

Research on Measurement of Software Package
 Dependency based on Component

Guang-yi TANG

School of Software, Harbin University of Science and Technology, Haerbin, China
Email:tanggy818@hrbust.edu.cn

Hong-wei XUAN

School of Software, Harbin University of Science and Technology, Haerbin, China
Email:henryxuan2005@hotmail.com

Abstract—Dependence between software packages is
of importance to influence the extendibility and
stability of system. In existing programs, dependence
mainly manifests for class and component. Here, it
has the important guiding sense to our system
construction and programming. This paper analyzed
the dependency between software packages, and
designed the algorithm for detection existence of the
package dependency loop, based on defined
dependency, stability, no-responsibility and stability
of the System; and then elevated the package design
principles. To validate our design methodology in
software development, which is valid and can be
helpful for the programmers, we developed a software
to analyze the dependencies between the software
packages and use a graphical method to express this
dependency.

Index Terms—Component, dependency, stability,
dependency loop, no-responsibility

I. INTRODUCTION

Demand for software quality continues to increase as
the software market matures and as competition increases
among software producers and vendors. The quality
attributes of a software design include reusability,
flexibility, understandability, extendibility,
maintainability, etc. All these quality attributes are related
to software component dependency. Component-based
development is the production of software products
through the systematic integration of existing software
components. The potential benefits of component-based
development include increased productivity and quality
and decreased cost and time-to-market. The dependency
of a software component is a reflection of its external
quality, such as reusability and maintainability[1,2].

In general, development of an application system starts
with analysis of requirements, following by design,
coding, testing, and then delivery[4]. Processes, such as
analysis of requirements, system design, program coding,
program testing would be repeated, if all start from
beginning. It will result repeated work, which may take

huge amount of time. Software reuse essentially uses
existing software products or engineering knowledge to
construct a new system, which avoid repetition in
software development.

Various IMS is applied by enterprises according to
their applications. Firstly, to extract common points and
design as components base on sufficient analysis.
Secondly[3], a frame extension point is extracted and
encapsulated as independent assembly, including
workflow management, alarm management, system
management, security management, and system settings.
These are common parts of various IMS, which can be
inserted as components of a module. Finally, for a
specific enterprise that develops software product, they
only need to know the logic of business, then load the
needs of assembly, according to the system configuration
information provided by dynamic, and then call the
provided methods and attributes to achieve their specific
services functions.

Software component model is the composition of
components, which can represent the development of
reusable software components and communication
between components. By reusing the existing software
components, developers can work on fast construction
application by using a component object model software
as simple as playing building blocks. Therefore, it is not
only able to save time and costs, improve work efficiency,
but also produces more standardized and reliable
application software[7,8].

II. THE INFLUENCE OF THE PACKAGE DEPENDENCIES

A．Software Coupling
Promoting reuse is an important factor in object-

oriented software design. There are several reuse
approaches for object-oriented software, including:
component, design patterns and frameworks. Design
patterns are template solutions for solving a range of
recurring problems. Frameworks are reusable partial
applications that can be specialized to produce custom
applications. Both design patterns and frameworks
provide skeleton solution to a problem. Developers are

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2091

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.2091-2098

responsible for plugging in the specific code, according to
the needs for solving problems. This paper focuses on
component reuse rather than design patterns or
frameworks.

Coupling is a measure of the degree of interactions
between two software components, such as classes,
modules, packages, etc. A good software system should
have high cohesion within each component and low
coupling between components[5,6]. Strong coupling,
indicating a high degree of dependency between software
components, may affect the quality of a system[9].

Coupling between two components strengthens the
dependency of one component on the other[10], and
increases the probability that changes in one component
may adversely affect other components. This makes
software maintenance difficult and the likelihood of
regression faults greatly increase. Strong coupling
induces strong dependencies between software
components, thereby hampering software reuse. For
example, if a software component has many
dependencies with other software components, it may be
impossible to reuse this component in a new product
without either (1) incorporating it together with other
related components, or (2) redesigning and
reimplementation this component to remove such
dependencies. While option (1) may result in redundant
reuse, option (2) may cause modifications to the
functionality of the component. Hence, either of these
two approaches are contrary to the spirit of component
reuse.

