
An Ontology-Based Framework of Requirements
Evolvement Management

Hongyue He

Institute of Command Automation, PLA University of Science and Technology, Nanjing, Jiangsu, China
Email: hehy2008@sina.com

Zhixue Wang, Ying Zhang and Weizhong Zhang

Institute of Command Automation, PLA University of Science and Technology, Nanjing, Jiangsu, China
Email: {wzxcx@163.com, zhywl66@163.com, willson_zwz@163.com}

Abstract—an ontology-based framework of Requirements
Evolvement Management (REM) is proposed for controlling
requirements evolvement and tracing requirements which
are the important aspects of REM. The ontology is
introduced to describe the information about requirements
evolvement. Consistent analysis and influence analysis for
requirements evolvement is researched in the process of
REM. The inconsistency of requirements is verified through
the manipulations of ontology, and different inconsistency is
dealt in different ways. A layered dependence tree of
requirements is built according to the dependent
relationship between requirements to support the layered
managements of requirements and an equation of cost
analysis is defined to count the priority of requirements
which are in the same layer.

Index Terms—ontology, requirements evolvement,
consistent analysis, influence analysis

I. INTRODUCTION

As the requirement is the important aspect in software
development and requirements elicitation is the beginning
of the process of software development, the quality of
requirements influences the process of software
development and decides the quality of software. All the
software developers want that requirements are well
elicited and unchanged in the process of software
development. But requirements are often evolved in the
process of software development, from the design to
maintenance, because of several kinds of reasons [1].
According to the investigation of Christof, 73%
requirements are evolved in 15 projects of Alcatel, and
more then 30% requirements are evolved in a two years
project[2][3]. If requirements evolvement isn’t managed
correctly and normatively, the schedule and cost of
software development will be influenced and the quality
of software will not be as good as expectation. So the
Requirement Evolvement Management (REM) has been
an issue in the Requirements Engineering (RE) [4].

To deal with requirements evolvement, several models
for software development process, such as Agile Model,
Spiral Model and CMMI, are developed. Because of the
differentiations between the cognitions of requirements
evolvement, different models focus on different aspects
of requirement evolvement and they manage
requirements evolvement in different ways. Some tools
for requirements management, such as CaliberRM,
RequisitePro, ClearQuest and DOORS, have been used in
practical project. But they don’t support to control
requirements evolvement and trace requirement [5].
Especially, requirements evolvement will produce the
inconsistency of requirements; however, the verification
of these inconsistencies isn’t supported by these tools.

Lu and Jin introduce the ontology into RE and propose
an ontology-based method for domain modeling [6][7].
Their method introduces Knowledge Engineering into the
process of RE and improve the quality of model of
software requirement, practicability and automatization
of the process of RE. As the ontology has a good
capability of expressing and sharing knowledge, more
and more researches use ontology in RE [8].

 In this paper, an ontology-based framework of REM is
proposed. According to the framework, the ontology
describes the information about the requirement
evolvement; the consistency and influence analysis of
requirements evolvement is discussed by the
manipulation of ontology; the requirements evolvement
can be traced by the ontology. The requirements
evolvement will be implemented orderly according to a
layered dependence tree and priority. The paper is
organized as follows. The concept model of the
framework is built in the section Ⅱ. In section III, the
information about requirements evolvement is
transformed into OWL DL ontology. The consistency and
influence analysis of REM is discussed in section Ⅳ.
The related works will be presented in section Ⅴ.

He Hongyue PhD. Tel: +86−25−80824566-8020.
E-mail: hehy2008@sina.com

2018 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.2018-2025

II. CONCEPT MODEL OF THE FRAMEWORK

class meta model

Requirement

- id: int
- RelatePeople: StakeHolder
- RelateQuestion: Question
- EvolveRequirement: Requirement
- DependRequirement: Requirement
- InfluenceRequirement: Requirement
- Priority: int

Requirem entTable

- id: int
- BaseLine: RequirementBaseLine
- ContainRequirement: Requirement

StakeHolder

- id: int
- RelateQuestion: Requirement

Ques tion

- id: int
- RelateRequirement: Requirement
- Describing: String

SystemObject

- id: int
- Attribute: int

CconcernQuestion

- ConcernQuestion: Question

ConcerningObject

- ConcernObject: SystemObject

Coder

- Code: Function

RequirementBaseLine

- id: int
- VersionNumber: int

1..*

1..*

1..*
1..*

1 1..

