according
to the intelligence aspects of the each decision level,
it is proposed a specification language that helps in
the knowledge specification at theknowledge level[25].
This language is based on a particular Petri net model
that presents some important aspects to the knowledge
acquisition process:

• its graphical model is used as a diagrammatic lan-
guage that help the interaction between the expert
and knowledge engineering, minimizing the commu-
nication problems. It permits to specify concurrent
activities, in social and individual context, and the
multiple relationships between them. Besides that,
the language is independent of the mechanisms used
by the architecture, once the specification is made in
the knowledge level.

• its mathematical model can be used to verify prob-
lems like inconsistencies, ambiguities and redundan-
cies;

• Petri nets can be composed hierarchically, respecting
the multiple levels of a multiagent system;

• it is possible to automatically translate the informa-
tion contained in the net into a knowledge base,
once the data structure associated with the token
is adequately arranged according to the knowledge
representations chosen to the KBS.

The methodology is implemented in a top-down ap-
proach, i.e., the system must be specified from the social
context in the sense of the individual actions in the
environment. However, inside of each level, the specifi-
cation can be either in top-down or bottom-up approach.
According to the model presented in figure 1, each level
corresponds to a KBS, or an hierarchic Petri net model,
that presents a hierarchic relation between them. As seen
in the above sections, this relationship is made by the
inference results of each KBS that are sent to the under-
ling levels, in the form of goals or selected behaviors, for
example.

The use of Petri net is justified once that it is a well
established tool for the specification of an information
system of any type, specially those that need to specify
concurrency and synchronism. Besides the aspects cited
above, the KBS can be seen as a discrete event system,
once the state changes, or the occurrences of new facts,
are not guided by time. On other hand, Petri nets is also
used in the development of rule-based system with good
results1. However, the model presented below presents
extensions that guarantee its application in a broader
context.

Basically, Petri net is a graphical and mathematical
tool that permits to specify, model, simulate and verify
any discrete event system, just like a KBS. Its graphical
representation is formed by two types of nodes,places

1C.f. section II

...

...

...

Social Level

Individual Level

Deliberation

Action

Agent 1 Agent 2 Agent n

Environment

Fig. 1. A description of the development model using Petri Netsin
 the Expert-Coop++

and transitions, and tokensthat are used to feature the
system dynamic. Places are represented by circles and
transitions by bars. Tokens are represented by dots inside
the place, when the predicate associated with the place is
true. Thus, we can define a Petri net formally by a n-tuple
R = 〈P, T, Pre, Post〉 where:

• P is a finite set ofplacewith sizen.
• T is a finite set oftransitionswith sizem.
• Pre is a forward incidence function: Pre : P×T →

N.
• Post is thebackward incidence function: Post : T×
P → N.

A marked Petri net is a coupleN = 〈R,M〉, where:

• R is a Petri net.
• M : P → N is a initial marking andM(p) is the

number of tokens in placep.

In order to represent a KBS using a Petri net, it is neces-
sary to extend the expressive power of the tokens to allow
the representation of the knowledge base manipulations
that occur when a rule is fired. For that purpose, high level
Petri net models (e.g. [28]) are well adapted. Given this
model, each transition is associated with pre-conditions
and pos-conditions that control its load and fire. Thus,
in representing a knowledge base, each transition is as-
sociated with a rule, whose its pre-conditions represents
the rule premises and its pos-conditions represents the
rule conclusions and selected actions. The transition fire
implies in a facts base change, that is updated by the ma-
nipulation of the tokens. The token distribution represents
the state of the facts base.

From an epistemological perspective, the central com-
ponent of a KBS is theknowledge base[3]. Informally,
a knowledge base is formed by a set of fact descriptions
that, in this case, can include also social facts. A generic
knowledge base, independently of the adopted knowledge

2408 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

representation method, can be formalized through the
definition of two access functions calledTell andAsk, that
allow, respectively, to include a new fact in the knowledge
base and to query a given knowledge base. More formally,
let KB be the set of all possible knowledge bases and
φ an expression of the formal language used by the
adopted knowledge representation method. Without loss
of generality, we suppose thatφ is a term. LetV be a set
of variable symbols,C a set of names of primitive entities
in the domain andF a set of function names. The set of
all termsT is defined as follows:

• V ⊆ T ;
• C ⊆ T ;
• if t1, . . . , tn ∈ T and f ∈ F , thenf(t1, . . . , tn) ∈
T .