B. Software Package Dependency
Along with the increase in size and complexity, higher

level of organization is required[11]. Class is the
organizational unit that can be used conveniently for
small applications. For large applications, particle size
will be too small, if only use class. Therefore, we need a
"bigger unit" to support a large application organization,
which is called “package”. Dependencies between classes
are often across boundaries of packages[12]. Hence,
dependencies also occur between packages. These
relationships have to be managed due to the dependencies
between packages that represent a high application level
organizational structure.

Package design is the most important step for
publishing a package, especially for large-scale
application that contains a lot of combinations. If classes
are categorized into a package only due to their similarity,
it is possible to produce a bad package structure and
difficult to be published[13,14]. It also results difficulties in
reuse, changes and other issues. Therefore, principles are
needed for classification. These principles will be used
for dealing with relationships between packages and
measuring the degree of participation.

Occurrence of the ‘morning after syndrome’ has to be
effectively avoided, in order to improve the stability of
packages and reduce the dependency, when publish a
package. The occurrence of ‘morning after syndrome’ is
due to changes in dependencies, which results in a
unstable foundation. Dependencies must make
appropriate changes. Using the package distribution

mechanism, dependent must choose a specific version of
a published package. When the package is published, its
contents are not allowed to change, hence, dependencies
are also unchangeable. Simultaneously, any changes of
dependent package will be published as a new version.
And dependent can choose or abandon the new version.

Figure 1. Software package dependency

Figure1 illustrates the structure for a typical
application package based on component. It shows that
structure of package dependency is more important than
functions of applications. The structure is a directed
graph. Package is a node, while dependency is a directed
edge.

In Figure 1, if you need a new force to change package
MyDialogs to use package MyApplication. This creates a
dependency loop, the loop dependency will lead to some
direct adverse consequences, for example, the developer
who works in MyTasks package in order to release
MyTasks package, they must have compatible Tasks,
MyDialogs, Database and the Windows package.
However, the dependence of the ring exist, they must
now also compatible MyApplication, TaskWindow and
MessageWindow package, that is, the package MyTasks
is dependent on all other packages in the system now.
The result of this dependency loop is that the package
MyTasks is difficult to release, package MyDialogs have
the same problem. In fact, the dependency loop will force
the MyApplication, MyTasks and MyDialogs packages
are release always at the same time. They have actually
become one big. Thus, all developers who work on these
packages will once again suffer the ‘morning after
syndrome’. Their mutual release action must to be
completely consistent, because they must use each other
the same version exactly.

III. SOFTWARE PACKAGE DEPENDENCY METRIC METHODS

A. Dependency
Definition 1 dependence: if in the software package P1

(C1, C2, Cn) and P2 (C1, C2, Cn)
))()(())()((1221 jiji cpcporcpcp →∃→∃

,
called software package P1 and P2 having dependence, if

2092 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

))()((21 ji cpcp →∃
, then P1 relies on the P2, if

))()((12 ji cpcp →∃
, then P2 relies on the P1, if

))()(())()((1221 jiji cpcpandcpcp →∃→∃
,

called P1 cycle dependent P2, or P2 cycle dependent P1.
Wherein, said P1 P2 software package, C1, C2, Cn
means the classes which in the software package, the
arrow indicates the software package in the kind of
coupling relationship, including, inheritance of class,
class reference, class extension, not including the
implementation of the interface.

In this article, we discuss the dependency between the
packages, so here is the dependence between different
classes of dependent packages. The dependencies
between classes in the same package are not in the scope
of this article.

B. Stability
We can calculate the number of the dependencies

which into and out of the packages to measure the
stability of a package.

a. Afferent Coupling(Ca): The number of other
packages that depend upon classes within the package is
an indicator of the package's responsibility.

b. Efferent Coupling(Ce): The number of other
packages that the classes in the package depend upon is
an indicator of the package's independence.

c. Instability(I)

cc
c

ea

eI
+

=

 (1)

This metric is an indicator of the package's resilience

to change. The range for this metric is 0 to 1, with I =0
indicating a completely stable package and I =1
indicating a completely instable package.

