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Abstract—Co-allocation is a fundamental infrastructure to 
aggregate heterogeneous and distributed resources in grid 
environments. Although it has been studied extensively, co-
allocation under the constraints to budget and deadline still 
remains an opening issue, which means that tradeoff 
between user QoS requirements and system performance 
should be agreed. In this paper, a novel agent-based two-
phase co-allocation is proposed, which optimizes resources 
deployment and price scheme through a two-phase co-
allocation mechanism, and applies queuing system to model 
the working of resources for providing quantitative 
guarantee for application’s deadline requirement. Extensive 
simulations are conducted to evaluate the effectiveness and 
performance of the model by comparing with other three 
co-allocation policies in terms of deadline violation rate, 
resource benefits and utilization. Experimental results show 
that the two-phase model can significantly improve the QoS 
satisfaction for those grid applications with constraints to 
budget and deadline. 
 
Index Terms—grid computing, QoS guarantee, deadline, 
computing economy, gaming theory 
 

I.  INTRODUCTION 

Grid computing [1] has emerged as the next generation 
of parallel and distributed platform that aggregates 
dispersed heterogeneous resources for solving high-end 
applications, which frequently require access to multiple 
resources across different sites. Therefore, resource co-
allocation becomes an important issue with increasing 
attention [2]. In computational Grid, co-allocation is 
generally performed by meta-scheduler when a job’s 
resource demands beyond the capacity of any single site. 
As an effective technique, advance reservation has been 
widely used to provide QoS guarantees for co-allocating 
resource across multiple sites [3]. However, advance 
reservation can only ensure the availability of resources 
at the required times [4, 7], but cannot provide guarantees 
for other QoS requirements of applications, i.e. budget 
and deadline. 

In this work, we focus on the QoS-based co-allocation 
in computational Grid. Our goal is to design an effective 
co-allocation model, which can provide reliable QoS 
guarantee for those applications with constraints to 
budget and deadline. To do this, we introduce a novel 
concept (namely Virtual Resource Agent) into co-
allocation and design a two-phase co-allocation model. In 
the model, Virtual Resource Agents optimize resources 

deployment and price scheme through a two-phase co-
allocation mechanism, and apply queuing system to 
model the working of resources for providing quantitative 
guarantee for grid application’s deadline requirement. In 
this way, heterogeneous computing resources can be 
organized in an efficient way to meet application’s 
budget and deadline requirements. 

The rest of this paper is organized as follows. Section 
II presents the related work. In section III, we introduce 
the two-phase co-allocation model. In section IV, we 
analyze the model theoretically. In section V, simulations 
are conducted to verify the effectiveness and performance 
of the proposed model. Finally, Section VI concludes the 
paper with a brief discussion of future work. 

II.  RELATED WORK 

Since co-allocation has been a fundamental 
infrastructure in Grid resource management and task 
scheduling, many co-allocation architectures have been 
developed. In Legion [5], co-allocation is supported by an 
entity called as Enactor, which relies on advance 
reservation to allocate multiple resources. In Globus [6], 
GARA [2-3] has been developed for providing atomic 
and interactive co-allocation strategies. In [8], Waldrich 
et al. develop a meta-scheduler implementation, which 
relies on negotiating with local scheduler to determine a 
common time slot where all required resources are 
available for the starting time of applications. 

Besides above architectures, many co-allocation 
models and policies are proposed to optimize certain 
performance metrics, i.e. mean response time, resource 
utilization, load balance and etc. In [9], Leinberger et al. 
propose two backfilling-based heuristics (FCFS/BB and 
FCFS/BL) for K-resource co-allocation. Their 
simulations show that load-balancing-based co-allocation 
policy outperforms classical policy such as FCFS/FF over 
50% in terms of mean response time. In [10], Mohamed 
et al. propose the Close-to-Files co-allocation policy, 
which tries to place jobs on clusters that are close to the 
input files so as to reduce communication overhead. To 
evaluate the performance of various co-allocation policies, 
Bucur and Epema [11-13] conduct extensive experiments 
in large-scale Grid testbed DAS-2[14]. Based on their 
experimental results, they draw an conclusion that 
workload-aware co-allocation policies are effective to 
reduce the mean response time and obtain better load-
balance. 
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Unfortunately, few of above studies has addressed the 
issue of resource co-allocation for Grid applications 
under the constraints of budget and deadline at the same 
time. Nimrod-G [15] is a famous grid system that uses 
computing economy driven architecture for managing 
resources and scheduling task. In Nimrod-G, three 
adaptive algorithms for deadline and budget constrained 
scheduling are proposed [16]: Cost Optimization, Time 
Optimization, and Conservative Time Optimization. 
However, the implementations of the three algorithms do 
not provide any quantative deadline guarantee for 
applications when the workload on resources changes 
dynamically. 