Let alsoS be the set of all possible mappingsV → T ,
i.e., the set of all substitutions of variables, andT ∗ be
the set of allground terms, i.e., terms where no variable
occurs. In this way, it is possible to define:

Tell : KB × T ∗ → KB

Ask : KB × T → S

During the knowledge acquisition process, at the agent
level, when the lowest abstraction level is reached, the
actions associated with the Petri net transitions become
actual operations in the domain. These operations usually
has preconditions and effects that are registered in a
knowledge base. To introduce this conditions and effects
into the formalism we extends the Petri net definition in
[28] as follows.

The tokenis defined as an element of the setKB, i.e.,
the token now represents a knowledge base. We introduce
the following functions:

Cond : T ×KB → S

Act : T ×KB × S → KB

A Cond function is associated with each transition.
It receives a knowledge basek ∈ KB and returns a
substitutionθ ∈ S. In the lowest abstraction level, its
general form is:

θ1 ← Ask(k, φ1)
...
θn ← Ask(k, φn)
θ ← Combine(θ1, . . . , θn)

where φi ∈ T are domain dependent terms, possibly
containing variables, that are used to query the knowl-
edge basek andCombine is a function that combines
substitutions.

In higher abstraction levels, theCond function may
contain expressions such as:

θi ← Run(φ,R)

whereR is a lower level Petri net andφ ∈ T is a domain
dependent term, possibly containing variables, that is used

as a query to the lower abstraction level knowledge base,
after the execution of the Petri netR.

An Act function is also associated with each transition.
It receives a knowledge basek ∈ KB and a substitution
θ ∈ S, and return an updated knowledge base. Its general
form is:

Tell(Tell(k, ψ1θ), . . . , ψnθ)

where ψi ∈ T are domain dependent terms, possibly
containing variables, that represent a generic action and
ψiθi ∈ T

∗ are the associated ground terms that are used
to update the knowledge basek.

The semantic of this extension is the following: before
a transition is fired, theCond function is applied on the
knowledge base token and, if the result is a non empty
substitutionθ, then the functionAct is executed with the
substitutionθ applied to all the terms that occur in it.

An hierarchical model is possible if we extend the
above model. The hierarchical model used is based on
[29]. According to this model, there are five ways to
hierarchical a Petri net:transitions substitution, places
substitution, transitions calls, transitions fusion and places
fusion. In this model to specify KBS, we use only the first
two.

The principle to use transitions substitution and places
substitution is the same. Basically, the idea is substitute
the transition or place indicated by another Petri net. In
this way, it is possible to refine the action or activity
associated with the element. The Petri net that extends
either the transition or the place has the same syntax of
the superior one.

IV. M OTIVATING EXAMPLE

In this section, it will be demonstrated a case study
about the model proposed in the previous section. The
intention is to demonstrate a whole example, where all
the steps in the conception of the system is approached.

In [30], it was demonstrated just how to design the for-
malism to knowledge representation in production rules.
However, in this case study, all the features of the model
proposed is presented, i.e, the system conception in all
levels, social and individual one, the hierarchic capability,
multiple knowledge representation formalism and the
generation of a knowledge base. Besides that, the whole
framework is suitable to a specific agent architecture.

The agent proposed here was developed to act in the
Robocup Soccerserver 2D Simulator [31]. In this envi-
ronment, it must be developed a team of virtual entities
to play soccer against other teams of virtual entities. To
act in this environment, it is necessary to attend features
as real-time control, learning, deliberative and cooperative
actions.

A. The agent description

The agent proposed to attend the Soccer Server con-
straints is based on [32]. According to this architecture,
an agent model presents three different decisions levels, in
a hierarchical structure:reactive, instinctiveandcognitive.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2409

© 2012 ACADEMY PUBLISHER

Each level, together with its lower levels, is intended to
model a complete agent, each new level just increasing the
behavior complexity. The generic agent model is instan-
tiated by a computational architecture named Concurrent
Autonomous Agent (CAA), and it is described by the
figure 2.