Definition 2 A package is stability if and only if I =0.
There is an example in Figure 2:

Figure 2. Diagrams of Ca, Ce, and I

The value of Ca is number of dependencies which
depends on the classes in the package, and we can
calculate the measure of Ce that the number of
dependencies which in-house and depends on the classes
outside the package.

The dashed arrow expresses the package dependency,
the solid arrow indicates the dependency between the
classes, and these express how to constitute the
dependency between the packages from the solid arrow.

Now, we use the formula (1) to calculate the stability
of the package Pc. There are 3 outside dependencies
which depend on the classes in the package, so Ca=3.And
there is a dependency which is depended by the class in
package Pc, so Ce=1, I =1/4.

In C + +, these dependencies are generally represented
by include statements. In fact, if we put one class source
code into a package, then the calculation of measuring I
is quite easy, but it will cause many packages. In Java,
you can calculate the import statement and class
modification to calculate the number of names to measure
the value of I .

When the value of I is 1 for a package, it means there
is no other package relies on the package (Ca = 0), while
the package is dependent on other packages (Ce> 0), then
this is a package of the most unstable state: it is no
responsibility but dependent on others. Therefore, the
package will often change because there is no package
depends on it and the dependence of package will provide
a wealth reasons for change.

On the other hand, it means that the other package will
be dependent on the package when the value of I is zero
(Ca>0), but the package dose not depend on any other
packages (Ce=0). So the package is the responsibility and
no dependence, and this package has reached the
maximum degree of stability. It depends who makes it
difficult to change, and no dependencies will force it to
change.

Stable-dependencies principle (SDP) provides the
metric value of I should be greater than its dependencies
the metric value of I (in other words, the value of I
should follow dependent decreases in the direction).

If the classes in the package are some of the basic class,
they did not inherit other classes; or they are inheritance
the classes which the system development environment is
provided, we called stable-class. The classes which is
provided by the develop system will not change in
general, so we also called these classes stable-class. For
example: in the VC++ development, if our class is
inherited from the MFC, and in the java development
environment, our class inheritance the class from package
java.lang, we are called stable-class.

C. No-responsibility
Design can not be completely fixed because make the

design to maintain some level of volatility is necessary,
and this can be achieved by following the Common
Closure Principle (CCP). We can create a certain type of
change-sensitive packages that are designed instable
package by using this principle. For any package, it
should not be depended by the packages which are
difficult to change, otherwise, the package is also difficult
to change.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2093

© 2012 ACADEMY PUBLISHER

Definition 3 A package is no-responsibility if and only
if it is not used by any other packages.

If the classes in a package are some of the final class,
and the classes are not inherited by class in the other
packages, these classes are not claimed responsibility. In
system development, these classes can change at any time.

D. Depend Loop
Definition 4 dependent loop in the system software

package developed by P1, P2, P3 Pn,

if
),(ijji pppp ……→→∃

, called the package P1,
P2, P3 Pn in a dependency loop.

If the dependency loop exists in the system
development packages, then the system stability and
scalability will be facing a serious problem, and it will
inevitably produce the ‘morning after syndrome’. Among
these packages, as long as the contents of a package of
changes have taken place, then along with other packages
should be modified, which takes a heavy workload, and
the changes in the development of software which is
inevitable.

We can use linear algebra in the matrix calculation to
determine the system software package is dependent on
the presence of loop[12].

Set the package dependency graph G is the adjacency
matrix A, then G does not contain dependency ring if and
only if A，A2，A3，……，An of the n diagonal matrix
elements are zero. For example, the dependence of Figure
1, we can use the following adjacency matrix
representation.

A =

Here, aij represents that the dependency between

package ai and package aj. And the matrix A is a
symmetry matrix.

Prove the following:
Let the dependency graph G is a directed graph, A is

the adjacency matrix of G, a (i, j) is A's row i column j
element which represents the number of chain vi to vj of
length 1.

a2(i, j) is the element of A2 row i column j: a2(i, j) =
a(1, i) * a(i, 1) + a(2, i) * a(i, 2) + … + a(n, i) * a(i, n)；

Clear, vi to vj of length 2 each chain as two chains of
length 1 is connected, so there are:

a(1, i) * a(i, 1) + a(2, i) * a(i, 2) + … + a(n, i) * a(i,
n)，that is a2(i, j)；

Same reason, ak(i, j)represents that vi to vj of length k,
the number of chain.

