
Three-side Gaming Model for Resource Co-
allocation in Grid Computing

Peng Xiao, Dongbo Liu, Xilong Qu

School of Computer and Communication, Hunan Institute of Engineering, Xiangtan, 411104, China
Email: xpeng4623@yahoo.com.cn

Abstract—Co-allocation is a fundamental infrastructure to
aggregate heterogeneous and distributed resources in grid
environments. Although it has been studied extensively, co-
allocation under the constraints to budget and deadline still
remains an opening issue, which means that tradeoff
between user QoS requirements and system performance
should be agreed. In this paper, a novel agent-based two-
phase co-allocation is proposed, which optimizes resources
deployment and price scheme through a two-phase co-
allocation mechanism, and applies queuing system to model
the working of resources for providing quantitative
guarantee for application’s deadline requirement. Extensive
simulations are conducted to evaluate the effectiveness and
performance of the model by comparing with other three
co-allocation policies in terms of deadline violation rate,
resource benefits and utilization. Experimental results show
that the two-phase model can significantly improve the QoS
satisfaction for those grid applications with constraints to
budget and deadline.

Index Terms—grid computing, QoS guarantee, deadline,
computing economy, gaming theory

I. INTRODUCTION

Grid computing [1] has emerged as the next generation
of parallel and distributed platform that aggregates
dispersed heterogeneous resources for solving high-end
applications, which frequently require access to multiple
resources across different sites. Therefore, resource co-
allocation becomes an important issue with increasing
attention [2]. In computational Grid, co-allocation is
generally performed by meta-scheduler when a job’s
resource demands beyond the capacity of any single site.
As an effective technique, advance reservation has been
widely used to provide QoS guarantees for co-allocating
resource across multiple sites [3]. However, advance
reservation can only ensure the availability of resources
at the required times [4, 7], but cannot provide guarantees
for other QoS requirements of applications, i.e. budget
and deadline.

In this work, we focus on the QoS-based co-allocation
in computational Grid. Our goal is to design an effective
co-allocation model, which can provide reliable QoS
guarantee for those applications with constraints to
budget and deadline. To do this, we introduce a novel
concept (namely Virtual Resource Agent) into co-
allocation and design a two-phase co-allocation model. In
the model, Virtual Resource Agents optimize resources

deployment and price scheme through a two-phase co-
allocation mechanism, and apply queuing system to
model the working of resources for providing quantitative
guarantee for grid application’s deadline requirement. In
this way, heterogeneous computing resources can be
organized in an efficient way to meet application’s
budget and deadline requirements.

The rest of this paper is organized as follows. Section
II presents the related work. In section III, we introduce
the two-phase co-allocation model. In section IV, we
analyze the model theoretically. In section V, simulations
are conducted to verify the effectiveness and performance
of the proposed model. Finally, Section VI concludes the
paper with a brief discussion of future work.

II. RELATED WORK

Since co-allocation has been a fundamental
infrastructure in Grid resource management and task
scheduling, many co-allocation architectures have been
developed. In Legion [5], co-allocation is supported by an
entity called as Enactor, which relies on advance
reservation to allocate multiple resources. In Globus [6],
GARA [2-3] has been developed for providing atomic
and interactive co-allocation strategies. In [8], Waldrich
et al. develop a meta-scheduler implementation, which
relies on negotiating with local scheduler to determine a
common time slot where all required resources are
available for the starting time of applications.

Besides above architectures, many co-allocation
models and policies are proposed to optimize certain
performance metrics, i.e. mean response time, resource
utilization, load balance and etc. In [9], Leinberger et al.
propose two backfilling-based heuristics (FCFS/BB and
FCFS/BL) for K-resource co-allocation. Their
simulations show that load-balancing-based co-allocation
policy outperforms classical policy such as FCFS/FF over
50% in terms of mean response time. In [10], Mohamed
et al. propose the Close-to-Files co-allocation policy,
which tries to place jobs on clusters that are close to the
input files so as to reduce communication overhead. To
evaluate the performance of various co-allocation policies,
Bucur and Epema [11-13] conduct extensive experiments
in large-scale Grid testbed DAS-2[14]. Based on their
experimental results, they draw an conclusion that
workload-aware co-allocation policies are effective to
reduce the mean response time and obtain better load-
balance.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2125

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.2125-2132

Unfortunately, few of above studies has addressed the
issue of resource co-allocation for Grid applications
under the constraints of budget and deadline at the same
time. Nimrod-G [15] is a famous grid system that uses
computing economy driven architecture for managing
resources and scheduling task. In Nimrod-G, three
adaptive algorithms for deadline and budget constrained
scheduling are proposed [16]: Cost Optimization, Time
Optimization, and Conservative Time Optimization.
However, the implementations of the three algorithms do
not provide any quantative deadline guarantee for
applications when the workload on resources changes
dynamically.