Cognitive Level

Instintive Level

Reactive Level

Local Goals

Symbolic Information

Behavior Select

Perception

Action

Messages/
Perception

 Fig. 2. The Concurrent Autonomous Agent architecture

The reactive level in CAA is responsible by the direct
interaction with the environment. It is constituted by a
behaviors set implemented by fuzzy controllers, one for
each behavior. Just one behavior is active at time. The
behaviors set of an agent is determined by its role in the
environment.

The instintive level is responsible by the classification
of the environment states and the execution of local goals.
From this information, it chooses the reactive behavior
in the lower level and provides the higher level with
symbolic information. This is done by a KBS, that is
executed each time the environment state changes. A
local goal is reached through the execution of a reactive
behaviors sequence. However, in each KBS cycle, the
conditions associated with the state are verified. If this
new state is not verified, the instinctive level solicit a new
local goal to the cognitive level.

The cognitive level chooses the agent goals. Initially, it
must coordinate with the other agents in the environment
to choose a global goal. It coordinates its actions accord-
ing to this social goal. This is done selecting a sequence
of local goals that is sent to the instinctive level. In this
sense, the basic function of this level is to plan in social
and individual contexts. Just like the instinctive level, this
is done by a KBS, however with two different knowledge
bases. The first one is constituted by the social knowledge,
responsible by the interaction with the other agents in the
environment, and stores the social decisions. The second
one is a local base, that according to the global goal and
the symbolic information stored, selects the local goal
sequence to be sent to the instintive level.

To model and specify this agent in the individual level
is necessary to build one KBS for each level. In this
implementation, the reactive level is build through a set
of fuzzy controllers where only one is active at time. It
would be possible to specify these controllers using the
model with Petri nets proposed here. However, they were
ready when the other levels was started.

B. The knowledge representation formalisms

Given these initial conditions, it was proposed a top-
down approach to develop the team, i.e., the development
was conceived from the social level to the individual ones.
Inside the agent, the cognitive level was first conceived
and then the instinctive level.

Before to demonstrate how to use de Petri net model
proposed, it is necessary to specify the knowledge repre-
sentation formalisms used in the SMA and in the agents.

The specification language presented in the previous
section is intended to encapsulate any formalism to rep-
resent MAS and its agents. This include BDI formalism,
ontologies, production systems, frames, logic and others.

Considering in the most basic format, each transition
in the Petri Net corresponds a rule in a rule base. Thus,
the Ask field corresponds to the rule premise and the
Tell field corresponds to the rule conclusion. The optional
Action field indicates the action that must be executed
in the environment. It is important to consider that the
premises and conclusions must respect the knowledge
representation formalisms used in the KBS. The figure
3 demonstrates the mapping between a transition in the
Petri Net and the rule generated2.

Ask(k, <premiss>)

Action(<action>)
Tell(k, <conclusion>)

k
Petri Net

IF

Generated Rule

<premiss> THEN <conclusion> <action>ACTION

P

P

t

2

1

1

 Fig. 3. Generic Rule

Once defined how to use the model in only one level,
it is presented the mechanisms that permit the system
conception in multiple abstraction levels. In this case, it
must be used theRun function. The figure 4 describes
the generic mechanism that permit the use of hierarchical
conception.

Petri Net 1
Petri Net 2k1

k2

Ask(k2, <premiss2>)

IF <premiss1>
THEN

<action1>ACTION
IF
THEN
ACTION

<conclusion1>

<action2>
<conclusion2>
<premissX>

Ask(k1, <premiss1>)
Run(Petri Net 2, <premissX>)

Action(<action1>)

Tell(k2, <conclusion2>

Action(<action2>)

<premiss2>

Tell(k1, <conclusion1>)

t1

P1

t2

P2P2

P1

 Fig. 4. Generic Hierarchic Rule

When theRun function is called, it must be passed two
values: one is the Petri Net that must be instantiated, and

2Because the notational simplification, the substitutions and theCond

function was not considered.

