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Abstract—Complex networks have attracted increasing 
attention from various fields of science and engineering 
today. In this paper, with assuming irreduciblity and 
symmetry of the couplings, we prove that a single controller 
can pin a coupled complex network to a homogenous 
solution, which is investigated for both continuous-time and 
discrete-time cases. Sufficient conditions are presented to 
guarantee the convergence of the pinning process locally 
and globally. The efficiency of the derived-results are 
illustrated by numerical simulation. 
 
Index Terms—Complex networks; Pin control; 
Continuous-time; Discrete-time 

Ⅰ. INTRODUCTION 

Complex networks are shown to exist in various fields 
of real world [1–4], such as in the Internet, the World 
Wide Web (WWW), food webs, scientific citation web, 
etc., and thus become an important part of our daily life. 
Analysis and control of complex behaviors in complex 
networks consisting of a large number of dynamical 
nodes have attracted the attention of researchers from 
different fields. The nature of complex networks is their 
complexity, including dynamical evolution, topological 
structure, connection or node diversity, 
meta-complication, etc. [2]. The complex nature leads to 
difficulty in anatomizing them. So most of the existing 
work focus on networks with completely regular 
topological structures [5-9], such as chains, grids, lattices, 
and full-connected graphs. 

In past few decades, synchronization and control 
problems are being widely studied in complex networks. 
In [10]–[14], the local stability of the synchronization 
manifold was studied via the transverse stability to the 
synchronization manifold. The synchronizability based 
on the topology of the complex network was discussed in 
detail especially focusing on the complex networks with 
small-world and scale-free properties. In [15]–[17], a 
distance was defined from the collective spatial states of 
the coupled system to the synchronization manifold. In 
particular, in [18], the author pointed out that chaos 

synchronization can be obtained if and only if the 
topology of the network has a spanning tree.  

Also, the problem of chaos control has been a research 
subject, which attracts increasing attention (see [19]–[23] 
for references). Recently, the object of chaos control has 
been transferred from single or several nodes to a 
dynamical networks especially complex network (see 
[22], [23]). In particular, in [24]–[27], the authors studied 
pinning control problem on dynamical networks. Namely, 
controllers are only pinning on a very few fraction of 
nodes. In [24], [25], the authors investigated pinning 
control for linearly coupled networks and found that one 
can pin the coupled networks by introducing fewer 
locally negative feedback controllers. They also 
compared two different pinning strategies: randomly 
pinning and selective pinning based on the connection 
degrees, and found out that the pinning strategy based on 
highest connection degree has better performance than 
totally randomly pinning.  

In this paper,we assum that the coupling matrix is 
irreducible and symmetric, and for simplicity, we also 
assum that the inner coupling matrix is a diagnal matrix. 
Here, we want to stabilize a complex network, such as a 
scale-free network or a random network, onto some 
desired homogenous stationary states by controlling a 
single node of the network. With some lemmas, four 
theorems and some remarks are proposed for both 
continuous-time and discrete-time cases. From the 
theorems, we can see that the stabilization of such 
networks is determined by the dynamics of each node, the 
coupling matrix, the inner-coupling matrix, and the 
feed-back gain matrix of the network. At last we prove 
that the whole network can be controlled to stable state 
by a single node. And, we verify our conclusion by 
numerical simulation of the linearly network. 

The rest of this paper is organized as followings. Model 
description and some preliminaries consisting of one 
definition and three lemmas are introduced in section 2. In 
section 3 the synchronization of the complex network is 
studied with a controller. And two theorems are obtained 
for the continuous-time complex network. Besides, we 
extend our results to the discrete-time complex network. 
We prove that a controller can also pin the discrete-time Corresponding author. Shilong Ge,  
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complex networks to synchronization in section 4. In 
section 5 we give a numerical simulation.Finally, in 
section 6 conclusions are presented.  

Ⅱ.MODEL DESCRIPTION AND PRELIMINARIES 

Now we consider a general model of complex network 
consisting of N  identical nodes, where each node of 
the network is an n-dimensional nonautonomous 
dynamical system. The state equations of the whole 
network are described by the following differential 
equations: 

          
.