In particular that i = j;

So, ak(i, i)through vi of length k, the number of rings;
Obviously, if the n vertex of G there is a ring, there

must be a length of less than n ring, therefore, the G does
not contain the ring if and only if A，A2，A3，…，An,
the diagonal of these n matrix elements are 0.

It can also be obtained by proving that if the diagonal
elements of the matrix An are not all 0, then the matrix A
must exist in the length n of the loop. Moreover, these
loops contain diagonal elements are not zero.

For example, Figure 1 adjacency matrix A, is
illustrated in Figure 1, there is a dependency loop.

A

2 =

In view of this, the algorithm can be designed to detect

the following loop
boolean ifexistcircle(A[n][n])
{
 Int M[n][n],C1[n],C2[n];
 int i=0;
 while(i<n)
 {
 M=M*A;
 if(the diagonal elements of M are not all 0)
 {
 Save the diagonal nonzero elements of M to C1;
 break;
}
 i++;
}
Traverse the A belongs to the C1 elements, and all the

length of i loop save to C2;

if(C2 is empty)
 return true;
else
 return false;
}
On the collection returned to judge, if an empty note

there is no loop; if it is not null notes there are loop in the
graph, we can walk through the collection to loop
processing.

IV. DEPENDENT LOOP ELIMINATION

We can lift the dependencies between packages and
get the dependency graph back to directed acyclic graph
under any circumstances, and this is mainly in two ways:

One way is to use the Dependency-Inversion Principle
(DIP), another way is to create a new dependency, and
these two methods will be described in detail with
diagram.

The first method is to use the Dependency-Inversion
Principle (DIP). In view of the situation in Figure 4, you
can create an abstract base class which MyDialogs’s
interface need, then put the abstract base class into
MyDialogs and make MyApplication class inherit this
abstract base class, which reversed the dependencies
between MyDialogs and MyApplication, so that a

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

00
00

00
00

10
10

00
00

00
00

01
10

11
01

00
10

11
00

10
11

00
00

01
01

00
00

01
00

00
11

01
10

⎥
⎦

⎤
⎢
⎣

⎡
…………
……3

2094 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

dependency loop is lifted in the graph, an example shown
in Figure 3.

Figure 3. Using DIP lift dependent loop

Please note that from a customer perspective rather
than the service's point of view to the named interface, it
is because the interface is part of the customer rather than
services, and this is a good programming practice.

The second method is to create a new package which
MyDialogs and MyApplication are dependencies, and
then put the classes which MyDialogs and MyApplication
are dependencies into this new package, as shown in
Figure 4:

Figure 4. Using new package lifting dependent loop

If the packageP1,P2,……Pn, there are dependency
loop, it can be expressed as Figure 5.

Figure 5. Software package dependency loop

Assume:

then we can add a new interface class ΔC in

package ip , let)()(Δ→ Cpcp iii ,
)(jj cp

implementation the interface)(ΔCpi .then these
dependency relationship can be expressed as in Figure 6:

Figure 6. Dependent loop elimination

At this point, the existence of which can eliminate the
dependence loop, this method is known as Dependency
Inversion, using this method can eliminate the
dependence of the entire ring. Another simple method is
to add an extra package to their common dependence on
this new class package, so they rely on this new package.

Definition 4 System is stable if and only if the system
does not exist depend loop in the development of
software packages.

There is not absolute stability system in our
development of the system, we say stability is relative. It
is stable for a thing if "it is not easy to be moved" in
Webster Opinion, stability relate with the work of the
change. Coin is not stable, because the effort required to
tear down it is very small. However, the table is very
stable; because it is down to spend considerable effort.
Our software package can be dependent on the package
which the system development environment provided,
and system development environment provided by the
software package is stable, that is, in a fairly long period
of time, will not change, our own developed software the
basis on which package is fixed, then our system is stable.

Definition 5 System is unstable, the system's package
dependency loop exists, and then we say the system is
unstable.