Currently, game theory has been widely used to solve
the resource allocation problem in Grid computing[17-
19]. Many studies assume that participants in games are
selfish, and then propose many methods to find the
equilibrium solution of resource price or allocation
scheme. In [19], Khan classifies resource allocation
models as cooperative, semi-cooperative and non-
cooperative. By extensive simulations, Khan indicates
that agent-based cooperation model is effective for
resource allocation. However, Khan’s cooperative model
is of very high computational complexity, which inspires
us to find more efficient method..

III. TWO-PHASE CO-ALLOCATION MODEL

The system model considered in this work is shown in
Fig. 1, which is based on the conventional multicluster
computational Grid model that described in [20]. It
consists of several Computing Elements (CE) each
representing a homogeneous cluster, a set of Virtual
Resource Agents (VRA), and a meta-scheduler.

Fig. 1. Two-phase co-allocation model

In this model, meta-scheduler works as follows: when
a job arrives, it selects suitable VRAs based on the job’s
budgets and deadline, then dispatches the job to those
selected VRAs. The VRAs work as follows: all the VRAs
buy resources from the system at a uniform price
p*(details about “uniform price” can be seen in section IV)

through the resource price negotiator component, and
then sell them to clients at different retail prices. The
VRAs can change their size dynamically at runtime by
adjusting their resource quantity <c1,c2,…,cn> as shown
in fig. 1. The reasons that we introduce VRAs to the
system are two-fold: firstly, it provides a reasonable
resource price scheme to meet job’s budget constraint as
well as improve resource benefits; secondly, it helps us
modeling the working of resources so as to provide
quantitative guarantee for job’s deadline constraint.

In this two-phase co-allocation model there are three
types of participants: the system, VRAs and clients. The
system and VRAs cooperate with each other, as they both
aim at maximizing resources utilization and system
benefits on behalf of resource providers. On the other
hand, the relationship between the VRAs and the clients
is non-cooperative, as the clients hope to minimize their
costs, which would inevitably lower down the benefits of
resource providers. According the above description, it
can be seen that the three types of participants form a
three-site allocation model that similar to Producer-
Retailer-Client model [21], in which co-allocation is
seperated into two phases. In the following work, we will
present the validity and solution of this two-phase co-
allocation model in theory, and devise a VRA-based co-
allocation policy.

IV. ANALYSIS AND SOLUTIONS OF TWO-PHASE MODEL

A. Utility Functions
We first give the utility functions of the three types of

participants respectively. In next sections, we will
analyze the two-phase co-allocation model based on these
utility functions. As the system sells its computing
resources to VRAs at a uniform price *p , its utility
function can be simply defined as

*
1

nS
iiU p s

=
= ⋅∑ (1)

where is is the number of computing resources in iCE .
Here, we deliberately ignore the various prices of
different computing resources, and let VRAs to make the
decision of price scheme. From the view of a whole, the
system only needs to care about the total benefits, which
can be easily tuned by adjusting *p . This strategy is
inspired by Producer-Retailer-Client model.

Let ic be the number of computing resources in iV ,

iρ be the resource utilization rate of iV . Thus, the utility
function of iV can be defined as

*V
i i i i iU c p p cρ= ⋅ ⋅ − ⋅ (2)

where ip is the resource price set by iV for clients.
Besides the utility function of individual VRA, we also
care about the total benefits of all the VRAs. So, we
define the total utility function of all VRAs as following

*
1 1()n nV

i i i ii i
U c p p cρ

= =
= ⋅ ⋅ − ⋅∑ ∑ (3)

For a job j , we characterize it by a 3-
tuple: , ,j j jr b d< > , where jr is the resource demands, jb
is the budgets, jd refers to deadline. Let J be the set of