2410 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

the second one is the premise that constrain the inferior
level knowledge base. Thus, the rule specified in the Petri
Net 1 is just fired if the Petri Net 2 is executed. In the
< premiss1 >, in the Petri Net 1, it must contain an ask
about a fact that is generated only by the Petri Net in the
inferior level, i.e., the Petri Net 2. In the premises of the
Petri net 2 must contain the one passed by the Petri Net
1.

C. The Petri Nets

According to the approach to implement the CAA, the
multi-agent level serves as guidelines to model, specify
and codify the cognitive level of the agents. The multi-
agent level, which correspond to the social level in the
generic description, is structured through sequences of
goals, as description in figure 5.

(logic (global_goal status none)))

Tell(k, (logic (global_goal current get_ball_control)) ^
(logic (global_goal status active)))

Ask(k, (logic (global_goal current none)) ^

Ask(k, (logic (global_goal current get_ball_control)) ^
(logic (global_goal status sucess)))

(logic (global_goal status active)))
Tell(k, (logic (global_goal current rws_attack_play)) ^

Ask(k, (logic (global_goal current get_ball_control)) ^

Ask(k, (logic (global_goal current rws_attack_play)) ^
(logic (global_goal status sucess)))

(logic (global_goal status none)))
Tell(k, (logic (global_goal current none)) ^

Ask(k, (logic (global_goal current rws_attack_play)) ^

(logic (global_goal status none)))
Tell(k, (logic (global_goal current none)) ^

(logic (global_goal status failed)))

k

P

P

P

1

2

3

t1

t2

t3 t4

 Fig. 5. Multi-agent specification using Petri nets

In the knowledge representation formalism used in the
social level, the generic structuresAsk and Tell made
references to a formalism based onpattern logics, which
are structures in the form< object atribute value >.
The plan specified in this Petri net considers only a
specific scenario on the environment.

Once that the multi-agent specification is considered
ready, the next step is to specify the social base of each
agent. The sum of each social base must implement the
multi-agent planning and form the social knowledge about
the domain.

Each agent must instantiate the multi-agent planning
according to its roles and possible actions in the envi-
ronment to constitute its social base. In figure 6, it is
specified the agent 9 social base according to the multi-
agent planning. The link between these two nets can be
formal and informal, depending on the model rigor. In a
formal link, the multi-agent planning would be capable to
generate semi-automaticly the individual social base, from
a formal specification of the agent’s roles and actions in
the environment. This can be done because the individual

(logic (global_goal status none)))

Tell(k, (logic (global_goal current get_ball_control)) ^
(logic (global_goal status active)))

Ask(k, (logic (global_goal current none)) ^

Ask(k, (logic (global_goal current get_ball_control)) ^
(logic (global_goal status sucess)))

(logic (global_goal status active)))
Tell(k, (logic (global_goal current rws_attack_play)) ^

Ask(k, (logic (global_goal current get_ball_control)) ^

Ask(k, (logic (global_goal current rws_attack_play)) ^

(logic (global_goal status none)))

(logic (global_goal status failed)))

k

P

P

P

1

2

3

t1

t2

t4

Tell(k, (logic (global_goal current none)) ^

Ask(k, (logic (global_goal current rws_attack_play)) ^
(logic (global_goal status active)) ^
(logic (local_goal current kick_to_goal)) ^
(logic (local_goal status sucess)))

Tell(k, (logic (global_goal status sucess)))

Ask(k, (logic (global_goal current rws_attack_play)) ^
(logic (global_goal status sucess)))

(logic (global_goal status none)))
Tell(k, (logic (global_goal current none)) ^

t 5

t 3

P 4

 Fig. 6. Agent 9 Social Base Specification

model is inferior hierarchically than the social model,
and this relation can be formally established. From this
hierarchical structuring it would be possible to semi-
automatically transform a social model in an individual
one. Unfortunately, this formal specification is not ready
yet, but it will be included in the next versions of the
methodology. The current methodology permits that the
multi-agent specification determine the guidelines to build
the social bases in each agent.

