
Generating Executable Capability Models for
Requirements Validation

Weizhong Zhang
Institute of Command Automation, PLA University of Science & Technology, Nanjing, China.

Email: willson_zwz@163.com

Zhixue Wang1, Wen Zhao1, 2, Yingying Yang1, Xin Xin3

1. Institute of Command Automation, PLA University of Science & Technology, Nanjing, China.
2. Army Reserve Duty No.47 Infantry Division of Liaoning, Siping, China

3. Xi’an Communication Institute of PLA, Xi’an, China.
Email: {wzxcx, chip_ai , flyto2016, zwjz1029}@163.com

Abstract--Executable modeling allows the models to be
executed and treated as prototypes to determine the
behaviors of a system. In this paper, we propose an
approach for formalizing requirement models and
generating executable models from them. Application
activity diagrams (AADs), which are used to represent
dynamic behaviors of systems in capability requirements
models, are firstly formalized and saved as XML documents.
Then, on the basis of these models, a mapping algorithm of
translating AADs into instances of executable models for
simulation is proposed. A case study is finally given to
demonstrate the applicability of the method.

Index Terms--UML, Capability requirement, Executable
model, Simulation

I. INTRODUCTION

Architectural analysis of Information systems (IS),
such as Command, Control, Communication, Computers,
Intelligence, Surveillance, and Reconnaissance (C4ISR)
system requirements is a hard and challenging work.
Most architecture development methods, such as UK
Ministry of Defence Architecture Framework (MoDAF)
[1] and US Department of Defense Architecture
Framework (DoDAF) [2], recommend Unified Modeling
Language (UML) to model the capability concepts and
C4ISR requirements. DoDAF provides a set of UML
meta-models to define its Meta-Model Data Groups [2].
In our early research, Capability Requirements Modeling
Language (CRML) was proposed and applied to C4ISR
capability requirement analysis [3]. CRML extends UML
meta-model [4] [5][3], with the various views such as
class diagrams and activity diagrams etc.

However, some problems might arise if UML is
directly applied to the capability analysis. It is a
semi-formal and weakly constrained modeling language.
As a result, it’s hard to build rigorous and formal system

 Weizhong Zhang PhD. Tel: +86−13851564082.
E-mail: willson_zwz@163.com

models. The normal UML models are not executable
because they describe the dynamic behavior of models
with natural language, and hence cannot be directly used
to verify and validate the system behaviors in stage of
analysis and design.

The popularly applied methods include Petri Net [6]
[7], executable UML (xUML) [8] [9] etc. But when the
Petri Net applied, the requirements models built with
UML have to be transformed into those of Petri Net, and
some part of model information might be lost during the
transformation due to the different model semantics.
xUML is designed to describe the software behavior from
the view of program execution and cannot directly
applied to describe the behavior of the models of system
requirements and architecture unless the modeling
semantics are refined and the action semantics are
redefined.

In this paper, we suggest a method of generating an
executable model for requirements validation by
providing action semantics of domain models, focusing
on the domain of C4ISR system architectures. Firstly, a
capability meta-concept model is provided extending the
UML constructs. Then, an algorithm mapping Application
activity diagrams (AADs) to simulation instances is
proposed. And, a case study is given to show the final
executable codes and demonstrate the applicability of the
method.

The rest of the paper is organized as follows. Section II
describes the research background, including architectural
modeling and simulating methods. Section III describes
the language of capability requirement modeling and the
extending method of AADs. Section IV gives an explicit
and formalized definition of AADs. Section V discusses
in detail the algorithm of generating executable capability
requirement models. Section VI demonstrates the
applicability of the method by analyzing a Missile
Intercept example.

II. RELATED WORK

An enterprise is one or more organizations sharing a

2046 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.2046-2052

definite mission, goals and objectives to offer an output
such as a product or a service [10]. There are many
different approaches to enterprise system engineering and
integration, which leads to various enterprise architecture
frameworks, such as Generalized Enterprise Reference
Architecture and Methodology (GERAM)[11], Zachman
Framework [12], DoDAF [2], The Open Group
Architectural Framework (TOGAF) [13], Treasury
Enterprise Architecture Framework (TEAF) [14], etc.

