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Abstract—Surface representation and processing is one of 
the key topics in computer graphics and geometric modeling, 
since it greatly affects the range of possible applications. In 
this paper, we propose a new Laplacian meshes deformation 
based-on the offset of sketching to solve the drawback that 
Laplacian coordinates are not invariant under rotation. 
First, we correct Laplacian coordinates rotation by the 
offset of sketching, and then generate the deformed models 
by solving linear system in least squares sense with Gauss-
Seidel algorithm. In contrast with the traditional Laplacian 
deformation, our method can achieve natural deformed 
models by only using the boundary of ROI as constraints, 
which makes the manipulation more simplicity. 

 
Index Terms—Laplacian coordinates, mesh deformation, 

sketching 
 

I.  INTRODUCTION 

Meshes have become a widespread and popular 
representation of models in computer graphics. A 
fundamental modeling operation is mesh deformation 
which changes local or whole geometric details of the 
mesh as user wants.  

Mesh deformation is useful in a variety of applications 
in computer modeling and animation. Many techniques 
have been developed to provide natural looking 
deformations. Manipulating and modifying a surface 
while preserving the geometric details is important for 
various surface editing operations, including free-form 
deformations, cut and paste, fusion, morphing, and others. 
Note that the absolute position of the vertices in a mesh is 
not important for these operations; what is needed is a 
local description of the shape which is not dependent on 
the particular placement of the shape in the Euclidean 
space. Laplacian coordinates proposed by Alexa[1] is one 
of the commonly used methods in descriptions of mesh 
details. The Laplacian of a graph is the difference of a 
vertex position from the centroid of its neighbors. 
Laplacian coordinates are a linear function of the global 

mesh geometry, which allows efficient converting 
between absolute and intrinsic representations by solving 
a sparse linear system.  

Laplacian can preserve the intrinsic geometry of the 
original meshes surface during the deformation. And 
Laplacian coordinates are invariant under translation (of 
absolute geometry), but they are not invariant to scaling 
and rotation, which poses the main practical problem. 
Laplacian is changed under affine transformation, so it 
should be corrected according to the affine of vertices 
during the deformation. 

Aimed at the drawbacks of Laplacian coordinates 
deformation, we pull sketch technology in Laplician 
coordinate deformation. Our method first recomputes the 
Laplacian coordinates of vertices in ROI (region of 
interest) by computing the rotation based on the sketch, 
and then reconstructs the mesh 3D coordinates to get the 
deformed models using the corrected Laplacian 
coordinates. This method's main steps are as follows: 

1) Recognizing the region of interest. First select the 
start and end region of interest, then use the breadth-first 
search method, the starting point to start the search, until 
it reaches the end stop. 

2) Building the reference curve. We begin with a free-
form sketch of the reference curve in the image plane. 
Having regularized the reference curve in the image plane, 
we must project it into the 3-D world space of the model. 

3) Determine the target curve. In the reference plane, 
the length of the reference line and reference line control 
point location, given the target curve. 

4) Find the rotation. Within the region of interest each 
vertex, mapped to the reference according to the 
minimum distance line, the projection corresponding to 
the target curve at the point of rotation is the vertex in the 
reference plane rotation. 

5) Generated the deformed model. Using the Gauss-
Seidel algorithm to solve the linear equations in the least 
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squares sense. Then, reconstruct the deformed mesh 
models. 

In contrast with the traditional Laplacian deformation, 
our method can achieve natural deformed models by only 
using the boundary of ROI as constraints, which makes 
the manipulation more simplicity. 