In the net presented in figure 6, transitiont3 and place
P4 represent the contribution of agent 9 in the play, if
it is compared with the multi-agent model. According to
the specification, the agent is responsible by finishing the
play, kicking the ball to the goal. The occurrence of the
other transitions is defined in a high level description,
once that the other agents can interfere with its occur-
rence.

Using the social base specification, the local base is
modeled, according to the CAA architecture. Each global
goal, i.e, each transition in the social base model can
be represented by a new hierarchically inferior net. The
sum of this hierarchically inferior Petri nets represents
the local knowledge base of the cognitive level. This local
base specifies the agent planning in the individual context.

Consider, for example, transitiont2 in agent 9 social
base (see figure 6). This transition can be expanded in the
Petri net of figure 7. In this net, all states that can take
the agent from transitiont2 to transitiont3 in the social
base Petri net are represented. In case of failure, the fired

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2411

© 2012 ACADEMY PUBLISHER

Ask(k, (logic (ball proximity far)))

Tell(k, (logic (local_goal current positioning)) ^
(logic (local_goal status active)))

(logic (local_goal status active)))
Tell(k, (logic (local_goal current go_to_ball)) ^

Ask(k, (logic (ball proximity close)))

Ask(k, (logic (ball proximity very_close)))

Tell(k, (logic (local_goal current kick_to_goal)) ^
(logic (local_goal status active)))

(logic (game state goal_r)))

Ask(k, (logic (local_goal current kick_to_goal)) ^
(logic (local_goal state active)) ^

Tell(k, (logic (local_goal status sucess)))

Ask(k, (logic (local_goal current kick_to_goal)) ^
(logic (local_goal state active)) ^
NOT (logic (game state goal_r)))

Tell(k, (logic (local_goal status failed)))

P

P

P

P

1

2

3

4

t

t

t

t t

1

2

3

54

 Fig. 7. Agent 9 Local Base Specification

transition can bet4. Even if the local base mentions that
the goal failed, this proposition is maintained in a high-
level description in the social base (t4) once that the others
agents can detect the goal failure.

Considering the dynamics of the social base Petri net,
when transitiont2 occurs, putting tokenk in the placeP3,
the Petri net of figure 7 is instantiated. Once the token in
this net leaves transitiont5, transitiont3 in the social base
Petri net, that it is already loaded, is fired, and the Petri
net dynamics go on.

D. The knowledge bases

Once all the logic propositions that instantiate the token
in placeP3 in the transitions hierarchicly superior is true
(see figure 6, i.e., the knowledge base formed by the local
base Petri net should consider yet that:

(logic (global_goal current rws_attack_play))
(logic (global_goal status active))

From this propositions, the local base Petri net must
specify the states that can take the social base Petri net
from transitiont2 to t3 or t4. This states are represented
by the local goals that can reach the global one, according
to the agent’s roles and possible actions. In other words,
it represents the agent individual planning. Observe that
this net is not restartable. This happens once that the
net dynamic continue in the net hierarchicly superior, the
social one.

Basically, this local base instance manipulates the
symbolic variableball proximity. It represents the ball
proximity in relation to the agent. When the ball is
considered in the kick area, it is inferred the local goal
kick_to_goal. If we remember the agent architecture,
this local goal is sent to the instintive level for the correct
reactive behavior sequencing.

Ask(k, (logic (local_goal current kick_to_goal)) ^
(logic (local_goal status active)))

Tell (k, (logic (reactive_behavior active kick_to_goal)))

k P

t

1

1

 Fig. 8. Agent 9 Instintive Knowledge Base Specification

The same methodology is used to codify the instintive
level knowledge base. Each transition in each local base
specification can generate a hierarchicly inferior Petri
net that represents a instintive knowledge base instance.
The sum of all this instances forms the instintive level
knowledge base.

Figure 8 presents the Petri net obtained from the
expansion of transitiont3 in the local base Petri net.
It represents the knowledge base formed to catch the
local goalkick_to_goal. According to the Petri net
in figure 8, this local goal is obtained just activating the
reactive behaviorKick_To_Goal3.