Among them, the DoDAF provides an architectural
modeling methodology for defense information system,
nowadays referred to C4ISR system [15][16]. Such
mission-critical systems are growing in complexity as
more computing devices are networked together to help
automate tasks previously done by human operators [17],
which brings tremendous difficulties in system
engineering and integration. The system engineers have to
pay great efforts on simulation to validate the built
architecture models.

The architecture models and simulation models are
usually built in different ways, because the architecture
modeling aims at capturing higher level of system
requirements and the modeling paradigms usually lack of
rigorous and executable semantics. One of the popular
solutions is to find semantic mappings between the two
different modeling paradigms and transform the
architecture models into the simulation models. As for
building DoDAF executable architecture models, the
research community focuses on mapping between UML
and Discrete Event System Specification (DEVS)
modeling.

Wagenhals et al. [18] provide a description of an
architecting process based on the object-oriented UML.
They describe a mapping between the UML
implementations and an executable model based on
Colored Petri-nets, focusing on the UML Sequence
Diagram (OV6c), the UML Collaboration Diagram
(OV5b) and the Class Diagram (OV5a-with extensions).
Ziegler and Mittal [19] describe the translation of DoDAF
compliant architectures into DEVS simulations by
providing a set of DoDAF foundational Views and related
UML diagrams for construction of DEVS-based
simulations. Mittal et al [20] describe a means for
semantically strengthening the critical OV-6a Rules
Model, through application of Domain Meaning, Units of
Measure (UOM), and formatting to domain specific rules,
thereby removing ambiguity and aiding in translation of
static to dynamic architectures. Risco-Martin et al. [21]
describe the essential mappings between UML and DEVS
modeling, focusing on the UML Structure and Behavior
models that contribute to the development of a
DEVS-based system model. Those UML models are the
Component Diagram, the State Machine, the Sequence
Diagram, and the Timing Diagram. Andrade et al [22]
present the methodology for mapping System Modeling

Language (SysML) activity diagram to time Petri-net.

III. CAPABILITY REQUIREMENT MODELING

A. Capability Meta-concept Model
The Capability meta-concept model, as shown in Fig.1,

defines the capability ontology of C4ISR systems [3],
which contains basic concepts that describe C4ISR
system architecture. Those concepts include
OperationalNode, OperationalEntity, Activity, Mission,
Capability, Information, etc.

Fig.1 Capability meta-concept model

From the architectural viewpoint, the concept
OperationalNode defines a logic node which possesses
capabilities for completing a mission. The communication
requirements between nodes are specified by the
needlines, and exchanging Information associated with
the needlines describes the contents of communication.
Capability describes the resources, such as information
systems, weapon platforms and materials, which are
owned by an operational node and which are required for
a mission. OperationalEntity describes the participants of
activities. The operational entities are the main
component of an operational node which executes
activities. Activity describes a number of operations to
realize a mission. Mission defines a business goal and
task details of an enterprise.

B. Application Activity Diagrams
The behavior of a C4ISR system is specified in an

Application Activity Diagram model and it is the main
concern of the paper. Such model is built with a UML
paradigm which extends UML 2.1 constructs of Class
Diagram and Activity Diagram with the meta-concepts of
capability ontology. It describes which operational nodes
participate in the activities to realize the mission goals,
what activities are executed in the course and their time
sequences, what capabilities are required, and so on.

With UML profile idea, we define new stereotypes of
UML2.1 constructs according to the meta-concept model.
Fig.2 reflects the UML extension mechanism, where the
Class at Meta Object Facility (MOF) level is elaborated
as the meta-concepts such as <<OperationalNode>> etc.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2047

© 2012 ACADEMY PUBLISHER

Fig.2 OperationalNode structure based on UML extension

Tab.1 reflects the UML extension, where the Class is
extended by the meta-concept OperationalNode and
denotes an operational node. ONAttribute defines the
property of an operational node, and extended from
MetaClass Class::Attribute. ONCapabilty, extending the
meta-concept Capability, defines the capability property
of an operational node and extends Class::Attribute of
UML MOF.

TABLE.1

METACLASS AND SEMANTIC OF OPERATIONALNODE

Stereotype MetaClass Semantics

OperationalNode Class Define an operational node

ONAttribute Class::
Attribute

Define an attribute of an
operational node

ONActivity Class::
Operation

Define an activity executed
by an operational node as

its an operation

ONCapabilty
Class::

Attribute

Define a capability owned
by an operational node as

its an attribute

Info
Class::

Parameter

Define an information
received or sent by an
operational node as its

input or output parameter

IV. FORMALIZATION OF MODELS

To describe dynamic behaviors of well-built models
in detail, we propose a method of model formalization,
which will profit models simulating.