Currently, game theory has been widely used to solve 
the resource allocation problem in Grid computing[17-
19]. Many studies assume that participants in games are 
selfish, and then propose many methods to find the 
equilibrium solution of resource price or allocation 
scheme. In [19], Khan classifies resource allocation 
models as cooperative, semi-cooperative and non-
cooperative. By extensive simulations, Khan indicates 
that agent-based cooperation model is effective for 
resource allocation. However, Khan’s cooperative model 
is of very high computational complexity, which inspires 
us to find more efficient method.. 

III.  TWO-PHASE CO-ALLOCATION MODEL 

The system model considered in this work is shown in 
Fig. 1, which is based on the conventional multicluster 
computational Grid model that described in [20]. It 
consists of several Computing Elements (CE) each 
representing a homogeneous cluster, a set of Virtual 
Resource Agents (VRA), and a meta-scheduler. 

 
Fig. 1.   Two-phase co-allocation model 

In this model, meta-scheduler works as follows: when 
a job arrives, it selects suitable VRAs based on the job’s 
budgets and deadline, then dispatches the job to those 
selected VRAs. The VRAs work as follows: all the VRAs 
buy resources from the system at a uniform price 
p*(details about “uniform price” can be seen in section IV) 

through the resource price negotiator component, and 
then sell them to clients at different retail prices. The 
VRAs can change their size dynamically at runtime by 
adjusting their resource quantity <c1,c2,…,cn> as shown 
in fig. 1. The reasons that we introduce VRAs to the 
system are two-fold: firstly, it provides a reasonable 
resource price scheme to meet job’s budget constraint as 
well as improve resource benefits; secondly, it helps us 
modeling the working of resources so as to provide 
quantitative guarantee for job’s deadline constraint. 

In this two-phase co-allocation model there are three 
types of participants: the system, VRAs and clients. The 
system and VRAs cooperate with each other, as they both 
aim at maximizing resources utilization and system 
benefits on behalf of resource providers. On the other 
hand, the relationship between the VRAs and the clients 
is non-cooperative, as the clients hope to minimize their 
costs, which would inevitably lower down the benefits of 
resource providers. According the above description, it 
can be seen that the three types of participants form a 
three-site allocation model that similar to Producer-
Retailer-Client model [21], in which co-allocation is 
seperated into two phases. In the following work, we will 
present the validity and solution of this two-phase co-
allocation model in theory, and devise a VRA-based co-
allocation policy. 

IV.  ANALYSIS AND SOLUTIONS OF TWO-PHASE MODEL 

A.  Utility Functions 
We first give the utility functions of the three types of 

participants respectively. In next sections, we will 
analyze the two-phase co-allocation model based on these 
utility functions. As the system sells its computing 
resources to VRAs at a uniform price *p , its utility 
function can be simply defined as 

*
1

nS
iiU p s

=
= ⋅∑                           (1) 

where is  is the number of computing resources in iCE . 
Here, we deliberately ignore the various prices of 
different computing resources, and let VRAs to make the 
decision of price scheme. From the view of a whole, the 
system only needs to care about the total benefits, which 
can be easily tuned by adjusting *p . This strategy is 
inspired by Producer-Retailer-Client model. 