To translate logical expressions in to rules is a complex
task, even computationally, but the proposed methodology
permits this. Next, it is presented some rule example that
were generated from the Petri net models described above.

Considering transitiont3 in the social base model, the
following rule can be generated, respecting the syntax for
production rules:
(rule_003

(if (logic (global_goal current rws_attack_play))
(logic (global_goal status active))
(logic (local_goal current kick_to_goal))
(logic (local_goal current success)))

(then (logic (global_goal status success))))

Also for transitiont3, but now considering the net that
models the local base, it has the following production rule
in knowledge local base:
(rule_003
(if (logic (global_goal current rws_attack_play))

(logic (global_goal current active))
(logic (ball proximity very_close)))

(then (logic (local_goal current kick_to_goal))
(logic (local_goal status active))))

Finally, the Petri net in figure 8 generates the follow
production rule, that constitute part of the instintive
knowledge base:

(rule_001
(if (logic (local_goal current kick_to_goal))

(logic (local_goal status active)))
(then (logic (reactive_behavior current Kick_To_Goal))))

In fact, in this net, the transition condition is redundant
once this proposition is true for the transition expanded
in the hierarchicly superior net. In this case, the condition
is merely illustrative.

The use of Petri nets as its specification language
reduced the design time and the presence of errors, like
redundancy and incompatible rules. Petri nets permit to
visualize the knowledge base through its own interface,
that is more intuitive and expressive than any other
expression form. Petri nets permit yet to specify the

3The upper case letters are used to distinguish the reactive behaviors
from the global and local goals

2412 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

concurrent activity, that is an inherent characteristic of
any multi-agent system.

After the Petri Nets modeling in the different levels
of the system, it can be executed an analysis of its
properties. This analysis can guarantee some level of
syntactic correction.

The analysis is carried out through the underlying
model of each Petri Net. The underlying model corre-
sponds to the ordinary model of each Petri Net, that can
be obtained considering just the places and transitions,
without any data structure associated with the tokens. It
is considered an initial marking of the net just with binary
tokens [28].

Once obtained the underlying Petri Net of each net,
it can be executed simulations of this nets with the
goal to guarantee properties like liveness, boundness and
restartability. Considering the proposed model, a live Petri
Net indicates that all the rules specified can be reachable.
A bound Petri Net indicates that the resources specified in
the model are sufficient to execute the KBS. A restartable
Petri Net indicates that the KBS can back in its initial
state, in a new execution cycle.

However, it is important to note that this properties can
not be always desirable, according to the environment
contingencies. In this way, it is important to execute
many simulations to guarantee the accomplishment of the
system requisites.

V. CONCLUSION

In this paper, it is presented an unified approach to
model, specify and implement MAS in all its levels,
including the agents itself. The approach proposed is
independent of knowledge representation formalisms, un-
derlying architectures and has yet tools to analyse and
verify the system implemented. As seen in section II, there
is not any work which use Petri nets as a framework to
build MAS that integrate all development levels.

The approach proposed is based on the clear sepa-
ration between the knowledge level of the system and
the inference mechanisms that use it. In this sense, the
system is composed by a set of KBS, with a formal and
hierarchical relation between them. This is done through
a model composed by a high-level Petri Net with support
to hierarchy and an underlying language that permits to
manipulate organizational structure in a social context and
knowledge representations in a individual context.

A comparison between the proposed approach and the
models that exist in the literature concludes about some
contributions as:

• An integrate approach that consider both levels, the
social and individual one, through formal mecha-
nisms that guarantee the correct relation between the
organizational structure and the knowledge represen-
tation formalisms used;

• A language that permits to manipulate different
knowledge representation mechanisms, and not only
the logic ones;

• A model capable to manipulate complex systems
formed by KBS through modularize process that
consider hierarchic mechanisms.

Currently, it is under development a computational tool
based on this approach. In its first version, the software
generate a knowledge-base in XML format. The reason
is to use this format as a middle language between the
tool and the system which it will use it, when it is not
possible to use a direct representation.

REFERENCES

[1] J. Ferber,Multi-Agent Systems: An Introduction to Distributed
Artificial Intelligence. Addison-Wesley Pub Co., 1999,
iSBN:0201360489.