In an AAD, there are usually five types of basic
elements: Swimlane, Activity, Capability, Info and Flow.
Therefore, an AAD can be defined as follows:

Definition 1: An application activity diagram model is
described by AADM ::= <CapabilityList, InfoList,
ActivityList, FlowList, SwimlaneList >:
Definition 2: A CapabilityList is defined as follows:

 CapabilityList ::={ <Capability >}
 Capability ::= <Attribute> {<CapValue>}
 Attribute ::= <ID, Name>

 CapValue ::= <Name, Type, Value>
 Type ::= Int | Float | String | Bool

CapabilityList in an AAD model is an element of
the set – Capability, which contains some Attributes and
Capvalues. The Attribute has its unique ID and a Name,
while the Capvalue is represented as a three-tuple
<Name, Type, Value>.
Definition 3: A InfoList is defined as follows:

 InfoList::={ < Info >}
 Info ::= <Attribute, ReceiveNode, InfoValue>
 Attribute ::= <ID, Name>
 ReceiveNode ::= <ONID>|NULL
 InfoValue ::= {< Name, Type, Value>}
 Type ::= Int | Float | String | Bool

InfoList in an AAD model is an element of the set –
Info, which contains some Attributes, ReceiveNodes and
Infovalues. ReceiveNode denotes which OperationalNode
receives the Info. <ONID> indicates the right
OperationalNode, and NULL indicates the Info is
received by an end node.
Definition 4: A ActivityList is defined as follows:

 ActivityList::={ < Activity >}
 Activity ::= <Attribute, Input, ActBody>
 Attribute ::= <ID, Name, Capability>
 ActBody ::= {<Event>}
 Event ::= <Condition, Action, Output>

ActivityList in an AAD model is an element of the
set –Activity, which contains some Attributes, Inputs and
ActBodys. Capability is derived from CapabilityList, and
here is an attribute belongs to an Activity. ActBody is a
series of Events, and produces Outputs after taking some
Actions.
Definition 5: A FlowList is defined as follows:

 FlowList::={ <Flow>}
 Flow::= DataFlow | CtrlFlow
 DataFlow ::= <ID, SAct, DAct, Info,

Condition>
 CtrlFlow ::= < Join> | < Fork> | <Decision>

FlowList in an AAD model is an element of the set
–Flow, which is denoted as a transition line. The Flow
can be divided into two types of DataFlow and CtrlFlow.
The former describes the flowing Infos from source

2048 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

Activity SAct to destination Activity DAct and the guard
Condition. The later decides the way of the execution of
several actions by controlling the execution sequence of
actions. A Join can be described as a tuple, j-n = <
Activity, n, JOIN>. If all Activity nodes complete, then n
is invoked. A Fork can be described as a tuple, f-n = (n,
Activity). If n completes, then every Activity node is
invoked. A Decision can be described as a tuple, d-n = (n,
(c1,n1)… (cn, nn)). If n completes, and the Decision
condition ci is true, then Activity node ni is invoked.
When Decision node is invoked, only one Decision
condition is true among c1… cn.
Definition 6: A SwimlaneList is defined as follows:

 SwimlaneList::={ < Swimlane >}
 Swimlane ::= <Attribute, Element>
 Attribute ::= <ID, Name, Position >
 Element ::= STARTNODE | ENDNODE |

<Activity> | <CtrlFlow>
 Element ::= <ID, Name, Swimlane, Position,

Type, ActivityID | NULL, IsNested | NULL>
 Type ::= ACT | NOTACT

SwimlaneList in an AAD model is an element of the
set –Swimlane, which contains Attributes and several
Elements. The elements in a Swimlane include start node,
end node, some activities and control flows. The
ActivityID and IsNested are only meaning when the type
of Element is ACT. The Swimlane in Element indicates
which swimlane the element belongs to.