Let ic  be the number of computing resources in iV , 

iρ  be the resource utilization rate of  iV . Thus, the utility 
function of iV can be defined as 

*V
i i i i iU c p p cρ= ⋅ ⋅ − ⋅                       (2) 

where ip  is the resource price set by  iV for clients. 
Besides the utility function of individual VRA, we also 
care about the total benefits of all the VRAs. So, we 
define the total utility function of all VRAs as following 

*
1 1( )n nV

i i i ii i
U c p p cρ

= =
= ⋅ ⋅ − ⋅∑ ∑              (3) 

For a job j , we characterize it by a 3-
tuple: , ,j j jr b d< > , where jr  is the resource demands, jb  
is the budgets, jd  refers to deadline. Let J  be the set of 

   … 
CE_1 

Task Queues

Meta-Scheduler 

VRA … VRA VRA VRA 

   Jobs 

Resource Price 
Negotiator 

CE_2 CE_n 

Local-Schedulers 
p* 

c1,c2,…cn 
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VRAs being allocated to job j , and i
jr  be the amount of 

resources allocated from  iV  to execute job j , then the 
cost of job j  is ( )i

j ii J r p
∈

⋅∑ . As the guarantee of 
deadline is not a quantitative measure, we map it as a 
probability. Let iE  be a random event representing 

 ( )iV i J∈  can meet the deadline of job j , then the 
probability that the deadline of job j  can be satisfied is 
expressed as Pr{ }ii J∈∏ E . So we define the utility function 
of job j  as follows 

Pr{ } ( )/ i
i j ii Ji J

C
j r pU

∈∈
⋅= ∑∏ E                  (4) 

B.  Solution of Cooperative Gaming Model 
The VRAs and the system both represent the benefits 

of resource providers that wish to maximize resources 
utilization and the system benefits, so we use cooperative 
model to describe their relationship. In this cooperative 
model, a solution pair *,p< >C  will be derived, where 

1 2( , )nc c c=C K  is a vector representing the resource 
quantity in each VRA. 

Given the current price set by the system is *p , by 
using (2) and (3) we can obtain the VRAs’ benefits 

1 2( , , , )V V V
nU U UL , and the total VRAs benefits VU . If 

0VU > , then it means that the current price *p  is too low. 
As mentioned above, the relationship between the system 
and VRAs is cooperative, so we consider the benefits 
obtained by VRAs as the system’s benefits. In this way, 
the system can set a new price *

1 1
( ) / nS V

iip U U s
=

= + ∑  to 
resources. It is clear that the new price *

1p  will not affect 
the whole benefits of system. 

Under the new price *
1p , we can get a new VRAs’ 

benefits vector, denoted as ' ' '
1 2( , , , )V V V

nU U UL . From the 
definition of V

iU , we can known that if 
0VU > then '[1 ]  V V

i ini U U∀ ∈ >K , which means increasing 
*p  to *

1p  will decrease the benefits for all VRAs. Thus, 
there are three cases we should consider: 

 0V
iU >  and ' 0V

iU > : In this case, the benefits of iV  
is still positive even it had to pay a higher price for 
resources. It is suggested that more resources should 
be allocated to  iV . 

 0V
iU >  and ' 0V

iU < : In this case, the  iV  can not get 
benefits under the new price *

1p . So allocating more 
resource is not useful to increase the system benefits. 

 0V
iU <  and ' 0V

iU < : It is suggested  that resources 
in  iV  should be shrunk to decrease the benefits 
losing. 

Based on the above analysis, we can get a new solution 
pair * '

1( , )p C , where *
1p  is the new resource price decided 

by the system, ' ' '
1 2( , )nc c c=C K  is the vector representing 

the new resource quantity of each VRA. As to the case 
0VU < , the analysis is similar to the case  0VU > , so we 

skip it for simplicity. The algorithm 1 is to obtain 

*
1,( , )np c c< >K , in which *( ) { | 0}V

i iS p V U+ = >  is the set 
of VRAs with positive benefits at *p ; 

*( ) { | 0}V
i iS p V U− = <  is the set of VRAs with negative 

benefits; 0 *( ) { | 0}V
i iS p V U= =  is the set with zero benefits. 