[2] E. H. Durfee and J. S. Rosenschein, “Distributed problemsolving
and multi-agent systems: Comparisons and examples,” inInterna-
tional Workshop on Distributed Artificial Intelligence, May 1994.

[3] S. Russel and P. Norvig,Artificial Intelligence, A Modern Ap-
proach. Alan Apt, 1995.

[4] J. S. Sichman, Y. Demazeau, and O. Boisser, “When can
knowledge-based systems be called agents?” inAnais do IX
Semińario Brasileiro de Inteliĝencia Artificial, October 1992, pp.
172–185.

[5] D. Xu, R. A. Volz, and J. Yen, “Modeling and analysing multi-
agent behaviors using predicate/transitions nets,”International
Journal of Software Engineering and Knowledge Engineering,
vol. 13, no. 1, pp. 103–124, 2003.

[6] D. Xu, R. A. Volz, and T. R. Ioerger, “Generating parallel
based on planning graph analysis of predicate/transition nets,” in
Proceedings of the 2002 International Conference on Artificial
Intelligence (IC-AI’02), June 2002, pp. 440–446.

[7] A. L. Blum and M. L. Furst, “Fast planning through planning graph
analysis,” inIJCAI-95. Morgan Kaufmann, 1995, pp. 1636–1642.

[8] T. Holvoet and P. Verbaeten, “Synchronization specifications for
agents with net-based behavior description,” inProceedings of
Conference, Symposium on Discrete Events and Manufacturing
Systems, Lille, France, July 1996, pp. 613–619.

[9] S. Jindian, G. Heqing, and Y. Shanshan, “A coloured petrinet
model for composite behaviors in multi-agent system,” inProceed-
ings of IEEE Conference on Cybernetics and Intelligent Systems,
2008, pp. 677 – 680.

[10] M. V. C. Miranda and A. Perkusich, “Modeling and analysis of
a multi-agent system using colored petri nets,” inProceedings of
the Workshop on Application of Petri Nets to Intelligent System
Development, L. Portinale, R. Valette, and D. Zhang, Eds., 1999,
pp. 59–70.

[11] E. de Barros Costa and A. Perkusich, “Modeling the cooperative
interactions in a teaching/learning situation,” inProceedings of
The Intelligent Tutoring Systems (ITS-96), Montreal, Canada, June
1996.

[12] H. O. de Almeida, L. D. da Silva, A. Perkusich, and E. de Bar-
ros Costa, “A formal approach for the modelling and verification
of multiagent plans based on model checking and petri nets,” in
Software Engineering for Multi-Agent Systems III: Research Issues
and Pratical Applications, R. Choren, A. Garcia, C. Lucena, and
A. Romanovsky, Eds. Springer-Verlag GmbH, February 2005,
vol. 3390/2005, iSSN: 0302-9743.

[13] D. L. Nazareth, “Investigating the applicability of petri nets for
rule-based system verification,”IEEE Transactions on Knowledge
and Data Engineering, vol. 4, no. 3, pp. 402–415, June 1993.

[14] D. Zhang and D. Nguyen, “Prepare: A tool for knowledge base
verification,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 6, no. 6, December 1994.

[15] C.-H. Wu and S.-J. Lee, “Enhanced high-level petri netswith
multiple colors for knowledge verification/validation of rule-based
expert systems,”IEEE Transactions on Systems, Man and Cyber-
netics - Part B: Cybernetics, vol. 27, no. 5, pp. 760–773, October
1997.

[16] X. Li and W. Yu, “Object oriented fuzzy petri net for complex
knowledge system modeling,” inProceedings of the 2001 IEEE
International Conference on Control Applications, Mexico City,
Mexico, September, 5-7 2001, pp. 476–481.

JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012 2413

© 2012 ACADEMY PUBLISHER

[17] C. G. Looney, “Fuzzy petri nets for rule-based decisionmaking,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 18,
no. 1, January/February 1988.

[18] S. M. Koriem, “A fuzzy petri net tool for modeling and verification
of knowledge-based systems,”The Computer Jornal, vol. 43, no. 3,
2000.