 …
CE_1

Task Queues

Meta-Scheduler

VRA … VRA VRA VRA

 Jobs

Resource Price
Negotiator

CE_2 CE_n

Local-Schedulers
p*

c1,c2,…cn

2126 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

VRAs being allocated to job j , and i
jr be the amount of

resources allocated from iV to execute job j , then the
cost of job j is ()i

j ii J r p
∈

⋅∑ . As the guarantee of
deadline is not a quantitative measure, we map it as a
probability. Let iE be a random event representing

 ()iV i J∈ can meet the deadline of job j , then the
probability that the deadline of job j can be satisfied is
expressed as Pr{ }ii J∈∏ E . So we define the utility function
of job j as follows

Pr{ } ()/ i
i j ii Ji J

C
j r pU

∈∈
⋅= ∑∏ E (4)

B. Solution of Cooperative Gaming Model
The VRAs and the system both represent the benefits

of resource providers that wish to maximize resources
utilization and the system benefits, so we use cooperative
model to describe their relationship. In this cooperative
model, a solution pair *,p< >C will be derived, where

1 2(,)nc c c=C K is a vector representing the resource
quantity in each VRA.

Given the current price set by the system is *p , by
using (2) and (3) we can obtain the VRAs’ benefits

1 2(, , ,)V V V
nU U UL , and the total VRAs benefits VU . If

0VU > , then it means that the current price *p is too low.
As mentioned above, the relationship between the system
and VRAs is cooperative, so we consider the benefits
obtained by VRAs as the system’s benefits. In this way,
the system can set a new price *

1 1
() / nS V

iip U U s
=

= + ∑ to
resources. It is clear that the new price *

1p will not affect
the whole benefits of system.

Under the new price *
1p , we can get a new VRAs’

benefits vector, denoted as ' ' '
1 2(, , ,)V V V

nU U UL . From the
definition of V

iU , we can known that if
0VU > then '[1] V V

i ini U U∀ ∈ >K , which means increasing
*p to *

1p will decrease the benefits for all VRAs. Thus,
there are three cases we should consider:

 0V
iU > and ' 0V

iU > : In this case, the benefits of iV
is still positive even it had to pay a higher price for
resources. It is suggested that more resources should
be allocated to iV .

 0V
iU > and ' 0V

iU < : In this case, the iV can not get
benefits under the new price *

1p . So allocating more
resource is not useful to increase the system benefits.

 0V
iU < and ' 0V

iU < : It is suggested that resources
in iV should be shrunk to decrease the benefits
losing.

Based on the above analysis, we can get a new solution
pair * '

1(,)p C , where *
1p is the new resource price decided

by the system, ' ' '
1 2(,)nc c c=C K is the vector representing

the new resource quantity of each VRA. As to the case
0VU < , the analysis is similar to the case 0VU > , so we

skip it for simplicity. The algorithm 1 is to obtain

*
1,(,)np c c< >K , in which *() { | 0}V

i iS p V U+ = > is the set
of VRAs with positive benefits at *p ;

*() { | 0}V
i iS p V U− = < is the set of VRAs with negative

benefits; 0 *() { | 0}V
i iS p V U= = is the set with zero benefits.

Algorithm 1: Obtain *

1,(,)np c c< >K as cooperative
gaming model solution
Input: *

1,(,)np c c< >K

Output: * ' '
1 1,(,)np c c< >K

Begin

1. *
1 1

1 ()n
i iip p

n
ρ

=
= ⋅∑

2. for 1i = to n
3. calculate 'V

iU at the new price *
1p

4. if *
1()iV S p+∈ then

5. add i to expand_list
6. else if *

1()iV S p−∈

7. add i to shrink_list
8. end if
9. end for
10. for each i in shrink_list
11. ' (1)i ic k c= − Δ ⋅

12. find j in expand_list, which satisfying one of the two
conditions: (1) the amount of resources come from iCE

in iV is maximal; (2) V
jU is maximal in the VRAs that

need to be expanded.
13. '

j j ic c k c= + Δ ⋅

14. end for
End

C. Solution of Non-cooperative Gaming Model
The meta-scheduler assigns jobs to VRAs based on

client utility function. The clients tend to select the VRAs
with lower retail price and higher resource quantity,
because those VRAs are more likely to be able to meet
job’s budget and deadline constraints. Although a high
value of retail price might bring about better benefits for
the VRA, its resource utilization rate will be lowed down
too. On the other side, a low retail price can lead to high
resource utilization rate, however, if the benefits of the
VRA become negative, its resource quantity will be
reduced in the next adjustment of *

1,(,)np c c< >K . So, the
solution of the no-cooperative model between VRAs and
client jobs are the resource retail prices vector 1(, ,)np pK .