1

1..*

1 1

1..* 1..*

Figure 1. Concept model of REM

To well control the risk of requirements evolvement
and implement the requirements evolvement, a good and
effective process of REM is needed. Fig. 1 describes an
ontology-based framework of REM which is referenced
to the process of REM designed by Leffingwel [9]. The
concept model focuses on Requirement and contains
other concepts which are used in the process of REM
such as Question, StakeHolder, SystemObject,
RequirementTable and RequirementBaseline. These
concepts are defined and interpreted as follow:

Definition 1: Requirement can be defined as a tuple (id,
q, P, r, DR, IR, p) where

 q is the question which this requirement focuses on
 P is the set of stakeholders who concern this
requirement;

 r is a requirement which is evolved to this
requirement;

 DR is the set of requirements which this requirement
depends on;

 IR is the set of requirements which this requirement
influences;

 p is the priority of this requirement;
A requirement must focus on some question and

several stakeholders, such as client, designer and coder,
will concern it. There are three kinds of relationship
between requirements, a requirement depends on other
requirements; the evolvement of a requirement can
influence other requirements; a requirement is evolved
from other requirement. Because of these relationships,
the priority of requirement is important in the process of
dealing with several requirements evolvement.

Definition 2: A question can be defined as a tuple (id,
R, d) where

 R is the set of requirements which focus on this
question;

 d is the string which describes this question;
A question describes what the client concerns, and it

can be related to some requirements. Besides client, a
question is concerned by other stakeholders such as
designer and coder.

Definition 3: A systemobject can be defined as a tuple
(id, A) where

 A is the set of attributes of this systemobject;
A systemobject is an object which is described in

some question. A question may describe several
systemobjects.

Definition 4: A stakeholder can be defined as a tuple
(id, R) where

 R is the set of requirements which this stakeholder
concerns;

A stakeholder is people who directly or indirectly
concern some requirements. A stakeholder may concern
several requirements and there are three kinds of
stakeholders, the client concerns the questions; the
designer concerns the objects of the system; the coder
concerns the code of the system.

Definition 5: A requirementtable can be defined as a
tuple (id, R, b) where

 R is the set of requirements which are contained in
this requirementtable;

 b is the baseline which flags this requirementtable;
Definition 6: A requirementbaseline can be defined as

a tuple (id, v) where
 v is the version number of the requirementtalbe
flaged by this requirementbaseline;

A requirementtable is a set of requirements which are
in the same phase of software development and the
requirementbaseline records the version number of this
requirementtable.

Base on the above analysis, the information about
requirements evolvement in one phase of software
development process can be defined as follow:

Definition 7: The Information can be defined as a
tuple (r, Q, S, O) where

 r is the requirementtable in this phase;
 Q is the set of questions in this phase;
 S is the set of stakeholders in this phase;
 O is the set of systemobjects in this phase;

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2019

© 2012 ACADEMY PUBLISHER

III. FORMALIZATION OF CONCEPT MODEL

In this framework, ontology describes the information
about requirements evolvement in the process of REM.
The information belongs to one concept in the concept
model in section Ⅱ and it can be understood as an
instance of the concept. Base on the above analysis, an
ontology-based method of formalization of concept
model and information is proposed. The concept model is
transformed into the T-Box which is a set of axioms of

the ontology; the information about requirements
evolvement is transformed into the A-Box containing the
assertions of the ontology. To transform the concept
model into T-Box, the classes and their relationships in
concept model must be elicited firstly. TABLE I is the list
of classes which are elicited from the concept model and
TABLEⅡis the list of relations which are also elicited
from the concept model.