 
Algorithm 1: Obtain *

1,( , )np c c< >K as cooperative 
gaming model solution 
Input:  *

1,( , )np c c< >K  

Output: * ' '
1 1,( , )np c c< >K  

Begin 

1. *
1 1

1 ( )n
i iip p

n
ρ

=
= ⋅∑  

2. for 1i =  to n  
3.   calculate 'V

iU  at the new price *
1p  

4.   if *
1( )iV S p+∈  then 

5.     add i  to expand_list 
6.   else if *

1( )iV S p−∈  

7.     add i  to shrink_list 
8.   end if 
9. end for 
10. for each i  in shrink_list 
11.   ' (1 )i ic k c= − Δ ⋅  

12.   find j  in expand_list, which satisfying one of the two 
conditions: (1) the amount of resources come from iCE  

in iV  is maximal; (2) V
jU  is maximal in the VRAs that 

need to be expanded. 
13.   '

j j ic c k c= + Δ ⋅  

14. end for 
End 

C.  Solution of Non-cooperative Gaming Model 
The meta-scheduler assigns jobs to VRAs based on 

client utility function. The clients tend to select the VRAs 
with lower retail price and higher resource quantity, 
because those VRAs are more likely to be able to meet 
job’s budget and deadline constraints. Although a high 
value of retail price might bring about better benefits for 
the VRA, its resource utilization rate will be lowed down 
too. On the other side, a low retail price can lead to high 
resource utilization rate, however, if the benefits of the 
VRA become negative, its resource quantity will be 
reduced in the next adjustment of *

1,( , )np c c< >K . So, the 
solution of the no-cooperative model between VRAs and 
client jobs are the resource retail prices vector 1( , , )np pK . 

According to computing economy, if the resource 
utilization rate is in high level, a VRA can reduce its 
retail price, yet still maintain its benefits in a relative high 
level. So we consider the retail price is a decreasing 
function of resource utilization rate, denoted as ( )i ip ρ . 
Then, the utility function of  iV can be rewritten as 
follows 

*( )V
i i i i i iU c p p cρ ρ= ⋅ ⋅ − ⋅                   (5) 

Let 0
v
i

i

dU
dρ

= , we can get the equation (6). Denote the 

solution of equation (6) as *
iρ . It is clear that the maximal 
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value of V
iU  can be obtained when *

i iρ ρ= . So we call 
*
iρ  as the optimal resource utilization rate of iV . 

 ' ( ) ( ) 0i i i i ip pρ ρ ρ⋅ + =                   (6) 
However, iV  cannot set its iρ  as *

iρ  by itself. Instead, 

iV  can only change its retail price to influence the clients’ 
resource selection so as to optimize its benefits. By 
comparing the difference between *

iρ  and iρ , a VRA can 
decide whether increasing or decreasing its retail price. 
The process is as follows: if *

i iρ ρ< , the iV  would 
decrease its price, else the iV  would increase its price. 
This process will be performed repeatedly until an 
optimal retail price scheme is achieved. 

Finally, we should figure out the probability that the 
deadline constraint of a job can be guaranteed, which is 
shown in formulae (4) and expressed as Pr{ }ii J∈∏ E . We 
assume that the arrival of jobs in iV  is a Poisson process 
with rate iλ , and the execution time of jobs follows 
Exponential distribution with rate iμ . Therefore, a VRA 
can be modeled as a / / iM M c queuing system [22]. So, 
the utilization rate of iV can be expressed as 

( )i i i icρ λ μ= ⋅ . In this paper, we only consider the case 
1iρ < . 

Theorem 1.  If VRA is modeled as / / iM M c  queuing 
system, then the probability that iV  can guarantee a job’s 
deadline is  

1

0 1

( ){ }  
! !

Pr
i i j i ii c d k c cc n

i i i i
i

n k i

c c
n c

μρ ρδ δ
⋅ ⋅ − +

= =

⋅ ⋅
= ⋅ + ⋅∑ ∑E  

where 
1

1

( ) ( ) 1
! 1

ii cc n
i i i i

n i i

c c
n c

ρ ρδ
ρ

−

=

⎡ ⎤⋅ ⋅
= +⎢ ⎥−⎣ ⎦
∑  and jd  is the 

relative deadline relative to its arrival time. 
Proof.  Let iψ  be a random variable representing the 

number of waiting jobs in iV . According to queuing 
theory, the probability that there are k  waiting jobs in iV  
is  

0

 ,    0
!