We have defined all the model elements in an AAD.
Now, we can save the AADs with XML documents
format, which holds well reusability, expansibility and
readability and prepares for simulating. The
formalization models are shown as following format:
<ActivityDiagram>
 <CapabilityList>
 <Capability ID="" Name=" ">
 <CapValue Name=" " Type=" " Value="" />
 …
 < /CapabilityList>
 < InfoList>

<Info ID=”” Name=”” ReceiveNode=””>
< InfoValue Name=" " Type=" " Value="" />

 …
 < /InfoList>
 <ActivityList>

<Activity ID=”” Name=”” Capability=”” Input
ID=””>

<Event Condition=”” Act=”” Output=””>
 …
 < /ActivityList>
 <FlowList>

<Flow ID=”” SAct=”” DAct=”” Info=””
Condition=””/>
 </FlowList>
 <SwimlaneList>

<Swimlane ID=”” Name=””>
 <Element ID=”” Type=”” Position=””
Nested=”” />
 …

</SwimlaneList>
</ActivityDiagram>

V. TRANSLATE AADS INTO INSTANCES FOR SIMULATION

Having made the UML extension and defining the
domain modeling semantics, we can translate AAD
models into simulation instances for requirements
validation. An algorithm is provided as follows

Step 1: Each Swimlane in AAD is translated into a
simulation instance of OperationalNode.

Step 2: Each Activity within the Swimlane is translated
into the instance of an ONActivity.

Step 3: For each Activity, the object inflow is regarded
as its input and the object outflow is regarded as its
output. The input and output, which are instantiated by
the Class stereotyped with Information, are treated as
parameters and return values for the operation invocation.
The nodes Decision, Fork and Join are respectively
processed through following steps:

Step 3.1: The output of an Activity before the
Decision is considered as the outflow of the Decision
node.

Step 3.2: Identify concurrent processes for the
activities following the Fork, which can be realized
with reload mechanism.

Step 3.3: All inflow of the Join is considered as
input parameters of the Activity following the Join.
Step 4: Every Capability is translated into an

ONCapability of the OperationalNode that owns it.
Step 5: The Start node sends initialization information

which triggers the other activities execution.
The Tab.2 shows the mappings between ADD

modeling constructs and generated simulation instances.
Applying a programming language, the simulation
program can be generated from those instances.

TABLE.2

MAPPINGS BETWEEN ADD CONSTRUCTS AND SIMULATION INSTANCES

ADD constructs Simulation instances

Swimlane OperationalNode

Activity OperationalNode.ONActivity

Capability OperationalNode.ONCapability

Transition
OperationalNode.Activity.Input or
OperationalNode.Activity.Output

After translating AADs into instances, we are prone to
use proper OO programming languages to realize and
execute them. For example, C# language is used to
construct the Class templets of OperationalNode,
Capability and Info, as show in Fig.3.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2049

© 2012 ACADEMY PUBLISHER

Fig.3 Class templets of OperationalNode, Capability and Info with C#

VI. IMPLEMENTATION OF MODEL SIMULATION

We take an example to illustrate implementation of the
simulation instances. Fig.4 shows an AAD model of the
activity of missile interception for the air defense system.

The swimlanes of the Activity Diagram represent
operational nodes. For example, XXX MInterceptON is
an instance which is defined by the class
MissileIntercepNode and owns a capability of
CapabilityOfMissileIntercept which has valued
properties EffectiveRange (type: int, value: 100, unit:
Km), FirstHitRatio (type: Float, value: 0.85), etc.

Firstly, according to the translation algorithm, the
AAD can be translated into simulation instances, for
example, the instances XXX MinterceptON and
ONCapability are shown in Fig.5. They look like
executable programs, but are only pseudocode templates,
which can not be executed. They have to be further
translated into ones in a programming technology, for

example, the Code Document Object Model (CodeDOM)

[23]. CodeDOM is a kind of mechanism that contained
in .NET Framework. It is used to generating
modularization code and compiling dynamically.

In above example, the instances of OperationalNodes,
ONCapabilities, ONActivities and Infos are added to the
object structure in CodeDOM, including namespaces,
properties, and methods and so on, which are stored in
CodeCompileUnit. CodeDOM offers a compiling
mechanism which can compile code objects dynamically,
as Fig.6. Therefore, the graphic models are ultimately
transformed into executable models.