TABLE I.
THE LIST OF CLASSES IN T-BOX

description of class superclass definition of class constraint

requirement N/A Requirement Requirement ? •

evolved requirement requirement RequirementNew RequirementNew Requirement?

requirement table N/A RequirementTtable RequirementTtable ? •

requirement baseline N/A RequirementBase RequirementBase ? •

question N/A Question Question ? •

system object N/A SystemObject SystemObject ? •

stakeholder N/A StakeHolder StakeHolder ? •

client stakeholder Client Client StakeHolder?

designer stakeholder Designer Designer StakeHolder?

coder stakeholder Coder Coder StakeHolder?

code N/A Code Code ? •

function N/A Function Function ? •

TABLE II.
THE LIST OF RELATIONS IN T-BOX

description of relation definition of
relation domain constraint

in domain range constraint
in range

A requirement table contains some requirements Contain RequirementTalb
e 1 Requirement 1..*

A requirement is evolved from other requirement Evolve Requirement 1 Requirement 1

A requirement depends on other requirement Depend Requirement 1 Requirement 1..*

A requirement influences other requirement Influence Requirement 1..* Requirement 1..*

A stakeholder concerns some requirements Concern StakeHolder 1..* Requirement 1..*

A question describes some system objects Associate Question 1 SystemObject 1..*

A baseline flags some requirement table Flag RequirementBase 1 RequirementTable 1

A requirement focuses some question Settle Requirement 1..* Question 1

A stakeholder concerns some questions Consider StakeHolder 1..* Question 1..*

A designer codes some codes Coding Designer 1 Code 1..*

A segment of code comprises some functions Comprise Code 1..* Function 1..*

To transform the information about requirements

evolvement into OWL DL ontology, an algorithm –
Build-Ontology is designed as follow:

Algorithm: Build-Ontology
Input: TABLE I, TABLEⅡ, Information
Output: OWL DL ontology
begin
for all c in column of “definition of class” in TABLE I,

do
Add the expression of c and its constraint into the

OWL DL ontology;
end for;

for all r = (c1, c2) in TABLEⅡ, the relation r~ is the
inverse relation of r, do

Add the expression of 1 2c r.c∀ô and ~
2 1c r .c∀ô into

the OWL DL ontology;
end for;
for all the multiplicity constraint in range of every

relation r = (c1, c2) in TABLEⅡ, do
if multiplicity constraint is “1” then
Add the expression of 1 2c 1r.c≤ô and 1 2c 1r.c≥ô

into the OWL DL ontology;
else if multiplicity constraint is “1..*” then

2020 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

Add the expression of 1 2c 1r.c≥ô into the OWL DL
ontology;

end if;
end for;
for all the multiplicity constraint in domain of every

relation r = (c1, c2) in TABLEⅡ, the relation r~ is the
inverse relation of r, do

if multiplicity constraint is “1” then
Add the expression of ~

2 1c 1r .c≤ô and ~
2 1c 1r .c≥ô

into the OWL DL ontology;
else if multiplicity constraint is “1..*” then
Add the expression of ~

2 1c 1r .c≥ô into the OWL DL
ontology;

end if;
end for;
for all elements in Information, do
Add the expression of the assertion describing that the

element belongs to one class into the OWL DL ontology;
end for;
for all couples of elements in Information, do
Add the expression of the assertion describing that the

couple of elements belongs to one relation into the OWL
DL ontology;

end for;
return OWL DL ontology;
end

Ⅳ. PROCESS OF REM

In the process of REM, there are mainly four steps to
manage the requirements evolvement [5], as follow:

1 Analyze the influence of requirements evolvement;
2 Discuss and confirm the requirements evolvement;
3 Implement the requirements evolvement;
4 Modify related productions;
But these steps don’t deal with the consistency analysis

which is the important aspect of requirements analysis in
system of systems (SOS) [10]. Especially the
requirements evolvement may produce inconsistency.
Fig.2 show a process of REM focusing on the consistency
analysis and influence analysis, which is referenced to the
related work [5][9]. The whole process is divided into
four steps as follow:

1 Request. A requirement evolvement is requested by
one stakeholder.

2 Consistency analysis. Verify the inconsistency
between requirements and then deal with this
inconsistency in a suitable way.