[19] N. K. Liu, “A formal description technique for the verification of
fuzzy knowledge base redundancy and subsumption,” inProceed-
ings of First New Zealand International Two-Stream Conference
on Artificial Neural Networks and Expert Systems, Dunedin, New
Zealand, November, 24-26 1993, pp. 142–145.

[20] X. Li, W. Yu, and F. Lara-Rosano, “Dynamic knowledge inference
and learning under adaptive fuzzy petri net framework,”IEEE
Transactions on Systems, Man, and Cybernetics - Part C: Ap-
plications and Reviews, vol. 30, no. 4, pp. 442–450, November
2000.

[21] S.-M. Chen, J.-S. Ke, and J.-F. Chang, “Knowledge representation
using fuzzy petri nets,”IEEE Transactions on Knowledge and Data
Engineering, vol. 2, no. 3, pp. 311–319, September 1990.

[22] J. Lee and L. F. Lai, “A high-level petri nets-based approach to
verifying task structures,”IEEE Transactions on Knowledge and
Data Engineering, vol. 14, no. 2, pp. 316–335, March/April 2002.

[23] J. Lee, “Task structures as a basis for modeling knowledge-based
systems,”International Journal of Intelligent Systems, vol. 12, pp.
167–190, March 1997.

[24] M. L. Goc, C. Frydman, and L. Torres, “Verification and validation
of the sachem conceptual model,”International Journal Human-
Computer Studies, vol. 56, pp. 199–223, 2002.

[25] A. Newell, “The knowledge level,”Artificial Intelligence, vol. 18,
no. 1, pp. 87–127, 1982.

[26] J. F. Hubner, J. S. Sichman, and O. Boissier, “Moise+: Towards a
structural, functional, and deontic model for mas organization,”
in Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS’02). ACM
Press, 2002, pp. 501–502.

[27] J. F. Ḧubner, R. H. Bordini, and R. Vieira, “Introdução ao
desenvolvimento de sistemas multiagentes com jason,” inAnais
a XII Escola Regional de Inforḿatica - SBC, 2004.

[28] C. Sibertin-Blan, “High-level Petri nets with data structures,”
in European Workshop on Application and Theory of Petri net,
Helsinki, Finland, jun 1985, pp. 141–170.

[29] K. Jensen, “Coloured petri nets: A high level language for system
design and analysis,” inAdvances in Petri Nets 1990, G. Rozem-
berg, Ed. Springer-Verlag, November 1990, iSSN 0105-8517.

[30] E. M. N. Gonçalves, “An approach to specify knowledge in multi-
agent systems using petri nets,” inNetwork and System Security
(NSS), 2010 4th International Conference on, sept. 2010, pp. 456–
461.

[31] M. Chen, E. Foroughi, F. Heintz, Z. X. Huang, S. Kapetanakis,
K. Kostiadis, I. N. Johan Kummeneje, O. Obst, P. Riley, Y. W.
Timo Steffens, and X. Yin,RoboCup Soccer Server: for Soccer
Server Version 7.07 and later, May 2001, www.robocup.org.

[32] A. L. da Costa and G. Bittencourt, “From a concurrent architecture
to a concurrent autonomous agents architecture,” inInternational
Joint Conference on Artificial Intelligence (IJCAI’99), 1999.

Eder Mateus Gonçalveswas born in Rio Grande - RS, Brazil.
He received his PhD degree in electrical engineering from
the Federal University of Santa Catarina (UFSC), Florianpolis,
Brazil, in 2006, his MS degree in electrical engineering also
from the Federal University of Santa Catarina (UFSC) in 2001,
and his BS degree in electrical engineering from the Catholic
University of Pelotas, Pelotas-RS, in 1998.

He is currently an Adjunct Professor of Center for Com-
putational Sciences - C3, in Federal University of Rio Grande
(FURG), Rio Grande-RS, Brazil. His current research interests
include agents, multi-agent systems, discrete event-driven sys-
tems, petri nets and robotics.

2414 JOURNAL OF SOFTWARE, VOL. 7, NO. 11, NOVEMBER 2012

© 2012 ACADEMY PUBLISHER