According to computing economy, if the resource
utilization rate is in high level, a VRA can reduce its
retail price, yet still maintain its benefits in a relative high
level. So we consider the retail price is a decreasing
function of resource utilization rate, denoted as ()i ip ρ .
Then, the utility function of iV can be rewritten as
follows

*()V
i i i i i iU c p p cρ ρ= ⋅ ⋅ − ⋅ (5)

Let 0
v
i

i

dU
dρ

= , we can get the equation (6). Denote the

solution of equation (6) as *
iρ . It is clear that the maximal

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2127

© 2012 ACADEMY PUBLISHER

value of V
iU can be obtained when *

i iρ ρ= . So we call
*
iρ as the optimal resource utilization rate of iV .

 ' () () 0i i i i ip pρ ρ ρ⋅ + = (6)
However, iV cannot set its iρ as *

iρ by itself. Instead,

iV can only change its retail price to influence the clients’
resource selection so as to optimize its benefits. By
comparing the difference between *

iρ and iρ , a VRA can
decide whether increasing or decreasing its retail price.
The process is as follows: if *

i iρ ρ< , the iV would
decrease its price, else the iV would increase its price.
This process will be performed repeatedly until an
optimal retail price scheme is achieved.

Finally, we should figure out the probability that the
deadline constraint of a job can be guaranteed, which is
shown in formulae (4) and expressed as Pr{ }ii J∈∏ E . We
assume that the arrival of jobs in iV is a Poisson process
with rate iλ , and the execution time of jobs follows
Exponential distribution with rate iμ . Therefore, a VRA
can be modeled as a / / iM M c queuing system [22]. So,
the utilization rate of iV can be expressed as

()i i i icρ λ μ= ⋅ . In this paper, we only consider the case
1iρ < .

Theorem 1. If VRA is modeled as / / iM M c queuing
system, then the probability that iV can guarantee a job’s
deadline is

1

0 1

(){ }
! !

Pr
i i j i ii c d k c cc n

i i i i
i

n k i

c c
n c

μρ ρδ δ
⋅ ⋅ − +

= =

⋅ ⋅
= ⋅ + ⋅∑ ∑E

where
1

1

() () 1
! 1

ii cc n
i i i i

n i i

c c
n c

ρ ρδ
ρ

−

=

⎡ ⎤⋅ ⋅
= +⎢ ⎥−⎣ ⎦
∑ and jd is the

relative deadline relative to its arrival time.
Proof. Let iψ be a random variable representing the

number of waiting jobs in iV . According to queuing
theory, the probability that there are k waiting jobs in iV
is

0

 , 0
!

Pr{ }
() , 0

!

ii

i

ck c
i i

i
i c n

i i

n

c k
c

k
c k

n

ρδ

ρδ

+

=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⋅⋅ >
= =

⋅⋅ =∑
ψ (7)

where
1

1

() () 1
! 1

i ic cn
i i i i

n i i

c c
n c

ρ ρδ
ρ

−

=

⎡ ⎤⋅ ⋅
= +⎢ ⎥−⎣ ⎦
∑ (8)

Let iω be a random variable representing the completion
time (including waiting time and execution time) of a job
in iV , then the probability that iV can guarantee the job’s
deadline jd is expressed as

{ } {Pr Pr }i i jd= ≤E ω (9)
For / / iM M c queueing system, the service rate is i ic μ ,

which means the system can complete i ic μ jobs in a unit
time. So, the amount of jobs that iV can complete in
period jd is i i jc dμ . Therefore, the probability that iV can

guarantee a job’s deadline jd is equal to the probability
that the waiting jobs in iV is not more than 1i i jc dμ⋅ ⋅ − .
By (7)(8)(9), we can get that

1

0
1

0 1

Pr{ } Pr{

Pr

Pr

()
! !