II.  RELATED WORK 

Editing three-dimensional shapes has been an 
important research area in geometric modeling and 
computer graphics. It is a challenging problem since a 
good editing tool should be intuitive and easy to use, and 
at the same time flexible and powerful. We are interested 
in editing an existing surface, probably acquired with 
scanning devices. If the surface is smooth, deformations 
should remain smooth. If the surface contains geometric 
details, these details should be preserved. Shapes that 
contain geometric details, like those acquired from real-
world objects, require special editing tools to preserve the 
details. The editing operation should naturally change the 
shape and simultaneously respect the structural detail. 
The standard approach to detail-preserving modeling 
operations uses a multi-resolution representation of the 
mesh. It enables large-scale editing on a coarse level and 
naturally propagates modifications to the finer levels. The 
different levels can be considered as geometric 
frequencies or resolution of detail, where the coarsest 
level refers to a smooth surface. Roughly speaking, the 
editing modifies a coarse level, and the modified version 
of the next finer level is computed by “adding” the 
displacements. This is iterated over the hierarchy until the 
finest level of the detailed surface is reconstructed. 

In this section we briefly overview mesh editing 
techniques for geometric modeling as they have evolved 
in the recent years. 

Freeform deformation (FFD) is used in commercial 
software such as 3D Studio and Maya. A general 
treatment can be found in [2]. While energy minimization 
and FFD methods work well for smooth surfaces, multi-
resolution editing is better suited for detailed geometry 
such as that acquired from scanning devices. A model is 
first decomposed into a smooth base shape and a set of 
geometric details, represented as displacements in a local 
coordinate frame. After modifying the base shape with 
some freeform deformation, the details can be re-inserted. 
The problem with these methods is that the displacement 
vectors are manipulated independently at each vertex. 
Artifacts can appear in highly deformed regions because 
details are not coupled and preserved uniformly over the 
whole surface. 

The simplest form of differential coordinates is the 
Laplacian coordinates. The powerful properties of 
Laplacian coordinates for mesh representation are not 
new and have been exploited in various ways. 

Alexa [1] shows that Laplacian coordinates can be 
effective for morphing and briefly discusses their 
potential for free-form modeling. He proposes to use 
differential coordinates to perform local morphing and 
deformation of the mesh, suggesting differential 
coordinates as a local mesh description, which would be 

more suitable to constrain under a global deformation of 
the mesh. This work also mentions the difficulty in using 
affine-invariant coordinates for mesh representation: the 
vertex neighborhood cannot always define a local frame 
(due to linear dependency), and thus the problem is 
numerically unstable. 

Yu et al. [3] introduce an editing technique, formulated 
by manipulation of the gradients of the coordinate 
functions (x, y, z) defined on the mesh. The surface is 
reconstructed by solving the least-squares system 
resulting from discretizing the Poisson equation ∆f =g 
with Dirichlet boundary conditions. Lipman et al. [4] 
reconstruct the surface from discrete Laplacians of the 
mesh functions and spatial boundary conditions by 
solving a very similar least-squares system. Both works 
point out the main problem of this approach: the need to 
rotate the local frames that define the gradients, or the 
Laplacians, to preserve the orientation of the local details. 
They propose to remedy this problem by explicit 
assignment of the local rotations. Lipman et al. estimate 
the local rotations of the frames on the underlying smooth 
surface, and Yu et al. propagate the rotation of the editing 
handle, defined by the user, to all the vertices of the 
region of interest. 

Sorkine et al. [5] suppose that each vertex only 
contains rotation part. They first compute the initial 
solution on the position of deformed mesh’s vertices, and 
then estimate rotation transformation of vertices during 
deformation which was used to correct Laplacian 
coordinate sequence of original mesh. In the end, they 
can get an optimal solution. This method can correct the 
effect taking by local rotation transformation, but the 
estimation is a heuristic search processing, and it has 
some drawbacks such as complex implementation, slow 
speed, especially repeat iterative in details abundant 
domains. For this purpose, Sorkine[6] proposed a new 
technology in 2004. They provide a technique that makes 
Laplacian coordinates invariant to rotation and isotropic 
scaling. Using this technique, they develop useful surface 
editing operations, which preserve the intrinsic geometry 
of the surface as much as possible given the constraints of 
the modeling operations. But it can only be used in small 
angle rotation and uniform scaling.  