Pr{ }
( )  ,  0

!

ii

i

ck c
i i

i
i c n

i i

n

c k
c

k
c k

n

ρδ

ρδ

+

=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⋅⋅ >
= =

⋅⋅ =∑
ψ             (7) 

where 
1

1

( ) ( ) 1
! 1

i ic cn
i i i i

n i i

c c
n c

ρ ρδ
ρ

−

=

⎡ ⎤⋅ ⋅
= +⎢ ⎥−⎣ ⎦
∑         (8) 

Let iω  be a random variable representing the completion 
time (including waiting time and execution time) of a job 
in iV , then the probability that iV  can guarantee the job’s 
deadline jd  is expressed as  

{ } {Pr Pr }i i jd= ≤E ω                    (9) 
For / / iM M c  queueing system, the service rate is i ic μ , 

which means the system can complete i ic μ  jobs in a unit 
time. So, the amount of jobs that iV  can complete in 
period jd  is i i jc dμ . Therefore, the probability that iV  can 

guarantee a job’s deadline jd  is equal to the probability 
that the waiting jobs in iV  is not more than 1i i jc dμ⋅ ⋅ − . 
By (7)(8)(9), we can get that  

1

0
1

0 1

Pr{ } Pr{

Pr

Pr

( )
! !

}
{ 1}

{ }
i i j

i i ji ii

i i

i i i j
c d

i
k

c dc ck cn
i i i i

n k i

j

c d

c c
n c

d

k
μ

μ

μ

ρ ρδ δ

⋅ ⋅ −

=
⋅ ⋅ − +

= =

=

⋅ ⋅

⋅ ⋅= ⋅ + ⋅

≤
= ≤ −

= =∑

∑ ∑

E ω

ψ

ψ    

□ 
According to the theorem 1, we can calculate the 

deadline guarantee for a single task when dispatching it 
onto certain resources. In this paper, we use this deadline 
guarantee to define the client’s utility function so as to 
reflect the QoS requirement of real-time applications. 
Therefore, the formulae (4) can be rewritten as following 

1

0 1

( )(  )
! !

( )

i i ji ii
c dc ck cn

i i i i
i J

n k iC
j i

j ii J

c c
n cU

r p

μρ ρδ δ
⋅ ⋅ − +

∈
= =

∈

⋅ ⋅⋅ + ⋅
=

⋅

∑ ∑∏
∑

 (10) 

 
The meta-scheduler selects the best VRAs to execute 

client jobs based on formulae (10). It is noteworthy that 
client utility function consists of two parts: cost and 
deadline guarantee. In practice system, the meta-
scheduler may choose to optimize cost, or deadline 
guarantee, or the ratio of two. In simulations, we choose 
the last policy as our VRA-based co-allocation policy to 
evaluate the performance of the model. In this paper, we 
use the M/M/C queue model to describe the working of 
grid resources as shown in Theorem 1. Other types of 
queue model can also be applied to calculate the deadline 
guarantee, such as M/M/1, G/M/1 and etc. We only 
present the approach based on M/M/C and omit the others 
due to the limitation of space. 

V.  EXPERIMENTS AND PERFORMANCE EVALUATION 

A.  Experimental Settings 
We use GridSim [23], a distributed resource 

management and scheduling simulator, to evaluate the 
performance of the proposed model. A multi-cluster 
computational Grid model is constructed, which consists 
of ten clusters. The detail setting of each cluster is listed 
in Table 1.  

TABLE 1   
GRID SETTINGS IN SIMULATION 

ID Processor 
number 

MIPS / 
processor 

Price / 
MIPS 

CE_1 70 377 12 
CE_2 120 410 22 
CE_3 200 380 35 
CE_4 150 285 17 
CE_5 110 285 17 
CE_6 50 515 25 
CE_7 120 215 15 
CE_8 80 285 8 
CE_9 300 380 13 
CE_10 160 215 24 
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In simulations, the basic workload (jobs stream) is 
generated by using Lublin-Feitelson model [24], which is 
derived from the workload logs of real supercomputers. It 
consists of 10000 jobs, each is characterized by its arrival 
time, resource demands, and estimation of execution time. 
The resource demands of each job are enlarged by f  
times, where f  is uniformly distributed in [10,20] , so as 
to simulate the co-allocation in large-scale Grid 
environments. As the basic workload does not include 
deadline, we append each job with a deadline constraint 
as 

_ _j j jdeadline arriveal time k execution time= + ⋅     (11) 
where k  is a random variable that uniformly distributed 
in interval [1.5,5.5] . 