}
{ 1}

{ }
i i j

i i ji ii

i i

i i i j
c d

i
k

c dc ck cn
i i i i

n k i

j

c d

c c
n c

d

k
μ

μ

μ

ρ ρδ δ

⋅ ⋅ −

=
⋅ ⋅ − +

= =

=

⋅ ⋅

⋅ ⋅= ⋅ + ⋅

≤
= ≤ −

= =∑

∑ ∑

E ω

ψ

ψ

□
According to the theorem 1, we can calculate the

deadline guarantee for a single task when dispatching it
onto certain resources. In this paper, we use this deadline
guarantee to define the client’s utility function so as to
reflect the QoS requirement of real-time applications.
Therefore, the formulae (4) can be rewritten as following

1

0 1

()()
! !

()

i i ji ii
c dc ck cn

i i i i
i J

n k iC
j i

j ii J

c c
n cU

r p

μρ ρδ δ
⋅ ⋅ − +

∈
= =

∈

⋅ ⋅⋅ + ⋅
=

⋅

∑ ∑∏
∑

 (10)

The meta-scheduler selects the best VRAs to execute

client jobs based on formulae (10). It is noteworthy that
client utility function consists of two parts: cost and
deadline guarantee. In practice system, the meta-
scheduler may choose to optimize cost, or deadline
guarantee, or the ratio of two. In simulations, we choose
the last policy as our VRA-based co-allocation policy to
evaluate the performance of the model. In this paper, we
use the M/M/C queue model to describe the working of
grid resources as shown in Theorem 1. Other types of
queue model can also be applied to calculate the deadline
guarantee, such as M/M/1, G/M/1 and etc. We only
present the approach based on M/M/C and omit the others
due to the limitation of space.

V. EXPERIMENTS AND PERFORMANCE EVALUATION

A. Experimental Settings
We use GridSim [23], a distributed resource

management and scheduling simulator, to evaluate the
performance of the proposed model. A multi-cluster
computational Grid model is constructed, which consists
of ten clusters. The detail setting of each cluster is listed
in Table 1.

TABLE 1
GRID SETTINGS IN SIMULATION

ID Processor
number

MIPS /
processor

Price /
MIPS

CE_1 70 377 12
CE_2 120 410 22
CE_3 200 380 35
CE_4 150 285 17
CE_5 110 285 17
CE_6 50 515 25
CE_7 120 215 15
CE_8 80 285 8
CE_9 300 380 13
CE_10 160 215 24

2128 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

In simulations, the basic workload (jobs stream) is
generated by using Lublin-Feitelson model [24], which is
derived from the workload logs of real supercomputers. It
consists of 10000 jobs, each is characterized by its arrival
time, resource demands, and estimation of execution time.
The resource demands of each job are enlarged by f
times, where f is uniformly distributed in [10,20] , so as
to simulate the co-allocation in large-scale Grid
environments. As the basic workload does not include
deadline, we append each job with a deadline constraint
as

_ _j j jdeadline arriveal time k execution time= + ⋅ (11)
where k is a random variable that uniformly distributed
in interval [1.5,5.5] .

B. Performance Comparison
In the simulation, we compare the performance of four

co-allocation policies in terms of resource utilization rate,
violation rate, and resource benefits. The four policies are
described briefly as following:

 Round Robin Policy [25] (RR_P): The meta-
scheduler assigns jobs to clusters in turn. If the job’s
resource requirements cannot be meet for any single
cluster, scheduler try to assigns the job to two or
more clusters.

 Capability-based Random Policy [26] (CR_P): The
probability of selecting a cluster for a job is
proportional to its processors’ speed and number.
This policy is not just a purely random one, and it is
driven by the intuition that more jobs should be
assigned to more powerful clusters.

 Cluster Minimized Policy [10] (CM_P): The meta-
scheduler tries to assign a job to a set of clusters,
with arming at minimizing the size of the set.

 Virtual Resource Agent Policy (VRA_P): The meta-
scheduler assigns a job to suitable VRAs firstly, and
then VRAs allocate physical resources in its charge
to execute the job. The algorithm is shown in
algorithm 2. This is the co-allocation policy
developed in this paper.

For the first three policies, there is no VRA entity in
the system, so the resource prices in different clusters are
fixed as listed in Table 1. For VRA_P, we set the initial

*p as the average value of all prices listed in Table II,
and initial ip for all VRAs is the same as *p . As
described in section IV, a VRA adjust its price according
to the difference between iρ and *

iρ . We set that if
*

i iρ ρ< then iV ’s price increases 10%, else decreases
10%. The adjustment of price is triggered each time when
200 jobs have been completed, so there are 50 chances
for VRAs to adjust their resource prices. As to *p , the
event of price adjusting is triggered each time when 500
jobs have be finished, so *p will be adjusted for 20 times.
We set that if 0V

iU < and ' 0V
iU < , the iV would release

10 percent of its resources to a temp resource pool. Then,
for those iV satisfying 0V

iU > and ' 0V
iU > , the

resources in the temp resource pool will be fairly
allocated to them.