1
( ) ( ( ), ) ( )

N

i i ij i
j

x t f x t t c a x t
=

= + Γ∑     

1,...,i N= ,                           (1) 

where 1( ) ( ( ),..., ( ))T
i i inx t x t x t=  are the state 

variables of node i , : n nf R R R× →  is 
continuously differentiable, the constant 0c >  is the 
coupling strength and the inner coupling matrix 

1= ( ... )ndiag γ γΓ  is a diagonal matrix with 0iγ > . 

( )ij N NA a ×= is the coupling matrix of the network, 

where ija  is defined as follows: if there is a connection 

between node i  and node j ( j i≠ ), then 0ija > ; 

otherwise 0ija = , and the diagonal elements of 

matrix ( )ij N NA a ×=  are defined by 

1 1

N N

ii ij ji
j j
j i j i

a a a
= =
≠ ≠

= − = −∑ ∑ , 1,2,...,i N= . 

In this paper we suppose that the network is connected 
in the sense that there are no isolate clusters. To obtain 
our main results, we need the following lemmas. 
Lemma 1: (Chen [2]) If ( )ij N NA a ×=  is an irreducible 

matrix with Rank( A )= 1N −  and satisfying 

0ij jia a= ≥ , if 
1

0
N

ij
j

a
=

=∑ , for 1,2,...,i N= . Then, 

all eigenvalues of the matrix  
                 

11 12 1

21 22 2

1 2

N

N

N N NN

a a a
a a a

A

a a a

ε−⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

L

L%
M M O M

L

 

are negative, where 0ε > . 

Lemma 2: If A%  satisfies the conditions of lemma 1, 
then there exists a unitary matrix, 

1 2( , ,..., ) N N
N Rφ φ φ ×Φ = ∈ , such that i i iAφ λφ=% , 

1,2,...,i N= , where iλ  is the eigenvalue of A% . The 
lemma 2 can be deduced using linear algebra theory such 

as in Ref[9]. 

Ⅲ. PINNING CONTROL OF A COMPLEX NETWORK WITH A 
SINGLE CONTROLLER 

Note that the model (1) is more general than typically 
studied for a complex network. It is said to achieve 
synchronization if 

               

1 2( ) ( ) ( ) ( )Nx t x t x t s t= = ⋅⋅⋅ = =   as t →∞ , 

where ( ) ns t R∈  is a solution of an isolate node, 
namely 

.
( ) ( ( ))s t f s t= .           

(2) 
We prove that if 0ε > and c  is chosen suitably , the 

coupled network with a single controller shown in (3) can 
pin the complex dynamical (1) to ( )s t . 

.

1 1 1 1
1

.

1

( ) ( ( ), ) ( ) ( ( ) ( ))

( ) ( ( ), ) ( ), 2,...,

N

j j
j

N

i i ij j
j

x t f x t t c a x t c x t s t

x t f x t t c a x t i N

ε
=

=

⎧
= + Γ − Γ −⎪

⎪
⎨
⎪ = + Γ =
⎪⎩

∑

∑
.                           (3) 
Denote ( ) ( ) ( )i ie t x t s t= − , then the system (1) can be 
rewritten as follows: 

.

1

( ) ( ( ), ) ( ( ), ) ( )
N

i i ij j
j

e t f x t t f s t t c a e t
=

= − + Γ∑    

1,2,...,i N= ,                   (4) 
And the network with a single controller (3) is rewritten 
as follows: 

.

1
( ) ( ( ), ) ( ( ), ) ( )

N

i i ij j
j

e t f x t t f s t t c a e t
=

= − + Γ∑ % ,           

(5) 
where 11 11a a ε= −% , 0ε >  and ij ija a=%  otherwise. 

With lemma 1 given above, we prove two theorems. 
Theorem 1 addresses local synchronization. Theorem 2 
addresses global synchronization.  

Let 1 2( ) ( ( ), ( )..., ( ))Ne t e t e t e t= . Differentiating 

(5) along ( )s t  gives  

      
.
( ) ( ( ), ) ( ) ( ) Te t Df s t t e t c e t A= + Γ % .           

(6) 
According to the theory of Jordan canonical forms, there 
exist eigenvectors  
        1 2( , ,..., ) N N

N Rφ φ φ ×Φ = ∈ , 

satisfying TA J= Φ Φ% , where T IΦ Φ =  and 

1( ,..., )nJ diag λ λ= , where 1 2, ..., Nλ λ λ  are the 

eigenvalue of TA% and 10 ... Nλ λ> > > , and define 

( ) ( )t e tυ = Φ . Then we have  
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.
( ) [ ( ( ), ) ] ( ), 1,..., .i i it Df s t t c t i Nυ λ υ= + Γ =                            

(7) 
It seems that the analysis is similar to that of Ref [28]. 