If there is dependency loop in the development of the
system, then relies on a ring in any class package changes
will affect other packages dependent on ring and a chain
reaction occurs, the system maintenance and system
expansion will bring very serious consequences.

We do not hope that all of packages are the largest
degree of stability, because if that the system is not able
to change. In fact, we want to get out of the structure of
packages in design is that some of the packages is stable
and the others not.

The packages often changed are put at the top and
depend on the packages in the bottom. It is a useful
agreement for put the unstable package at the top,
because the up arrow means that any violation of the SDP,
that is the value of I underlying package cannot exceed
the upper package value.

Pi Pj

Pt

C△

△

Pi Pj

Pt

)()(),()(),()(iittttjjjjii cpcpcpcpcpcp →→→

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2095

© 2012 ACADEMY PUBLISHER

Figure 7. Violation of the SDP

It shows an example would violate the SDP in Figure 7,
the values of Ca, Ce and I are show in table I, we can
that the package Flexible is more stability than stable, but
in the application the developers often modify the
package Flexible, so now we hope Flexible is unstable
because we want to change it easy. However, it is
violation of the SDP that the developers who work on the
package Stable create some dependencies on the package
Flexible, because the value I of Stable is smaller than the
value of Flexible in the tableⅠ. Then Flexible is not easy
to change, and changes to the Flexible force to deal with

the change of the Stable and all its dependent effects.
It must be some way to lift Stable dependence on

Flexible to fix this problem. Now suppose that the class C
in package Flexible is depended by the class U in
package Stable, and we can use Dependency-Inversion
Principle (DIP) to fix the problem. Firstly, create a
interface class IU and put it in the package UInterface,
and to ensure that all the functions are declared in the
interface class IU which the class U will use. And then,
let class C inherit from IU, as show in figure 8, and this
lifts the Stable dependent on Flexible and prompted the
two packages are dependent on UInterface. The package
UInterface is very stable (I = 0), but Flexible still keeps
it required instability (I = 1), as show in table II. Now
all depend on the direction is reduced along the I

direction.

Figure 8. Using DIP to lift non-compliance stability

A dependency should be refractor if its contribution to
system functionality (importance) is small compared to
its negative impact on testability. The best time to
evaluate the importance of a dependency and to refractor
it is during the design stage, followed by the time when
the dependency is introduced into the system. Therefore it
is important to provide immediate feedback to designers
and developers about the effect of a new dependency.
During maintenance the effort to refractor test-critical
dependencies is likely larger but necessary and
worthwhile.

We must consider the contradictions between the
reusability and the scalability when choice the class put
into the packages. That is not a simple work for the
balance between these two, and this balance is always
dynamic. In other words, the division now appears
appropriate to the next year may be no longer appropriate.
Therefore, when the project focus from scalability to
reusability, then the package structure will be subject to
change.

V. PACKAGE DESIGN PRINCIPLES

We all have known that packaging design can make or
break a product. This is especially true in the case of new
products being released onto the market. Effective and
functional package design can be the single point alone
that can inspire a consumer to choose your product in
favor of another. This is where a packaging design
strategy comes into your marketing mix. We recommend
that you seek expert advice when designing your
packaging to ensure your product is having the most
impact possible on consumers. The following examples
should be included as a standard as part of any packaging
design strategy.

(1) Acyclic Dependencies Principle, in the package
design, not dependent on the presence of ring, otherwise
the system is difficult to maintain.

It will happen the ‘morning after syndrome’, if there
are multiple developers are also changing the same set of
source files in the development environment. That is not
a serious problem in a small program with only a few
developers, but in a large-scale project with many
developers, the ‘morning after syndrome’ will bring
terrible nightmare. It cannot build a stable version of the
project in a few weeks in the team which lack of
discipline is very common. Instead, everyone is too busy

TABLE I.
THE CA CE AND I OF STABLE AND FLEXIBLE

package Ca Ce I

Satble 3 1 1/4

Flexible 1 0 0

TABLE II.
THE CA, CE AND I OF STABLE AND FLEXIBLE

package Ca Ce I
Satble 3 1 1/4

Flexible 0 1 1

UInterface 2 2

0

2096 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

to change his or her code repeatedly, trying to make it
compatible with other’s recent changed.