Algorithm 2: Task scheduling in meta-scheduler
Input: job j : , ,j j jr b d< >

Output: optimalJ

Begin
1. max 0U = , optimalJ = ∅

2. for 1s = to n do

3. /i
j jr r s=

4. for each subset J with size s do

5. calculate C
jU by formula (10)

6. if max
C
jU U> and ()i

j i ji J
r p b

∈
⋅ <∑

7. max
C
jU U= , optimalJ J=

8. end for
9. end for
10. return optimalJ

End

Fig. 2 shows the resource utilization for the four

policies during the whole process of simulation. Fig. 3
shows the average resource utilization rate of each CE.
As we can see that the utilization of RR_P is the highest
with average value 53%, the lowest is CR_P with average
value 12%. It is because that RR_P allocates resources to
jobs in turn, which can quickly full-utilize resources in a
balancing fashion, which can also be seen in Fig. 3. As to
CR_P, it allocates resources to jobs based on the capacity
of resources. So most workload is assigned to those more
powerful CEs (CE_2, CE_3, CE_4, and CE_9), which
results in waste of other resources.

Fig. 2. Resource utilization at runtime

As to VRA_P, its utilization is relative lower than
CM_P for the first 2000 jobs. However, when the system
is in a stable state, VRA_P’s utilization becomes higher
than CM_P’s, and does not fluctuate so dramatically as
CM_P does. The reason is that: at first, VRA_P allocates
resource based on jobs’ utility function, so a few
powerful resources that can better meet jobs’
requirements will be frequently selected. That results in
low resource utilization for those resources with low
capacity. However, VRA_P is capable of adjusting its
price scheme and VRAs’ size according to the benefits of
both the system and clients. This feedback mechanism
helps VRA_P find an efficient solution to organize the
computing resource after a period of time. From Fig. 3,

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2129

© 2012 ACADEMY PUBLISHER

we can also see that the average utilization of each CE is
relative balanced when using VRA_P.

Fig. 3. Average utilization rate for each CE

In Table 2, we list the statistical information of the four
policies after completing all the jobs in the workload. The
details of each CE’s benefits are shown in Fig. 4. In
simulation, we assume that whether accepting a job or not
will depend on job’s budgets and resource prices. For the
first three policies, as the resource prices are fixed, so the
number of accepted jobs is the same. For VRA_P, the
resource prices are adjusted dynamically at runtime, so
the number of accepted jobs is different from the other
three. Violation occurs if the system cannot actually meet
a job’s deadline after completing the job. If deadline
violation occurs, the system cannot get any benefits.

Fig. 4. Benefits for each CE

TABLE 2
VIOLATION RATE AND SYSTEM BENEFITS

Policy Accepted
jobs

Violation
rate

System
 benefits(K)

RR_P 9648 26% 29413
CR_P 9648 13% 34503
CM_P 9648 11% 38487

VRA_P 9375 3.5% 50545

As we can see in Table 2, although the resource
utilization of RR_P is the highest, its violation rate is still
the highest too, which leads to its benefits in a very low
level. CR_P takes into account the resource static
capacity while allocating resource, which reduces the
violation probability. However, CR_P suffers from load
imbalance (shown in Fig. 4), so CM_P is more effective
to meet jobs’ deadline than CR_P. As to VRA_P, it
selects the resources that with an optimal probability to
meet a job’s deadline requirement, so its violation rate is

in a significant low level. In addition, VRA_P adjusts its
price scheme according to the feedbacks from the system
and the clients. So VRA_P can provide reliable QoS
guarantees for applications in terms of budget and
deadline, as well as an optimal price scheme for maximal
system benefits.

C. QoS Performance with Different VRA_P Parameters
In order to further investigate the VRA_P’s QoS

performance with different model parameter, we
conductive a set of simulations with various combinations
of the two key parameter kΔ and pΔ . In VRA_P, kΔ
and pΔ are the decrement or incremental of resource
quantity and retail price, respectively. We conduct
extensive simulations to examine the effects of both
parameters on the performance of VRA_P in terms of
resource benefits. The results are shown in Fig. 5.