3 Influence analysis. Analyze the dependent
relationship between requirement and the cost for
implementing requirements evolvement to decide
the sequence of implementation of requirements
evolvement.

4 Implement. Implement the requirements evolvement.
In this paper, the Consistency analysis and Influence

analysis are mainly discussed because of the limitation of
space. When the request of requirements evolvement is
produced, the consistency analysis will be done. If the
requirement evolvement produces the inconsistency

which will make a fatal mistake in the software, the
request should be denied; otherwise the request will be
accepted. According to the result of consistency analysis,
if the request is denied, the whole process is over; if the
request is accepted, influence analysis will be done, and
then the requirements evolvement will be implemented.

Figure 2. Process of REM

A. Consistency Analysis
In the realm of requirements consistency analysis, the

representative approach is rules-based requirements
consistency management which uses a set of consistent
rules to verify the inconsistency of requirements [11].
Several kinds of consistent rules are defined, and they can
be used from requirement elicitation to software coding
[12]. In the process of REM, two kinds of consistent rules
are defined as follow:

1 Identity rule: in the same requirement baseline, the
attribute of object which is described by two
requirements must be identical.

2 Authorization rule: in the different requirement
baseline, the stakeholders of requirement must be
same.

The identity rule verifies the inconsistency that the
attribute of object described by two requirements are
different. For example, in the development of individual
online bank system, the business man wants to increase
the sum money of one deal to 10000 to attract more
clients; but to ensure the safety of client’s money, the
safety man wants to limit the sum money of one deal to
5000, that can reduce the loss of client when the
information of client is stole. Then, the sum money of
one deal is in a inconsistent state. The authorization rule
verifies the inconsistency that one stakeholder modifies
the requirement which isn’t authorized to him. When the
initial requirements are elicited, these requirements are

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2021

© 2012 ACADEMY PUBLISHER

authorized to different stakeholders. In the process of
REM, one stakeholder can modify these requirements
authorized to him and can’t modify those which are not
authorized to him.

As the information about requirements evolvement is
transformed into the OWL DL ontology in section III, the
verification of inconsistencies based on the identity rule
and authorization rule can be implemented through the
reasoning and querying of the ontology. The
inconsistency based on the identity rule is described as
the contradiction between these axioms in ontology, and
it can be implemented through the reasoning of ontology.
The inconsistency based on authorization rule is
described as the integrality of assertions in ontology, and
it can be implemented through the querying of ontology.
The querying clauses in SPARQL are as follow:

SELECT ?a ?b ?c ?d
WHERE

{?a xmlns:Evolve ?b.
?c xmlns: Concern ?a.
?d xmlns: Concern ?b.
?c owl: differentfrom ?d.}

Because of the different reasons for these
inconsistencies, the influences of them on software
development are different, so they will be dealt in
different ways. There are three ways to deal with these
inconsistencies, as follow:

Resolve
This kind of way focuses on the inconsistency based

on identity rule. When the descriptions of object
concerned by different stakeholders are different, if these
descriptions are conflictive, that means there isn’t an
object satisfying these descriptions. This inconsistency
produced by these descriptions is not tolerant and must be
resolved because it can make the software disabled. The
related request of requirements evolvement must be
rejected and the influence of them is cancelled.

Tolerate
This kind of way also focuses on the inconsistency

based on identity rule. When the descriptions of object by
different stakeholders are different, if these descriptions
are not conflictive, that means there is some object
satisfying these descriptions. This inconsistency produced
by these descriptions is tolerant and a warning is sent to
these stakeholders. The related request of requirements
evolvement is accepted and the influence of them will be
implemented.