However, it is different because we take the inner-matrix 
into accout.  
Theorem1. Suppose that ( )iu t , 1,...,i n=  are the 
eigenvalues of the matrix 
1 [ ( ( ), ) ( ( ), )]
2

TDf s t t D f s t t+ , 
1

( ) max ( )ii n
u t u t

≤ ≤
= . If 

1( )u t cλ γ η< − −  for all 0t > , 0η > , and 

1
min ii n

γ γ
≤ ≤

= . Then, the coupled system with a controller 

(3) can be locally exponentially synchronized to ( )s t . 
Proof: Select the following Lyapunov-Krasovskii of the 
form  

1( ) ( ) ( )
2

T
i i iV t t tυ υ= . 

. 1( ) ( )[ ( ( ( ), ) ( ( ), )) ] ( )
2

T T
i i i iV t t Df s t t D f s t t c tυ λ υ= + + Γ

. 
Under 1( )u t cλ γ η< − −  for all 0t >  0η >  

and
1
min ii n

γ γ
≤ ≤

= , we have  

                     
.

( ) 2 ( )i iV t V tη≤ − , 

which means that 2( ) ( )t
iV t O e η−= . 

Theorem 1 is proved. 
Theorem 2. Suppose 10 ... Nλ λ> > >  are the 

eigenvalue of A% . If there are positive diagonal matrices 
P = diag{ 1,..., np p }, Δ =  diag { 1,..., nΔ Δ } and a 

constant 0η > , such that  
                 
( ) ( ( , ) ( , ) ) ( ) ( )T Tx y P f x t x f y t y x y x yη− −Δ − +Δ ≤− − −
, 
and 1 0j jcλ γΔ + <  for 1,...,j n= . Then the 
controlled system (3) is globally exponentially 
synchronized to ( )s t . 
Proof: Select the following Lyapunov-Krasovskii of the 
form  

1

1( ) ( ) ( )
2

N
T

i i
i

V t e t Pe t
=

= ∑ . 

Denote 1( ) ( ( ),..., ( ))T
j j Nje t e t e t=   

 
 

1 1 1

( ) ( ) ( ) [ ( ) ( )]
N N N

T T
i i i ij j i

i i j

e t e t e t P c a e t e tη
= = =

≤ − + Γ + Δ∑ ∑ ∑ %  

1 1

( ) ( ) ( )( ) ( )
N n

T T
i i j j j j j

i j

e t e t p e t c A I e tη γ
= =

= − + + Δ∑ ∑ %

. 
Because 1 0j jcλ γΔ + <  then 0j jc A Iγ + Δ <% , we 
have  

.
( )

min
1

( ) ( ) ( ) 2
i i

N
V tT

i i p
i

V t e t e tη η
=

≤ − ≤ −∑ . 

Therefore 2 /min( ) ( )i it pV t O e η−= . 
Theorem 2 is proved completely. 
Rmark 1. It is clear that if c  is large enough, then the 
coupled network with a controller can pin the complex 
network to a solution ( )s t . 
Rmark 2. Although the coupled network with a single 
controller can pin the complex network to a solution 

( )s t . It does not mean that one must use one single 
controller to pin a coupled system. Theorem 2 also tells 
us that by adding any number of controllers can pin the 
coupled system. It is clear that the larger the number of 
the controllers is, the easier to pin a coupled system. 

Ⅳ.EXTENSION TO DISCRETE-TIME NETWORKS 

A discrete-time system is described using different 
equations while a continuous-time system is described 
using differential equations, hence they should be treated 
differently. Thus it is essential to extend our results to the 
discrete-time case. 

Considering a general discrete-time dynamical network 
described by  
              

1
( 1) ( ( )) ( )

N

i i ij i
j

x k f x k c a x k
=

+ = + Γ∑   

1,2,...,i N= ,                         (8) 

where ( ), , , ,i ijx k f c a Γ  have the same meanings as 
those in the system (1). 