B.  Performance Comparison 
In the simulation, we compare the performance of four 

co-allocation policies in terms of resource utilization rate, 
violation rate, and resource benefits. The four policies are 
described briefly as following: 

 Round Robin Policy [25] (RR_P): The meta-
scheduler assigns jobs to clusters in turn. If the job’s 
resource requirements cannot be meet for any single 
cluster, scheduler try to assigns the job to two or 
more clusters. 

 Capability-based Random Policy [26] (CR_P): The 
probability of selecting a cluster for a job is 
proportional to its processors’ speed and number. 
This policy is not just a purely random one, and it is 
driven by the intuition that more jobs should be 
assigned to more powerful clusters. 

 Cluster Minimized Policy [10] (CM_P): The meta-
scheduler tries to assign a job to a set of clusters, 
with arming at minimizing the size of the set. 

 Virtual Resource Agent Policy (VRA_P): The meta-
scheduler assigns a job to suitable VRAs firstly, and 
then VRAs allocate physical resources in its charge 
to execute the job. The algorithm is shown in 
algorithm 2. This is the co-allocation policy 
developed in this paper. 

For the first three policies, there is no VRA entity in 
the system, so the resource prices in different clusters are 
fixed as listed in Table 1. For VRA_P, we set the initial 

*p  as the average value of all prices listed in Table II, 
and initial ip  for all VRAs is the same as *p . As 
described in section IV, a VRA adjust its price according 
to the difference between iρ  and *

iρ . We set that if 
*

i iρ ρ<  then  iV ’s price increases 10%, else decreases 
10%. The adjustment of price is triggered each time when 
200 jobs have been completed, so there are 50 chances 
for VRAs to adjust their resource prices. As to *p , the 
event of price adjusting is triggered each time when 500 
jobs have be finished, so *p  will be adjusted for 20 times. 
We set that if 0V

iU <  and ' 0V
iU < , the  iV  would release 

10 percent of its resources to a temp resource pool. Then, 
for those  iV  satisfying 0V

iU >  and ' 0V
iU > , the 

resources in the temp resource pool will be fairly 
allocated to them. 

 
Algorithm 2: Task scheduling in meta-scheduler 
Input: job j : , ,j j jr b d< >  

Output: optimalJ  

Begin 
1. max 0U = , optimalJ = ∅  

2. for 1s =  to n  do 

3.   /i
j jr r s=  

4.   for each subset J  with size s  do 

5.     calculate C
jU  by formula (10) 

6.     if max
C
jU U>  and ( )i

j i ji J
r p b

∈
⋅ <∑  

7.       max
C
jU U= , optimalJ J=  

8.   end for 
9. end for 
10. return optimalJ  

End
 
Fig. 2 shows the resource utilization for the four 

policies during the whole process of simulation. Fig. 3 
shows the average resource utilization rate of each CE. 
As we can see that the utilization of RR_P is the highest 
with average value 53%, the lowest is CR_P with average 
value 12%. It is because that RR_P allocates resources to 
jobs in turn, which can quickly full-utilize resources in a 
balancing fashion, which can also be seen in Fig. 3. As to 
CR_P, it allocates resources to jobs based on the capacity 
of resources. So most workload is assigned to those more 
powerful CEs (CE_2, CE_3, CE_4, and CE_9), which 
results in waste of other resources. 

 
Fig. 2.  Resource utilization at runtime 

As to VRA_P, its utilization is relative lower than 
CM_P for the first 2000 jobs. However, when the system 
is in a stable state, VRA_P’s utilization becomes higher 
than CM_P’s, and does not fluctuate so dramatically as 
CM_P does. The reason is that: at first, VRA_P allocates 
resource based on jobs’ utility function, so a few 
powerful resources that can better meet jobs’ 
requirements will be frequently selected.  That results in 
low resource utilization for those resources with low 
capacity. However, VRA_P is capable of adjusting its 
price scheme and VRAs’ size according to the benefits of 
both the system and clients. This feedback mechanism 
helps VRA_P find an efficient solution to organize the 
computing resource after a period of time. From Fig. 3, 
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we can also see that the average utilization of each CE is 
relative balanced when using VRA_P. 