Zhou[7] extends the ideas mentioned above to the 
volumetric domain to solve the problem of large 
deformations. In this paper, they present a novel 
deformation technique that achieves convincing results 
for large deformations. It is based on the volumetric 
graph Laplacian, which represents volumetric details as 
the difference between each point in a 3D volume and the 
average of its neighboring points in a graph. They built 
two kinds of volumetric graphs: an inside graph fills the 
interior volume of the mesh and prevents large volume 
changes, while an outside graph prevents local self-
intersection. The method improves the effect of mesh 
deformation, but the ability of correction in these 
methods is limited. 

In 1996, Zeleznik[8] first proposed a technology called 
SKETCH, and then developed by Kho and Garland[9]. 
By using sketch technology, users sketch a reference 
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curve in the image plane both to determine a region of 
interest and to serve as a means of controlling an 
individual deformation. By sketching a second curve 
indicating the desired deformation of the reference curve, 
users can easily achieve the deformation of the entire 
region of interest specified by the reference curve. By 
constructing a mapping of the region of interest onto the 
reference curve, it also provides a simple method for 
controlling additional parameters such as local twisting or 
scaling. Curves or skeletons in this type of methods can 
provide a natural means of capturing the structure of 
surfaces. Thus, deforming surfaces by editing those 
entities provides a good means of achieving large scale 
deformations. Sketch-based interfaces have emerged as 
one of the more popular approaches to building user-
friendly deformation tools. 

III.  LAPLACIAN MESHES DEFORMATION 

The algorithm of mesh deformation based-on 
Laplacian coordinates makes use of Laplacian instead of 
absolute Cartesian to express local geometric details.  

Further, the representation of a vertex should be linear 
in the absolute coordinates. This is because both the 
transformation from absolute to relative coordinates, and 
vice versa, should be numerically stable to compute. A 
linear mapping leads to solution of linear systems for 
each of the transforms, which is, compared to other 
possibilities, the simplest possible solution. The relative 
representation aims at making the shape of the mesh 
invariant to translation or, ideally, invariant under affine 
transforms. If a vertex were represented in the affine 
space of its neighbors, invariance under affine transforms 
would trivially follow. The extension to triangulations in 
R3 is difficult because vertices of the neighborhood are 
not necessarily affinely independent in R3. We introduce 
a translation-invariant scheme and briefly elaborate on the 
affinely independent scheme in the followings 

Let the mesh M be described by a pair (K, V), where K 
describes the connectivity and V={v1,v2,…,vn} describes 
the geometric positions of the vertices in R3. We use the 
following terminology: the neighborhood ring of a vertex 
i is the set of adjacent vertices Ni={j|(i,j)∈K} and the 
degree di of this vertex is the number of elements in Ni. 
We assume that the mesh is connected. 

Instead of using absolute coordinates V, we would like 
to describe the mesh geometry using a set of differentials 
Δ = {δi}. Specifically, coordinate i will be represented by 
the difference between vi and the averages of its 
neighbors: 

∑
∈

−=
)(

1

iNj j
idii vvδ                          (1) 

The transformation between V and Δ can be described 
in matrix algebra. Let A be the mesh adjacency matrix 
and D=diag(d1,…,dn) be the degree matrix. Then Δ=LV, 
where L=I-D-1A is the transformation matrix. The matrix 
L is commonly considered as the Laplacian operator of 
the mesh with connectivity A. Laplacian coordinates are 
invariant under translation, but sensitive to linear 
transforms. L has rank n−1, which means V can be 

recovered from ∆ by fixing one vertex and solving a 
linear system.  