Suppose that the network (8) is connected in the sense 
that there are no isolated clusters; that is A  is an 
irreducible matrix. As before, the discrete-time nodes in 
(8) are said to achieve synchronization if  

             

1 2( ) ( ) ( ) ( )Nx k x k x k s k= = ⋅⋅⋅ = =  as k →∞ , 

      where ( ) ns k R∈  is a solution   of  
the coupled system, namely,            

                    ( 1) ( ( ))s k f s k+ = . 
We prove that if 0ε >  and c  is chosen suitably , 

the coupled network with a single controller shown in (9) 

.

1 1 1 1
( ) ( ) ( ( ), ) ( ) ( ( ), ) ( ) ( )

N N N N
T T T
i i i i ij j

i i i j

V t e t Pf x t t e t Pf s t t e t Pc a e t
= = = =

= − + Γ∑ ∑ ∑ ∑%

1 1 1
( ) [ ( (), ) ( (), ) ()] () [ () ()]

N N N
T T
i i i i ij j i

i i j
e t P f x t t f st t e t e t Pc a e t e t

= = =

= − −Δ + Γ +Δ∑ ∑ ∑%
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can pin the dynamical complex (8) to ( )s k . 
.

1 1 1 1
1

.

1

( ) ( ( )) ( ) ( ( ) ( ))

( ) ( ( )) ( ), 2,...,

N

j j
j

N

i i ij j
j

x k f x k c a x k c x k s k

x k f x k c a x k i N

ε
=

=

⎧ = + Γ − Γ −⎪
⎪
⎨
⎪ = + Γ =
⎪⎩

∑

∑
.                       

(9) 
Let ( ) ( ) ( )i ie k x k s k= − , 1,...,i N= , then the 

system (9) can be rewritten as follows:  

1

( 1) ( ( )) ( ( )) ( )
N

i i ij j
j

e k f x k f s k c a e k
=

+ = − + Γ∑ %  

1,2,...,i N= ,                        (10) 

where ija%  have the same meanings as those in the 
system (5). 
Linearizing the controlled network (10) on the 
homogenous stationary state ( )s k  leads to  
                

( 1) ( ) ( ( )) ( )Te k e k D f s k cAe k+ = + Γ% ,                                  
(11) 
where ( ( ( )))D f s k  is the Jacobian of f  on ( )s k , 

1 2( ) ( ( ), ( ),..., ( ))T T T T N n
Ne k e k e k e k R ×= ∈ . 

Let  1 20 ... Nλ λ λ> > > >  be the eigenvalue of 

the matrix A% . According to Lemma 2, there exists an 
orthogonal matrix, 1 2( , ,..., ) N N

N Rφ φ φ ×Φ = ∈ , such 
that  
               i i iAφ λφ=%   1,2,...,i N= .                                            
(12) 
By expanding each colume ( )e t  on the basis Φ , we 
obtain  
                ( ) ( ).e k kη= Φ                                                     
(13) 
Then (11) can be expanding into the following equations: 
          

( 1) ( ) ( ( ( ))) ( )Tk k D f s k kη η η+ = +Λ Γ ,                                     
(14) 
where 1 2( , ,..., )Ndiag λ λ λΛ = . 
Furthermore, we can obtain  
             

( 1) ( ( ( ))) ( ) ( )i i i ik D f s k k kη η λ η+ = + Γ   

1,2,...i N= ,                      (15) 

where ( )T
i kη  is the i th row of ( )kη . 

Hence, the stability problem of the 
( )N n× -dimensional (9) is converted into the stability 
problem of the n -dimensional linear system(15).  
Theorem 3. The coupled system with a controller (9) can 
be locally exponentially synchronized to ( )s k , if it 
satisfies 

( ( ( ( ))) )
0

( ( ( )))

T
i

i

D f s k I
I D f s k

λ
λ

⎡ ⎤+ Γ
<⎢ ⎥+ Γ⎣ ⎦

,

1,2,...i N= . 
Proof: In this case, define a new Lyapunov function as  

1( ( )) ( ) ( )
2

T
i i iV k k kη η η=   

1,2,...,i N= . 
1( ( 1)) ( ( )) [ ( 1) ( 1) ( ) ( )]
2

T T
i i i i i iV k V k k k k kη η η η η η+ − = + + −  

1 ( )[( ( ( ( ))) ) ( ( ( ( ))) ) ] ( )
2

T T
i i i ik D f s k D f s k I kη λ λ η= + Γ + Γ −

. 
Under the condition 

( ( ( ( ))) )
0

( ( ( )))