 
Fig. 3.  Average utilization rate for each CE 

In Table 2, we list the statistical information of the four 
policies after completing all the jobs in the workload. The 
details of each CE’s benefits are shown in Fig. 4. In 
simulation, we assume that whether accepting a job or not 
will depend on job’s budgets and resource prices. For the 
first three policies, as the resource prices are fixed, so the 
number of accepted jobs is the same. For VRA_P, the 
resource prices are adjusted dynamically at runtime, so 
the number of accepted jobs is different from the other 
three. Violation occurs if the system cannot actually meet 
a job’s deadline after completing the job. If deadline 
violation occurs, the system cannot get any benefits. 

 
Fig. 4.  Benefits for each CE 

TABLE 2 
VIOLATION RATE AND SYSTEM BENEFITS 

Policy Accepted 
jobs 

Violation 
rate 

System 
 benefits(K) 

RR_P 9648 26% 29413 
CR_P 9648 13% 34503 
CM_P 9648 11% 38487 

VRA_P 9375 3.5% 50545 

As we can see in Table 2, although the resource 
utilization of RR_P is the highest, its violation rate is still 
the highest too, which leads to its benefits in a very low 
level. CR_P takes into account the resource static 
capacity while allocating resource, which reduces the 
violation probability. However, CR_P suffers from load 
imbalance (shown in Fig. 4), so CM_P is more effective 
to meet jobs’ deadline than CR_P. As to VRA_P, it 
selects the resources that with an optimal probability to 
meet a job’s deadline requirement, so its violation rate is 

in a significant low level. In addition, VRA_P adjusts its 
price scheme according to the feedbacks from the system 
and the clients. So VRA_P can provide reliable QoS 
guarantees for applications in terms of budget and 
deadline, as well as an optimal price scheme for maximal 
system benefits. 

C. QoS Performance with Different VRA_P Parameters 
In order to further investigate the VRA_P’s QoS 

performance with different model parameter, we 
conductive a set of simulations with various combinations 
of the two key parameter kΔ  and pΔ . In VRA_P, kΔ  
and pΔ  are the decrement or incremental of resource 
quantity and retail price, respectively. We conduct 
extensive simulations to examine the effects of both 
parameters on the performance of VRA_P in terms of 
resource benefits. The results are shown in Fig. 5. 

 
Fig. 5  Effects of kΔ and pΔ on resource benefits 

In simulations, we test four different values of pΔ (5%, 
10%, 15%, 20%) combining with gradually increasing 

kΔ from 2% to 20%. As shown in Fig. 5, the resource 
benefits are the most optimal when 16%kΔ = and 

10%pΔ = . When 10%pΔ > , the resource benefits 
becomes irregular with the increasing of kΔ . It is because 
that large pΔ means the retail price fluctuate dramatically, 
as VRA_P tends to select those VRAs with low retail 
prices, so it is hard for the VRAs to obtain the optimal 
retail prices for maximizing the resource benefits. When 

5%pΔ = , VRAs have to take a long time to get the 
optimal retail prices, so that the resource benefits can not 
be as much as the case when 10%pΔ = . According to the 
analysis in section IV.C, it can be explained as: it is 
difficult for the VRA-based model to entry into balancing 
state while using large value of pΔ ; On the other side, 
small value of pΔ makes the speed of convergence to 
balancing state too slow. 

VI.  CONCLUSION 

In this work, we address this issue by presenting a 
novel two-phase co-allocation model. In the proposed 
model, we introduce the concept of Virtual Resource 
Agent, which is able to provide quantitative QoS 
guarantee for applications in terms of budget and 
deadline, as well as a feasible method to maximize the 
benefits of resource providers. We first analyze the model 
by using a three-participant game model and computing 
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economy principle. Based on the theoretical analysis, a 
QoS-based co-allocation policy called VRA_P is 
proposed. Experiment results show that VRA_P can 
reduce deadline violation rate significantly, which in turn 
increases the benefits of the resource providers. This is 
useful for those grid applications with limited budget and 
stringent deadline in computing economy environment. In 
addition, we notice that VRA_P can implicitly achieve 
load balance by using price lever.  

In this work, we mainly focus on computing resources 
co-allocation in multi-cluster Grid environment. We will 
take efforts to generalize our model and policy, and adapt 
to other resource types, for example bandwidth, storage 
and etc. Furthermore, we will consider combining our 
model with advance reservation to provide more reliable 
QoS guarantee for application’s deadline requirements. 
Also, we plan to define a SLA-based price bargain 
protocol in our framework. 
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