Negotiate
This kind of way focuses on the inconsistency based

on the authorization rule. There are two reasons for
stakeholder modifying the requirements which are not
authorized to him, one is accidental; the other is that the
primary stakeholder left this project and the related
requirements are authorized to the new stakeholder. To
find out the reason for this inconsistency, we must
negotiate with stakeholders. If the reason for this
inconsistency is former, the request of this requirements
evolvement is rejected. Otherwise, the request of this
requirements evolvement is accepted.

B. Influence Analysis
As the requirements evolvement will indirectly

influence the cost of software development and the
functionality of software, they should be dealt carefully in
the process of REM. The influence should be analyzed
carefully and then requirements evolvement is managed
according to the result of influence analysis. Referenced
to the layered management of requirements [9], the low
layered requirements should be dealt earlier than the high
one because the low one influences the high one, the
requirements are layered by the dependence between
them and the low layered requirements will be dealt early.
According to the result of cost analysis which focuses on
the cost of implementing the requirements evolvement,
the priority of requirements evolvement in the same layer
is counted.

Dependence Analysis
The requirements are not independent with each other,

and there is a dependent relationship between them which
describes that the evolvement of one requirement will
influence the other requirement. The dependence between
requirements is a part of the tracing information of
requirements. There are three kinds of popular method for
managing the tracing information [13], i.e. tracing table,
tracing list and automated tracing link. Mohammad et
al.[14] use ontology to build a tracing information
repository which records the tracing information of
requirements. In section III, the Depend and Influence
relationships of requirements have been defined, and
these information have also been transformed into the
OWL DL ontology which is a repository containing the
tracing information of requirements. The following
manipulations describe that how can draw and analyze
the tracing information from OWL DL ontology.

TABLE III.
TRACING TABLE

 R1 R2 R3 R4 R5 R6
R1 * *
R2 *
R3 * *
R4 * *
R5 *
R6

TABLE III describes the tracing information between
six requirements, the sign * expresses that the
requirement in this line depends on the requirement in
this column. This tracing information is transformed into
OWL DL ontology using Depend and Influence. This
information in OWL DL ontology is described as the set
of assertions, as follow:

Depend (R1, R3), Depend (R1, R4),
Depend (R2, R6), Depend (R3, R2),
Depend (R3, R5), Depend (R4, R2),
Depend (R4, R5), Depend (R5, R6),
Influence (R3, R1), Influence (R4, R1),
Influence (R6, R2), Influence (R2 R3),
Influence (R5, R3), Influence (R2, R4),
Influence (R5, R4), Influence (R6, R5),

2022 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

The tracing list of six requirements can be drawn
through the querying of ontology, the querying clause in
SPARQL is as follow:

SELECT ?a ?b
WHERE

{?a xmlns:Depend ?b.
?a rdf: type xmlns:RequirementNew.}

TABLE Ⅳ describes the tracing list which is drawn
according to the result of above query .

TABLE IV.
TRACING LIST

Requirement Dependence Requirement Dependence

R1 R3, R4 R4 R2, R5

R2 R6 R5 R6

R3 R2, R5

To implement the layered management, a layered
dependence tree which describes the Depend relationship
between requirements is needed. An algorithm –
Coustrut-layeredtree is designed to construct this tree.

Algorithm：Construct-layeredtree
Input：TABLE Ⅳ
Output：Layered dependence tree
Step1： construct a layer for the tree and put the

requirement which is in the column of “Requirement”
and not in the column of “Dependence” in the layer, then
delete the line which the requirement is in.

Step2：
Step2.1 if the table is not empty, construct a new layer

in the bottom of tree and put the requirement which is in
the column of “Requirement” and not in the column of
“Dependence” in the new layer, then delete the line
which the requirement is in, go to Step2.

Step2.2 if the table is empty, return the tree.
Fig. 3 is a tree which is constructed by the Coustrut-

layeredtree.

Figure 3. Layered dependence tree

According to the layered dependence tree, the low
layer requirement will be implemented earlier than the
high layer requirement. If the requirements are in the
same layer, the cost analysis will be implemented to
count the priority of them.