The approach to performing modeling operations using 
Laplacian coordinates ∆ is to fix the absolute position of 
several vertices, i.e., 

ii uv =′ ,i=m,…,n，                      (2) 

and solve for the remaining vertices { vi′ }, i ∈ 
{1, . . . ,m−1} by fitting the Laplacian coordinates of the 
geometry ′V to the given Laplacians ∆. It has been 
observed that the solution behaves better if the constraints 
{ui} are satisfied in a least squares sense rather than 
exactly. This results in the following error functional: 

)
22

( ∑
=

−′+−′
′

n

mi ii uvΔVL
V
min            (3)   

Which has to be minimized to find a suitable set of 
coordinates ′V . Solving this quadratic minimization 
problem results in a sparse linear system of equations. 
The first item of the formula represents the requirement 
that minimize the loss of the original mesh Laplacian 
coordinates, and the second one represents the 
requirement that minimize the error of feature vertices. A 
compromise between the above items yields a natural 
mesh deformation effect. 

 
a) Laplacian    b) Rotation  c) Scaling 

Figure 1. Laplacian Transformations 

The Laplacian of deformed mesh is approaching the 
one of original mesh, so it can preserve the geometric 
details of original mesh in some extent during the 
deformation. The rationale of fitting given Laplacian 
coordinates is that details of the shape are preserved, as 
the relative location of vertices is encoded in ∆. As 
mentioned, however, these coordinates are sensitive to 
linear transformations (see figure 1). Thus, the detail 
structure of the shape can be translated, but not rotated or 
scaled. If the constraints ui imply a linear transform, the 
details are not transformed accordingly. 

Because Laplacian coordinates change with the affine, 
the ∆ of the original mesh should not be considered 
invariant, it should be considered changing with the mesh 
deformation and corrected according to affine 
transformation of vertices happened. 

Assuming that each vertex contains only rotation part 
under affine transformation, first compute the initial 
solution of the vertex position on deformed mesh using 
above formula, then estimate the rotation transformation 
Ri of each vertex from the initial solution during the 
deformation, the original mesh to correct the coordinates 
of the Laplacian sequence to make up for the Laplacian 
coordinates transform from the impact of rotation, to be 
the Laplacian coordinates after deformation sequence of 
estimates, and then by solving the linear find the small 

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2085

© 2012 ACADEMY PUBLISHER



least problem is further optimization of the second 
solution. 

Although the method can transform the local rotation 
of the impact of certain mesh deformation correction, but 
the estimation on rotation transformation of the vertices is 
a heuristic search processing, and the estimation on 
vertex normal vector is high precision, complex, speed 
slow, especially in the region with rich geometric details 
to be iterative repeat. However, in addition to the vertex 
affine transformation occurs outside the rotating 
components should also consider scaling, shearing and 
translation elements, for which the literature [4] proposed 
to vertices vi in the deformation process of local 
transformation is approximately a linear transformation Ti: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

1000
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13

23

z
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x

i tshh
thsh
thhs

T  

In the small angle rotation, the matrix Ti can be 
considered as an affine transformation of the actual good 
approximation. And correcting Laplacian coordinate δi 
with Ti, as Ti can be expressed as a linear transformation 
of the original mesh vertices vi and deformation of the 
mesh to be seeking a linear function of the vertex, which 
can be carried by the following equation optimal solution: 

              2 2

1

2 2

min ( L( ) - )

min ( L ( , ) )

i

N n

i i i i iV i i m

n

i iV i m

v v u

V V V v u

δ
′

= =

′
=

′ ′+ −

′ ′ ′= − + −

∑ ∑

∑

T
T

T Δ

            (4) 

The correction algorithm is only when the vertices of 
the local transformation contains only a small angle 
rotation and uniform scaling, can be enough to 
approximate linear transformation Ti, while the 
deformation process of rotation and a larger portion of 
non-uniform scaling transformation, the correction 
capability is still limited. 

In order to reduce the mesh distortion occurs during 
deformation, in [5] proposed a method to avoid using 
voxel mesh size of the original amount of significant 
change in the method of Laplacian coordinate mesh to 
improve the effect of deformation. In this method, the 
original mesh model while adding a number of internal 
and external samples, additional sampling the original 
mesh vertices and the vertex connectivity in a three-
dimensional map, and re-calculate the three-dimensional 
map coordinates of the vertices of the Laplacian. 
Accordingly, the mesh deformation is constrained, 
improving the mesh deformation effect. 