(2) No responsibility for the package design principles,
for some package which often change, we can design it
for no liability package.

For system development, they are often changed the
application business classes (mainly used to handle the
user's business requirements) which are generally putted
in a package has no-responsibility, because they will be
changed with the user’s business environment change in
special application.

(3) The principle of stability of the package, the
bottom of the package must be stable in the package
dependencies.

We write programs are generally not completely from
scratch in system development, but on certain foundation
for system development. For example: development
environment provides us with some basic class package
java.util, jaba.swing etc.. There are also many classes are
not likely to change frequently in our writing program,
for example: some kinds of database access classes, the
classes of workflow definition and so on, they are stable
for a long time in some applications.

(4)The stability of the system principle, we must
ensure that the system is stable in our design of the
software packages.

We must ensure the system developed is stability no
matter what method is used, that is, the package at the
upper must be non-responsibility and the user can change
it in any time according to the user’s business
requirement change, and the package in the bottom must
be stable which does not allow users freely modify. The
packages in the middle called the restricted package, we
should always pay attention to these package changes and
assess their possible consequences of change.

Figure 9. The ideal software package dependency graph

As shown in Figure 9, is our software package of a
typical structure design. The figure shows the
composition of a very typical application package
structure. The bottom two pack Windows and Database
which are provided by the system development
environment, and they are stable; and the package
MyApplication which is the most easy to change in the
system, and it is a no responsibility package.

VI APPLICATION

A software is developed to evaluate our designed
method, which also bring the help for programmers. The
software analyzes between software package's
dependence, and expresses using the graph method. This
software has functions in several aspects:

1. Import project, the option includes a project path,
which is used to introduce source file that will be
measured.

2. Edit project, the option includes engineering
analysis and generate dependency graph. The function of
engineering analysis is to analyze the introduced source
file, then converted to the defined data structure, and then
generate dependency graph.

3. View, functions includes zoom in and zoom out,
which is used to adjust the size of dependency graph, in
order to facilitate the viewing of the whole or partial
information.

4. Help is the function to provide a brief introduction
to the system.

During the implementation, coupling method is used to
calculate the package input and output. In the method, a
list is added into each class, and introduces other class by
record the classes (if introduce a package with multiple
classes, there will be many records of the package). It
converts the dependence between the classes to the ones
between class and package.

To construct a dependence graph, we iterate through
list of each class. The introduced record will make weight
of the package plus one. Hence, it will convert
dependency between class and package to dependency
between the packages. We can calculate the in-degree and
out-degree in the directed graph, when the statistics of a
package afferent coupling and efferent coupling.

For instance, project1 is an assumption, it consists of
six packages: main.UI, main.framwork.java,
main.framwork.factor, main, main.framwork, and
main.framwork.basic. Classes in the package of
main.framwork.basic are mainly basic ones, such as
establishment of the connection, data packet processing,
and data access etc. The package of main.framwork is a
main application of the framework for the whole system.
The package of framwork.factor mainly deals with
operations for user services, for user interface and data
connection. The package of main.UI is mainly deal with
operations for interface, that for communications between
users. The package of main.framwork.java mainly
include the classes of business entity, completing the
main work of the system. The package of main is the
upper application of the system, along with user’s needs,
which is the fastest package changing in the system.

In summary, the package of main has to be a no-
responsibility package, while the package of
main.framwork.basic should be a stable package, and the
other four should be restricted package. It is important to
pay attention to their impact of change, the dependency
graph is shown in Figure 10.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2097

© 2012 ACADEMY PUBLISHER

Figure 10. The dependency graph of project1

In this figure, when we clink on an icon of a package,
it will show the afferent coupling(Ca) , the efferent
coupling(Ce) and instability(I).

VII. CONCLUSIONS

It is very important for our system success of the
software package design in the development based on
component. We must analyze the dependence of the
package in the first, and divide the packages into stable
packages and no-responsibility packages, and the others
into the restricted packages, in the development of which
we should pay close attention to changes in these
packages to construct a stable system.