VII. CONCLUSION

The paper presents an approach a capability
meta-concept models, for providing an executable
capability modeling language to realize simulating of
requirement models. The approach extends UML
paradigm by adding the domain modeling constructs of
DoDAF, defining the structure and semantics of
operational nodes and related concepts, and building
mappings between the surface grammars of AADs and
the execution instances. CodeDOM in .NET Framework
is used to support dynamically compiling and generating
the executable capability requirement models. And, a
case study is provided to show the availability of our
method. The future research will be on modeling
evaluation indicators of mission effectiveness for the
capability requirements, generating executable models
for the indicators and thereby realizing integration of
simulation and evaluation for the C4ISR system.

ACKNOWLEDGEMENT

The research is supported by the National High-Tech
Research and Development Program of China under the
project number 2007AA01Z126 and the National
Defense Advanced Research Program of China under the
project number 51306010202.

Fig.4 An AAD of Missile Intercept

Class OperationNode
{

Capability capability;
...... //other capabilities
Info Activity (Info info)

{
...... //content of activity}

...... //other activities
}
Class Capability
{

ValueType value;
...... //other values of capability

}
Class Info
{

ValueType value;
...... //other values of information

}

2050 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

Fig.5 Instances of OperationalNode and CapabilityOfMissileIntercept

Fig.6 Compiling executable codes

REFERENCES

[1] UK Ministry Of Defence. MOD architecture framework
overview v1.0. http://www.modaf.org.uk/, 2005.

[2] US Department of Defense. DoD architecture framework
version 2.0 (Volume I-II-III).
http://www.us.army.mi/suite/page/454707, MOD Partner,
2008.

OperationalNode XXX MinterceptON

{

ONCapability CapabilityOfMissileIntercept;

Info InterceptingByMissile (Info distancefromtarget)

{ //content of activity

if (distancefromtarget<= CapabilityOfMissileIntercept.EffectiveRange & distancefromtarget>5)

send the command CommandOfInterception ="Intercept the target by missile";

else

generate a random number x between 0 and 1;

possibilityofhitbymissile = x;

}

Info CollectingDataOfEffectByMissile (Info possibilityofhitbymissile)

{ //content of activity

If (possibilityofhitbymissile/x > 0.8)

distancefromtarget = -1; //Intercept successfully

else

send the command CommandOfInterception ="Intercept the target by Gun";

}

}

ONCapability CapabilityOfMissileIntercept

{

Int EffectiveRange = 100;

Float FirstHitRatio =0.85;

}

public object DoCompiler(CompileUnit unit, string className)

{

object operationNodeInstance; //ON Instance

CompilerParameters cp = new CompilerParameters(); //parameters for compile

 cp.GenerateExecutable = true; //generating executable file

 cp.GenerateInMemory = true; //generating in memory

CompilerResults _cr =CodeDomProvider.CreateProvider("CSharp").CompileAssemblyFromDom(cp, unit);

Assembly _assembly = _cr.CompiledAssembly； //return program set

operationNodeInstance=_assembly.CreateInstance(className); //ON Instance names

Type type = operationNodeInstance.GetType(); //ON Instance types

Object o = type.GetProperty("XXX").GetValue(); //ON Instance property values

 MethodInfo[] mi = type.GetMethods(); //ON Instance methods

}

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2051

© 2012 ACADEMY PUBLISHER

[3] Zhixue W, Qingchao D, Bin C, et.al. Towards C4ISR
system capability requirements analysis and validation
based on UML model. Systems Engineering and
Electronics, 2009, 31(9), pp: 2167-2171.

[4] OMG. OMG Unified Modeling LanguageTM
Superstructure. Version2.1, formal/2007-02-03.
http://www.omg.org/spec/UML/2.1/Superstructure.

[5] OMG. OMG Unified Modeling LanguageTM
Infrastructure. Version2.1, formal/2007-02-04.
http://www.omg.org/spec/UML/2.1/Infrastructure.

[6] Liqiong C, Guisheng F, Yunxiang L. An Approach to
Formally Modeling and Verifying Distributed Real-time
Embedded Software. Journal of Software, 2010, 5(9), pp:
990-997.

[7] Vincent C, Matthieu R. Interoperability Constraints and
Requirements Formal Modelling and Checking
Framework. International Federation for Information
Processing, 2010, pp: 219-226.

[8] Chris R, Paul F, John W, et.al. Model Driven Architecture
with Executable UML. Cambridge: Cambridge University
Press, 2004.

[9] Helle H, Jeroen K, Bas L, et al. Towards model checking
executable UML specifications in mCRL2. Innovations in
Systems and Software Engineering, 2010, 6(1), pp: 83-90.