Fig. 5 Effects of kΔ and pΔ on resource benefits

In simulations, we test four different values of pΔ (5%,
10%, 15%, 20%) combining with gradually increasing

kΔ from 2% to 20%. As shown in Fig. 5, the resource
benefits are the most optimal when 16%kΔ = and

10%pΔ = . When 10%pΔ > , the resource benefits
becomes irregular with the increasing of kΔ . It is because
that large pΔ means the retail price fluctuate dramatically,
as VRA_P tends to select those VRAs with low retail
prices, so it is hard for the VRAs to obtain the optimal
retail prices for maximizing the resource benefits. When

5%pΔ = , VRAs have to take a long time to get the
optimal retail prices, so that the resource benefits can not
be as much as the case when 10%pΔ = . According to the
analysis in section IV.C, it can be explained as: it is
difficult for the VRA-based model to entry into balancing
state while using large value of pΔ ; On the other side,
small value of pΔ makes the speed of convergence to
balancing state too slow.

VI. CONCLUSION

In this work, we address this issue by presenting a
novel two-phase co-allocation model. In the proposed
model, we introduce the concept of Virtual Resource
Agent, which is able to provide quantitative QoS
guarantee for applications in terms of budget and
deadline, as well as a feasible method to maximize the
benefits of resource providers. We first analyze the model
by using a three-participant game model and computing

2130 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

economy principle. Based on the theoretical analysis, a
QoS-based co-allocation policy called VRA_P is
proposed. Experiment results show that VRA_P can
reduce deadline violation rate significantly, which in turn
increases the benefits of the resource providers. This is
useful for those grid applications with limited budget and
stringent deadline in computing economy environment. In
addition, we notice that VRA_P can implicitly achieve
load balance by using price lever.

In this work, we mainly focus on computing resources
co-allocation in multi-cluster Grid environment. We will
take efforts to generalize our model and policy, and adapt
to other resource types, for example bandwidth, storage
and etc. Furthermore, we will consider combining our
model with advance reservation to provide more reliable
QoS guarantee for application’s deadline requirements.
Also, we plan to define a SLA-based price bargain
protocol in our framework.

ACKNOWLEDGMENT

This work was supported by a grant from the National
Natural Science Foundation of China (No. 60970038).
Authors gratefully acknowledge the Projects Supported
by Scientific Research Fund of Hunan Provincial
Education Department (08A009) for supporting this
research. Project supported by Provincial Natural Science
Foundation of Hunan (10JJ6099) supports the research.
Project supported by Provincial Science & Technology
plan project of Hunan (2010GK3048) supports the
research.

REFERENCES

[1] I. Foster, C. Kesselman. The Grid2: Blueprint for a New
Computing Infrastructure. San Francisco: Morgan
Kaufmann, 2004.

[2] K. Czajkowski, I. Foster, C. Kesselman. Resource Co-
Allocation in Computational Grids. IEEE International
Symposium on High Performance Distributed Computing,
1999, 219-228.

[3] I. Foster, C. Kesselman, et al. A Distributed Resource
Management Architecture that Supports Advance
Reservation and Co-Allocation. IEEE International
Workshop on Quality of Service, 1999, 27-36.

[4] K. Rajah, S. Ranka, Y. Xia. Advance Reservations and
Scheduling for Bulk Transfers in Research Networks.
IEEE Transactions on Parallel and Distributed Systems,
2009, 20(11):1682-1697.

[5] M. Lewis, et al. Support for Extensibility and Site
Autonomy in the Legion Grid System Object Model.
Journal of Parallel and Distributed Computing, 2003,
63(5):525-538.

[6] I. Foster, C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. Journal of Supercomputer
Applications, 1997, 115~128.

[7] A. Sulistio, K. H. Kim, R. Buyya. Managing
Cancellations and No-shows of Reservations with
Overbooking to Increase Resource Revenue. In:
Proceedings of IEEE/ACM International Symposium on

Cluster Computing and the Grid, 2008:267-276.
[8] O. Waldrich, P. Wieder, W. Ziegler. A Meta-Scheduling

Service for Co-allocating Arbitrary Types of Resources.
CoreGRID Technical Report TR-0010, 2005.

[9] W. Leinberger, G. Karypis, V. Kumar. Job Scheduling in
the presence of Multiple Resource Requirements.
ACM/IEEE International Conference on Supercomputing,
1999.