In this paper, the drawbacks of the Laplacian method, 
we propose a new mesh deformation method based on the 
offset sketch using sketching lines offset to correct the 
Laplacian coordinates after deformation, to deformations 
purposes. 

IV.  LAPLACIAN MESHES DEFORMATION BASED ON THE 
OFFSET OF SKETCHING 

Manipulating and modifying a surface while 
preserving the geometric details is important for various 
surface editing operations. 

By the formula (3) shows the mesh after deformation 
of the Laplacian approximation of the original mesh 
coordinates of the Laplacian sequence. But because the 
coordinates of Laplacian transform and change with the 
rotation, so the equation Δ=LV in the Laplacian 
representation of the original mesh coordinates Δ should 
not be considered invariant, should be considered with 
the mesh deformation and changes and be based on the 
vertex of the affine transformation happened to be 
amended. 

This article assumes that the occurrence of each vertex 
contains only rotating components of affine 
transformation is proposed for the rotation transformation 
of the improved method based on the Laplacian sketching 
offset mesh deformation method by calculating the 
corresponding point of the partial sketching shift of the 
vertex on the mesh to get the amount of rotation R, then 
use the Gauss - Seidel algorithm to optimize the solution 
of the following equation: 

)
22

( ∑
=

−′+′−′
′

n

mi ii uvVV,VL
V
min Δ)R(       (5) 

This method's main steps are as follows: 
1) Recognizing the Region of Interest. The region of 

interest is that part of the mesh to which the deformation 
will actually be applied. Determine the regional 
deformation that occurred in the region of interest. The 
underlying assumption of our system is that the region of 
interest is the part of the surface “covered” by the user’s 
sketch curve. First select the start and end region of 
interest, then use the breadth-first search method, the 
starting point to start the search, until it reaches the end 
stop. See Figure 2. Green Point is the starting point, blue 
point that end, the red for the region of interest. 

 
Figure 2. Select region of interest 

 
2) Building the reference curve. We begin with a free-

form sketch of the reference curve in the image plane. We 
represent the raw sketch curve as a collection of line 
segments taken directly from mouse events produced by 
the user’s stroke. This raw curve is likely to be fairly 
noisy, especially when drawn with a mouse rather than a 
tablet device. Therefore, before proceeding, we smooth 
and regularize the raw sketch.  

Having regularized the reference curve in the image 
plane, we must project it into the 3-D world space of the 
model. We first compute the point of intersection of a ray 
from the view point through the first point on the sketch 
curve. This hit point, along with the normal of the 
viewing plane, defines a plane in world space parallel to 
the image plane. We project the sketch curve onto this 
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plane to compute the 3-D reference curve. (Blue line in 
Figure 3 below) 

 
Figure 3. Illustrates the reference line 

 
3) Determine the target curve. In the reference plane, 

the length of the reference line and reference line control 
point location, given the target curve (green line shown in 
Figure 3). In our sketch-based deformation, the end result 
is obviously controlled by the shape of the target curve. 
This allows the user to draw a fairly simple base target 
curve and then interactively adjust its shape to achieve a 
specific intended deformation. 

4) Find the rotation. Within the region of interest each 
vertex, mapped to the reference according to the 
minimum distance line, the projection corresponding to 
the target curve at the point of rotation is the vertex in the 
reference plane rotation. Finally, gaining the view 
transform from rotation R. 

 
Figure 4. Based on sketching deformation 

 
5) Generated the deformed model. Using the Gauss-

Seidel algorithm to solve the linear equations in the least 
squares sense. Then, reconstruc (see equation (5)) the 
deformed mesh models (see Figure 4). 

According to step 5 we can see from the formula, this 
approach focuses on Step 4, solve the rotation R. The 
following details the process of solving R. 

The primary deformation that we support is 
accomplished by sketching. The user simply draws a new 
target curve, which we interpret as a deformation of the 
original reference curve. Our system then deforms the 
entire region of interest in an analogous way. This 
provides the user with intuitive and flexible control over 
the object’s shape. Figure 1-4 show a simple example of 
this style of deformation. 