Cost Analysis
The implementation of requirements evolvement will

need stakeholders to do related works, such as
redesigning the system object and modifying the code of

software. These all kinds of resources expended by these
work are the cost of requirements evolvement. Because of
the differentiation in capabilities of stakeholders and
conditions of software development, it is difficult to
develop a general method to count the cost. Provided that
the capabilities of stakeholders are same and the
conditions of software development are familiar, an
equation for cost analysis of requirements evolvement is
defined as follow:

() () () ()W r P r O r C rα β χ= + +
 r is the requirement which is analyzed;
 Function P(r) counts the number of stakeholders of r;
 Function O(r) counts the number of system objects
which are redesigned;

 Function C(r) counts the number of code which will
be modified;

 , andα β χ are the weight of these functions；
A requirement has three kinds of related stakeholders,

but the function P(r) counts the number of designers and
coders which are related to r. The function P(r) can be
implemented through the querying of ontology. The
querying clause in SPARQL is as follow:

SELECT ?a
WHERE

{{?a xmlns:Concern r.
?a rdf: type xmlns:Designer.}
UNION

{?a xmlns:Concern r.
?a rdf: type xmlns:Coder.}}

The result of above query is the set of designers and
coders related to r, and the cardinality of the set is the
result of function P(r).

A requirement focuses on one question which may
describe several system objects. The function O(r) counts
the number of these objects, and it can be also
implemented through the querying of ontology. The
querying clause in SPARQL is as follow:

SELECT ?a
WHERE

{r xmlns:Settle ?b.
?b xmlns:Associate ?a.}

The result of above query is the set of system objects
related to r, and the cardinality of the set is the result of
function O(r).

As the code of software comprises some functions in
programming language, the function in the code is used
as a unit to count the code. The ontology contains the
information about the functions of code, so C(r) can be
also implemented through the querying of ontology. The
querying clause in SPARQL is as follow:

SELECT ?a
WHERE

{?b xmlns:Concern r.
 ?b xmlns:Coding ?c.
?c xmlns:Comprise ?a.}

The result of above query is the set of functions which
are in the code related to r, and the cardinality of the set
is the result of function C(r).

As different software development process models
focus on the different aspects which are involved in the

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2023

© 2012 ACADEMY PUBLISHER

equation, the value of , andα β χ can be set according
to the relevant software development process model. The
priority of requirements is set according to the result of
the equation. If the result is high, it means that the
implementation of this requirement evolvement needs
more works, and then the requirement will be dealt earlier.

According to the following rules, the sequence of
implementation of requirements evolvement in the
process of REM can be set.

1 In the layered dependence tree, the low layered
requirement will be implemented earlier than the
high one;

2 In the same layer, the requirement which has a high
result of cost analysis will be implemented earlier
than the one with a low result.

Ⅴ. RELATED WORK

As requirements change and the information between
them must be tracked throughout the process of software
development[15], The requirements management should
be treat as a process. There are some researches on the
requirements engineering[16], and several commercial
tools are available.

Some recommendations on requirements management
for software system are proposed in Guide to the
Software Engineering Body of Knowledge[17]. The basic
concepts and general guidelines for requirements
management are defined, and a detailed description of the
phases of iterative requirements management process is
proposed. Youngki et al.[18] focus the traceability of
requirements evolvement, they propose a approach for
evolving traceability links from requirements to system
components.

In some researches, the technologies of meta-model
and UML profile are used to manage requirements.
Kabanda et al.[19] define a requirements meta-model
framework for software system to enhance product
adoption, which focuses the social features: users,
policies and culture. Ramesh et al [20] interview 26
software development organizations and then present
models for requirements management focusing on
requirements traceability. Zhu et al[21] propose UML
profiles for modeling design decisions and non-functional
requirements in a general way. The traceability between
design decisions and architectural elements is maintained,
and the inconsistency over this traceability is checked.
Pardillo et al[22] present a meta-model connecting goals,
requirements and measures. To provide the meta-model
with a familiar notation, a UML profile based on the i*
framework is proposed, which facilitates this approach in
the context of UML-based software engineering process.
Arpinen et al[23] define general concepts and abstract
interfaces for managing requirements between
requirements management and system development, and
present a general meta-model for requirements
management focusing on software and embedded system
domains. The UML profile is used to facilitate the meta-
model to UML tools in practice.