Quality is one of the most relevant properties of the
software. Dependency is one factor that can affect
software package quality. To assess a software package
quality, we need to consider many other factors, such as
the design principle provided by Martin. Following the
guidelines described in this research is an important step
toward designing high quality software package. We
believe that the study presented herein should encourage
other researchers and tool developers to adapt and use
this classification in combination with other design
principles to develop more accurate software package
dependency metrics that can help to effectively predict
and measure several other software quality factors.

ACKNOWLEDGMENT

This work was supported by the Scientific Research
Foundation for Returned Overseas Chinese Scholars,
State Education Ministry, Heilongjiang Province Natural
Science Foundation (LC2009C19).

REFERENCES
[1] HuangWangen, Chen Songqiao. The software architecture

and its complexity metrics based on component operations.
Computer Engineering and Applications, 2007,43(14): 66-
70.

[2] LiJinhua, Guo Zhenbo, Zhao Yun, Towards quantitative
evaluation of UML based software architecture.
Proceedings of the 8th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing. Washington, DC:
IEEE Computer Society, 2007. 663 - 669.

[3] Liguo Yu. Understanding component co-evolution with a
study on Linux[J] Empirical Software Engineering,
2007,12, (2) .

[4] QIAN Guan-qun ZHANG Li ZHANG Lin Philip Lew.
Modeling Method and Characteristics Analysis of Software
Dependency Networks[J]. Computer Science.
2008.11(35):239~243.

[5] Schaeh S R,Jin B,Wright D R et al. Quality impacts of
clan-destine common coupling .Software Quality Journal,
2003,11, 11 (3) :211～218 .

[6] Paul Dourish;Rebecca E. Grinter;Jessica Delgado de la
Flor;Melissa Joseph; Security in the wild: user strategies
for managing security as an everyday, practical problem [J].
Personal and Ubiquitous Computing, 2004.

[7] Chang,Z,X Mao,Z.Qi. Component Model and Its
Implementation of Internetware Based on Agent .Ruan Jian
Xue Bao(Journal of Software), 2008,19, 19 (5) :pp.1113-
1124.

[8] Allison Sall;Rebecca E. Grinter; Let’s Get Physical! In,
Out and Around the Gaming Circle of Physical Gaming at
Home [J]. Computer Supported Cooperative Work
(CSCW), 2007.

[9] Ruzhi XU; Dongsheng CHU; Zhikun ZHAO; Kang-Kang
ZHANG. An Architecture for Agent-based Distributed
Component Repository . International Seminar on Business
and Information Management, 2008: 116~120.

[10] Xiaocong Wang;Jing Liu;Xigen Huang;Lihong
Men;Minjie Guo;Donglan Sun; Controlled Synthesis of
Linear Polyaniline Tubes and Dendritic Polyaniline Fibers
with Stearic Acid [J]. Polymer Bulletin, 2007.

[11] Fan Jiang;Shi Liu;Jing Liu;Xueyao Wang; Measurement of
ice movement in water using electrical capacitance
tomography [J]. Journal of Thermal Science, 2009.

[12] Kupke C,RuttenJ. Observational coalgebras and complete
sets of co-operations[J]. Electronic Notesin Theoretical
Computer Science, 2008,203, 203 (5) :153-174 .

[13] Weifeng Pan;Bing Li;Yutao Ma;Jing Liu;Yeyi Qin; Class
structure refactoring of object-oriented softwares using
community detection in dependency networks [J].
Frontiers of Computer Science in China, 2009.

[14] Yutao M, Keqing H, Du Dehui. A Complexity Metrics Set
for Large-scale Object-Oriented Software
Systems[C] .Com-puter and Information
Technology,2006.CIT’06. The Sixth IEEEInternational
Conference on. 2006:189.

Guang-Yi Tang is a lecture in School of
Software, Harbin University of Science
and Technology, China. He was born on
August 1980. He achieved his Master
degree in computer software and theory
in 2007 at the central china normal
university. His research emphasizes on
workflow,interoperation and open-
source software development.

Hong-wei Xuan is a lecture in School of
Software, Harbin University of Science
and Technology, China. He achieved his
Master degree in Department of
Computing, University of Bradford in
2005. His research emphasizes on
software engineering and natural
language processing.

2098 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