A.  Rotation Transformation 
First, calculate the target point on the curve relative to 

the reference curve for each rotation angle θ(i) (Figure 5). 
Secondly, the region of interest at every point, if all of 

its adjacent points within the region of interest, the point 
is internal point, if there is not a region of interest 
adjacent points; the point is defined as the boundary 
points. Each region of interest is mapped to the internal 
point of the first reference plane, and then finding the 
reference curve from the point nearest fold line, the fold 

line corresponding to the target curve is the point of 
rotation of the direction of the reference plane rotation. 

 
Figure 5. Blue reference curve, green target curve 

 
v0

vi

vi+1

vn

v'i
v'i+1

v'n

θi

vs

vt

 
Figure 6. Smoothing 

 
Then, smooth the amount of rotation on vertices in the 

region of interest. Shown in Figure 6, the mesh vertices vs, 
vt to adjacent points, the shortest distance from vs to the 
reference point falling on the curve segment <vi-1, vi>, so 
the amount of rotation of the vertex vs is )( 1−iθ , and the 
shortest distance from vt to the reference point falling on 
the curve segment <vi, vi+1>, so the amount of rotation of 
the vertex vt is )(iθ . This situation makes the deformation 
have a big distortion at the point vs, vt. In this paper, we 
solve this problem by the following smoothing operations. 
For every point within the region of interest, taking the 
rotation point of rotation of adjacent vertices of the 
weighted values (see Equation 6). 

1

( )
R Ri jj N idi

∑=
∈

                        (6) 

 
Figure 7. Coordinates transformation 

 

Finally, find Laplacian coordinate ),,(δ iziyixi  of 
inside vertices within the region of interst, through the 
view transformation can get the coordinates )(δ iz,iy,ixi ′′′′  
of the current view, shown in Figure 7. Expressed 

)( iy,ix ′′  as polar coordinates )sin,cos( iiii ϕρϕρ , to get 
the new coordinates after rotation )(iθ  is: 

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2087

© 2012 ACADEMY PUBLISHER



))-sin(),-cos(( iiiiii θϕρθϕρ , at this time iδ′ is 

represented as )),-sin(),-cos(( iziiiiii ′θϕρθϕρ , 
through the inverse transform point vi rotation revised by 
adding a new Laplace coordinates iiδR . 

B.  Mesh Reconstruction 
In the following, we will be working with the above 

defined differential surface representation. The final step 
of any such manipulation must be surface reconstruction, 
or, in other words, we need to recover the Cartesian 
coordinates of M’s vertices. 

In order to uniquely restore the global coordinates, we 
need to solve a full-rank linear system. Assuming M is 
connected, we need to specify the Cartesian coordinates 
of one vertex to resolve the translational degree of 
freedom. Substituting the coordinates of vertex i is 
equivalent to dropping the ith row and column from L, 
which makes the matrix invertible. However, as we shall 
see shortly, usually we place more than one constraint on 
spatial locations of M’s vertices. 

This article will point the boundary region of interest 
as a constraint; use the following Gauss - Seidel 
algorithm for solving minimum mean-square problem. 

Known n-linear equations Ax = y: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧
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          (7) 

Structural equations Ax = y Gauss - Seidel iterative 
algorithm as follows: first set aii ≠ 0, i = 1,2, ..., n; the 
formula 7 in each equation aiixi stay in equation on the 
left, the rest of the equation are moved to the right; 
equation on both sides divided by aii, get the following 
equations with the solution: 
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  (8) 

Remember bij =- aij / aii, gi = yi / aii, more than the 
diagonal of the equations take the k-th iteration xi values, 
the following take the first diagonal k +1 iteration values, 
structure the Gaussian - Seidel iteration form as: 