[10] H.H. Mohamed, D.H.J. Epema. An Evaluation of the
Close-to-Files Processor and Data Co-Allocation Policy in
Multiclusters. ACM/IEEE International Conference on
Cluster Computing, 2004, 287-298.

[11] A.I.D. Bucur, D.H.J. Epema. Scheduling Policies for
Processor Coallocation in Multicluster System [J]. IEEE
Transaction on Parallel and Distributed Systems, 2007,
18(7):958-962.

[12] A.I.D. Bucur, D.H.J. Epema. The Performance of
Processor Co-Allocation in Multicluster Systems.
ACM/IEEE International Symposium on Cluster
Computing and the Grid, 2003, 302-309.

[13] A.I.D. Bucur, D.H.J. Epema. The Maximal Utilization of
Processor Co-Allocation in Multicluster Systems. IEEE
International Symposium on Parallel and Distributed
Processing, 2003.

[14] H.E. Bal et al. The Distributed ASCI Supercomputer
Project. ACM Operating Systems Review, 2000,34(4):76-
96.

[15] D. Abramson, J. Giddy, I. Foster, L. Kotler. High
Performance Parametric Modeling with Nimrod/G: Killer
Application for the Global Grid?. IEEE International
Symposium on Parallel and Distributed Processing, 2000.

[16] R. Buyya. Economic-based Distributed Resource
Management and Scheduling for Grid Computing.
Australia: Monash University, 2002.

[17] Y.-K. Kwok, K. Hwang, and S. Song. Selfish Grids:
Game-Theoretic Modeling and NAS/PSA Benchmark
Evaluation. IEEE Transaction on Parallel and Distributed
Systems, 2007, 18(5): 621-636.

[18] D. Niyato, A. V. Vasilakos, Z Kun. Resource and
Revenue Sharing with Coalition Formation of Cloud
Providers: Game Theoretic Approach. In: Proceedings of
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, 2011:215-224.

[19] S.U. Khan, I. Ahmad. Non-cooperative, Semi-cooperative,
and Cooperative Games-based Grid Resource Allocation.
IEEE International Symposium on Parallel and
Distributed Processing, 2006.

[20] A. J. Zaliwski. In Search of Visualization Metaphors for
PlanetLab. In: Proceedings of IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing.
2010:583-584.

[21] M. Osborne, A. Rubinstein. A Course in Game Theory.
The MIT Press, Cambridge, 1994.

[22] D. Gross, C.M. Harris. Fundamentals of Queuing Theory
3rd Edition. John Wiley and Sons, 1998.

[23] R. Buyya, M. Murshed. GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing. Journal

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2131

© 2012 ACADEMY PUBLISHER

of Concurrency and Computation: Practice & Experience,
2002, 14: 1175-1220.

[24] U. Lublin, D.G. Feitelson. The Workload on Parallel
Supercomputers: Modeling the Characteristics of Rigid
Jobs. Journal of Parallel and Distributed Computing, 2003,
63(11): 1105-1122.

[25] C. L. Dumitrescu, I. Raicu, I. Foster. The Design, Usage,
and Performance of GRUBER: A Grid Usage Service
Level Agreement based Brokering Infrastructure. Journal
of Grid Computing, 2007, 5(1): 99-126.

[26] V. Berten, J. Goossens, E. Jeannot. On the Distribution of
Sequential Jobs in Random Brokering for Heterogeneous
Computational Grids. IEEE Transaction on Parallel and
Distributed Systems, 2006, 17(2): 113-124.

Peng Xiao was born in 1979. He received his master degree in
Xiamen Universy in 2004. Now, he works in Hunan Institute of
Engineering and is a Ph.D candidate in Central South University.
His research interests include grid computing, parallel and
distributed systems, network computing, distributed intelligence.

Dongbo Liu was born in 1974. He received his master degree in
Hunan University in 2001. Now he works in Hunan Institute of
Engineering and is a Ph.D candidate in Hunan University. His
research interests include distributed intelligence, multi-agent
systems, high-performance application.

Xilong Qu was born in 1978. He received his master degree in
University of Electronic Science and Technology of China, and
doctor degree in Southwest Jiaotong University. Currently, he is
an associate professor in Hunan Institute of Engineering. His
research interests include web service, distributed computing,
information security technology.

2132 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