As the ontology can represent and share the knowledge,
it is also used to manage requirements in software process.
Roy et al[24] present a ontology-based framework for
requirements management. The requirements are
constructed by ontology to provide a shared
conceptualization of knowledge which is needed for the
specification of a product. Mohammad et al[14] use
ontology to build a requirement traceability repository in
order to achieve inbuilt requirements management and
to conduct requirement analysis at the Computational
Independent Model level.

There are some tools for requirements management in
practice[25]. Borland’s CaliberRM supports mainly
aspect of requirement management except products
traceability and communions. The IBM rational develops
two requirements management tools: RequisitePro and
ClearQuest. RequisitePro is a general requirements
management tool. ClearQuest is a requirements
evolvement tool, though it is not specifically designed for
requirement evolvement. The two tools are often working
together. But these tools don’t support the consistency
analysis and influence analysis in the process of REM.

Ⅵ. CONCLUSION

An ontology-based framework of REM which is
independent of software development process model is
proposed, and it focuses on the consistency analysis and
influence analysis of requirements evolvement. An
ontology contains the information about requirements
evolvement is built and the REM can be implemented
through the manipulation of ontology. First, a concept
model of the framework is built to describe the concepts
and their relationships in the framework. Then, applying
the concept model, the information about the
requirements evolvement is transformed into the OWL
DL ontology. The inconsistencies can be verified through
the reasoning and querying of ontology, and they are
dealt in different ways according to their taxonomy. To
implement the layered management of requirements, the
algorithm – Construct-layered tree is designed to
construct a layered dependence tree of requirements.
Finally, an equation of cost analysis is defined to count
the priority of requirements in the same layer.

ACKNOWLEDGMENT

This work was supported by the National Defense
Advanced Research Program of China under the project
number 51306010202.

REFERENCES
[1] Norman F Schneidewind. “Investigation of the risk to

software reliability and maintainability of requirements
changes”, 17th IEEE International Conference on Software
Maintenance, Florence. November, 2001.pp:127-136

[2] Christof Ebert. “Understanding the product life cycle: Four
key requirements engineering techniques”, IEEE Software,
2006, 23(3).pp:19-25.

[3] Jozef De Man, “Christof Ebert. Requirements uncertainty:
influencing factors and concrete improvements”, 27th

2024 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

International Conference on Software Engineering,
Missouri, May, 2005.pp:553-560.

[4] Anthony Finkelstein, Jeff Kramer. “Software engineering:
a roadmap”, In Proc. Of The Future of Software
Engineering, April, 2000.pp:3-22.

[5] Qin Zhongsen, Li Juan. “Precess of requirements change
management and analysis of requirements managements
tools”, Computer Engineering and Design,
2009,30(11).pp:601-1605.

[6] Jin Zhi. “Ontology-Based Requirements Elicitation”,
Chinese Journal of Computers, 2000,23(5).pp:486-492.

[7] Lu Ruqian, Jin Zhi. “Beyond the Knowledge Engineering ”,
Journal of Computer Science and Technology, 2006,
21(5).pp:790-799.

[8] Henderson-Sellers, B. “Bridging metamodels and
ontologies in software engineering”, The Journal of
Systems and Software, 2011.pp:301-313.

[9] Leffingwel D, Widrig D. “Managing Software
Requirements: A Use Case Approach”, Addison Wesley,
2003.

[10] Zhu Xuefeng, Jin Zhi. “Managing the Inconsistency of
Software Requirements ”, Chinese Journal of Software,
2005, 16(7).pp:1221-1231.

[11] Nuseibeh B, Easterbrook S, Russo A. “Leveraging
inconsistency in software development ”, IEEE Computer,
2000, 33(4).pp:24-29.