[10] Neaga E, Harding J. An enterprise modeling and
integration framework based on knowledge discovery and
data mining. International Journal of Production Research,
2005, 43(6), pp: 1089-1108.

[11] Ehsan M, Ali S, Mohammad R. Using Axiomatic Design
in the Process of Enterprise Architecting. Third
International Conference on Convergence and Hybrid
Information Technology, 2008.

[12] Noran O. An analysis of the Zachman framework for
enterprise architecture from the GERAM perspective.
Annual Reviews in Control, 2003, 27(2), pp: 163-183.

[13] Open Group. TOGAF: The Open Group Architecture
Framework, Version 9, Document Number: G091. The
Open Group, United Kingdom, 2009.

[14] Department of the Treasury CIO Council. Treasury
Enterprise Architecture Framework. V.l. Department of the
Treasury, Washington D.C., USA, 2000.

[15] Schorling S, Rine D. A methodology for designing toolkits
for specification level verification of interval-contained
information systems requirements. Information and
Software Technology, 2002, 44(2), pp: 77-90.

[16] Noran O. A systematic evaluation of the C4ISR AF using
ISO15704 Annex A (GERAM). Computers in Industry,
2005, 56(5), pp: 407-427.

[17] Lardieri P, Balasubramanian J, Schmidt D, et.al. A
multi-layered resource management framework for
dynamic resource management in enterprise DRE systems.
The Journal of Systems and Software, 2007, 80 (7), pp:
984-996.

[18] Wagenhals L, Haider S, Levis A. Synthesizing Executable
Models of Object Oriented Architectures. Proceedings of
Workshop on Formal Methods Applied to Defence
Systems, Adelaide, Australia, 2002, pp: 85-93.

[19] Zeigler B, Mittal S. Enhancing DoDAF with a
DEVS-based System Lifecycle Development Process.
IEEE International Conference on Systems, Man and
Cybernetics, Hawaii, October, 2005.

[20] Mittal S, Mitra A, Gupta A, et.al. Strengthening OV-6a
Semantics with Rule-Based Meta-models in
DEVS/DoDAF based Life-cycle Architectures
Development. IEEE Information Reuse and Integration,
Special Section on DoDAF, Hawaii, 2006, pp: 80-85.

[21] Risco-Martin J, de la Cruz J, Mittal S, et.al. Eudevs:

Executable UML with DEVS Theory of Modeling and
Simulation. Simulation, 2009, 85(7), pp: 419-450.

[22] Andrade E, Maciel P, Callou G, et.al. A methodology for
mapping SysML activity diagram to Time Petri net for
requirement validation of embedded real-time systems
with energy constraints. 3rd International Conference on
Digital Society, 2009, pp: 266-271.

[23] MSDN Library. http://msdn.microsoft.com/zh-cn/library/f
7ykdhsy.aspx, 2010.

Weizhong Zhang was born in 1983. He is
a PhD student of Institute of Command
and Automation, PLA University of
Science and Technology. His research
interests include requirements engineering
and model simulation. He received
bachelor degree in command automation
engineering and master degree in system
engineering, both from PLA University of
Science and Technology.

Zhixue Wang was born in 1961. He is a
professor of Institute of Command
Automation, PLA University of Science
and Technology. He received bachelor
degree in computer engineering from
Hefei Polytechnic University and master
degree in computer science from National
University of Defense Science and
Technology, P.R. China. His research

interests include software engineering, requirements
engineering, theory and technology of command automation,
currently focusing on domain-specific modeling and formal
verification. He used to be a visiting researcher in Faculty of
Information Technology, University of Brighton, England.

Wen Zhao was born in 1983. He is a MS student of Institute of
Command Automation, PLA University of Science and
Technology. His research interests include system engineering
and formal specification and simulation. He received bachelor
degree in computer science from PLA University of Science
and Technology.

Yingying Yang was born in 1980. She is a PhD student of
Institute of Command Automation, PLA University of Science
and Technology. Her research interests include requirement
engineering and formal specification. She received bachelor
degree in command automation engineering and master degree
in system engineering from PLA University of Science and
Technology.

Xin Xin was born in 1983. He is a assistant of Xi’an
Communication Institute of PLA. His research interests
include computer application and wireless communication. He
received bachelor degree and master degree in computer
science from PLA University of Science and Technology.

2052 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