⎪
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Formula 9 shows that the Gauss - Seidel iteration as 
long as the formation of the matrix B = (bij) = (-aij/aii), in 
program make vectors Tk

n
kk xxxX )( 11
2

1
12

+++= ,,, K , 
Tk

n
kk xxxX )( ,,, K211 = . Its core part is to calculate 

iterative X2 = B * X1 + g, just in time to put 1+k
ix at the 

position of k
ix . The core part of Gauss - Seidel iterative 

algorithm is as follows: 
WHILE ||X1-X2||∞>10-6 

For (u:=1; u<=n; u++) 
X1[u]= X2[u]; 

For (i:=1; i<=n; i++) 
{ 

s:=g[i]; 
for (j:=1; j<=n&&j!=I; j++) 

{ 
s:=s+b[i][j]* X2[j]; 

} 
X2[i]:=s; 

} 
The convergence of iterative algorithms is the 

assumption that the premise of using WHILE loop 
control structure. More generally, the algorithm can be 
changed in the WHILE loop observed by controlling the 
number of cycles and the calculation error of the loop 
ends. 

In summary, the transition from the global Cartesian 
representation to differential representation is performed 
by a linear operator with local support: the mesh 
Laplacian. And vice versa: in order to recover the 
Cartesian coordinates from the differential representation, 
one needs to solve a sparse linear least-squares problem. 
This provides a powerful framework for surface 
manipulation: we will apply different modifications to the 
differential coordinates (such as quantization for 
compression purposes) and/or pose additional modeling 
constraints, and then reconstruct the surface by solving 
the least-squares problem. 

V.  RESULTS 

In this section, we consider several examples of using 
our system to edit unstructured polygon meshes. All 
results were generated by interactive editing on a 
standard consumer-level Windows PC. We render all 
sample models with flat shading in order to better 
highlight the structure of the surface mesh. 

In order to verify the validity of this method, we 
proposed in this paper based on the Laplacian sketch 
offset mesh deformation method in the experiment. For 
3D mesh models [10], first identified the region of 
interest, as shown in red below, and then give the 
reference curve and target curve, calculate the area of 
interest within the vertices of rotation, and finally use the 
Gauss - Seidel algorithm for reconstruction mesh. 

Figures 8-11 demonstrate the results of our technique. 
In figure 8, we first select the right front leg of the 
Dinosaur as region of interest, then in the region of 
interest draw the reference curve, the reference curve 
project onto nearest surface of the three-dimensional 
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mesh, then the target curve is given by the user, correct 
Laplacian coordinates rotation by the offset of sketching, 
and then generate the deformed models by solving linear 
system in least squares sense with Gauss-Seidel algorithm. 
Similarly, we have the rest of the Dinosaur application of 
our technology; at last, it can yield the deformed models 
that user needs. For example, we are here to simulate a 
walking Dinosaur. 

     

    

 
Figure 8. Dinosaur Deformation 

 

 

 
Figure 9. Camel Deformation 

 

 
Figure 10. Horse Deformation 

 
Figure 11. Triceratops Deformation 

VI.  CONCLUSIONS 

Described in detail in this paper based on the 
coordinates of the deformation method of Laplacian, 
Laplacian method is the Laplacian coordinates of each 
point defined as the point coordinates and its adjacent 
point difference between the weighted vector, the method 
deformation problems Solving linear least into the 
problem, calculation and operation are very convenient, 
but because the Laplace coordinates with the affine and 
change, especially when the strain contains a greater 
degree of rotation, scaling ingredients, there will be some 
distortion. 

For lack of the Laplace method, this paper presents a 
new grid based on the offset contour deformation method 
using contour lines offset to correct the Laplacian 
coordinates to achieve the purpose of deformation. First, 
determine the reference curve and target curve, calculated 
curve relative to the reference target curve rotation, 
rotation with the correct region of interest within the 
coordinates of each point in Laplace, by Gauss - Seidel 
iterative algorithm for solving linear least the second 
problem, get the reconstructed mesh. Application of this 
method can be a natural deformation effect, to avoid the 
Laplace transform coordinates in the rotation next 
problem. 
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