[12] Spanoudakis G, Zisman A. “Inconsistency management in
software engineering: Survey and open research issues”, In:
Chang SK, ed. Handbook of Software Engineering and
Knowledge Engineering. Singapore: World Scientific
Publishing Co., 2001. pp:329-380.

[13] Jin Zhi, Liu Lin and Jin Ying. “Software Requirement
Engineering: Theory and Method”, Beijing: Science
Publication, 2008.

[14] Mohammad Y., Venera Z. and Moteb Al B. .
“Requirements Analysis and Traceability at CIM Level”,
Journal Software Engineering and
Applications,2010,pp:845-851.

[15] Halbleib H. .”Requirements management”, Information
System Management 2004,21.pp:8-14.

[16] Stefan W. and Jens von P.. “A survey of traceability in
requirements engineering and model-driven development”,
Software and Systems Modeling,2010,9(4),pp:529-565.

[17] Abran A., Moore W. Bourque P. et al. “Guide to the
Software Engineering Body of Knowledge”, Los Alamitos,
CA: IEEE Computer Society, 2004.

[18] Youngki H. Minho K. and Sang-Woong L. “Requirements
Management Tool with Evolving Traceability for
Heterogeneous Artifacts in the Entire Life Cycle”, 2010
Eighth ACIS International Conference on Software
Engineering Research Management and Applications,
Canada, May 2010, pp:248-255.

[19] Kabanda S.K., Adigun M., and Chani T. “A requirements
metamodel framework for enhancing product adoption”, In
Proceedings of the South African Telecommunications
Networks and Applications Conference, Mauritius,
September 2007.

[20] Ramesh B. and Jarke M. .”Toward reference models for
requirements traceability”, IEEE Transaction on Software
Engineering, 2001,27.pp:59-93.

[21] Zhu L. and Gorton I.. “UML profiles for design decisions
and non-functional requirements”, In Proceedings of the
Workshop on SHAring and Reusing Architectural
Knowledge Architecture, Rationale, and Design Intent,
Washington, 2007.pp:8-15.

[22] Pardillo J., Molina F., Cachero C. et al. “A UML profile
for modeling measurable requirements”, In Proceedings of
the Advances in Conceptual Modeling Challenges and
Opportunities, Lecture Notes in Computer
Science,2008.pp:123-132.

[23] Arpinen T., Timo D.H. and Marko H.. “Meta-Model and
UML Profile for Requirements Management of Software
and Embedded Systems”, EURASIP Journal on Embedded
Systems.vol.2011, 14 pages.2011

[24] Roy R., Kerr C. and Corbett J.. “Design requirements
management using an ontological framework”, Cirp
Annals-Manufacturing Technology. 2005;54.pp:109-112

[25] Zainol A. and Mansoor S.. “An Investigation of a
Requirements Management Tool elements”,2011 IEEE
Conference on Open Systems(ICOS2011),Langkawi,
September,2011.pp:53-58

Hongyue He was born in 1985. He is a
PhD student of Institute of Command
and Automation, PLA University of
Science and Technology University,
where he received B.S. and M.S. degrees.
His research interests are requirements
engineering, focusing on specification
and management.

Zhixue Wang was born in 1961.He is a professor of Institute of
Command and Automation, PLA University of Science and
Technology. His research interests are software engineering,
requirements engineering, theory and technology of command
automation, currently focusing on domain-specific modeling
and formal verification. He received B.S. degree from Hefei
Polytechnic University, M.S. degree from National University
of Defense and Technology, and used to be a visiting researcher
in Faculty of Information Technology, University of Brighton,
England.

Ying Zhang was born in 1982. She is a PhD student of Institute
of Command and Automation, PLA University of Science and
Technology University, where he received M.S. degrees. His
research interests are requirements engineering, focusing on
specification and formal verification.

Weizhong Zhang was born in 1983. He is a PhD student of
Institute of Command and Automation, PLA University of
Science and Technology University, where he received B.S. and
M.S. degrees. His research interests are requirements
engineering, focusing on behavioral-modeling and formal
verification.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 2025

© 2012 ACADEMY PUBLISHER