T
i

i

D f s k I
I D f s k

λ
λ

⎡ ⎤+ Γ
<⎢ ⎥+ Γ⎣ ⎦

, 

we have ( ( 1)) ( ( )) 0i iV k V kη η+ − < . 
Theorem 3 is proved. 
Theorem 4. If there exists a negtive definite matrix 

1 2= ( , ,..., )nP diag p p p , satisfying 

[ ]2 ( ( ( ))) 0s
i PD f s k Pλ Γ − <  1,2,..., ,i N=  then 

the controlled system (9) is globally stable. 
Proof. Select the following Lyapunov-Krasovskii of the 
form  

1
( ( )) ( ) ( )

N
T

i i i
i

V k k P kη η η
=

=∑  

( ( 1)) ( ( ))i iV V k V kη ηΔ = + −  

1 1

= ( ( ) ( ( ( ))) ( ) ) ( ( ( ( ))) ( ) ( )) ( ) ( )
N N

T T T T
i i i i i i i i

i i

kD f sk k PDf sk k k kP kη λη η λ η η η
= =

+ Γ + Γ −∑ ∑
2

1
= ( ) ( ( ( ))) ( ( ( ))) ( ( )) ( ( )) ( )

N
T T T
i i i i i

i
k D f sk PDf sk P Df sk P PDf sk P kη λ λ λ η

=

⎡ ⎤+ ΓΓ+ Γ+ Γ −⎣ ⎦∑
      

2

1
= ( ) ( ( ( ))) ( ( ( ))) 2 ( ( ( ))) ( )

N
T T S
i i i i

i
k D f s k PD f s k P PDf s k P kη λ λ η

=

⎡ ⎤+ Γ Γ+ Γ −⎣ ⎦∑
, 

where 

[ ] 1( ( ( ))) = ( ( ( )))+( ( ( ( ))))
2

s TPD f s k PD f s k PD f s k⎡ ⎤Γ Γ Γ⎣ ⎦
 
Since P  is a negtive denifite matrix ,we have  

( ( ( ))) ( ( ( ))) 0TD f s k PD f s k < , 0PΓ Γ <  

and [ ]2 ( ( ( ))) 0s
i PD f s k Pλ Γ − < , so we get 

( ( 1)) ( ( )) 0i iV V k V kη ηΔ = + − <  
Then the theorem is proved. 

Ⅴ. SIMULATION 
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The control theorem’s analysis above can be applied to 
networks with defferent size. For simplicity, we first 
consider a 10-nodes network, in which each node is a 
simple three-dimensional linear system. 

 
. . .

2 31 1 2 3( , , ) ( 2 , 3 , 4 )T T
i ii i i ix x x x x x= − − −  

Besides we suppose that the inner-coupling marix is 
=Γ diag（1，1，1）, and the coupling matrix is  

-4 1 0 0 1 1 1 0 0 0
1 -3 0 0 0 0 0 1 1 0
0 0 -1 0 0 0 0 1 0 0
0 0 0 -2 0 1 0 1 0 0
1 0 0 0 -2 0 0 0 1 0
1 0 0 1 0 -2 0 0 0 0
1 0 0 0 0 0 -3 0 1 1
0 1 1 1 0 0 0 -3 0 0
0 1 0 0 1 0 1 0 -4 1
0 0 0 0 0 0 1 0 1 -2

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

We want to stabilize this network onto the originally 
equilibrium point ( ) (0,0,0)Ts t =  with a single 
controller. For simpicity, we make the first node to be 
controlled. 

When the coupling strength =0.10c ， the controller 
0.50ε = , we use the Matlab to describe the error 

( ), 1,2,...,10ije t i =  1,2,3j = . Because the 

equilibrium point is ( ) (0,0,0)Ts t = , the error ( )ije t  
are described on the same picture as Fig 1. 

 
Fig1. Synchronization errors for the network with 

0.10, 0.50c ε= =  

From the picture we can see that a single controller can 
pin the complex network. 

Ⅵ.CONCLUSION 

In this paper, we prove that a single controller can pin 
a coupled complex network to a homogenous solution, 
which is investigated for both continuous-time and 
discrete-time cases. Sufficient conditions are presented to 
guarantee the convergence of the pinning process locally 

and globally. Simulations also verify our theoretical 
results. 
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