
(a) an RDF graph 
exstaff:112023  exterms:has Address  exaddressid:232001. 
exaddressid:232001   exterms:province                "AnHui". 
exaddressid:232001   exterms:city                    "HuaiNan". 
exaddressid:232001   exterms:street               "DongShan". 
exaddressid:232001   exterms:postalCode           "232001". 

(b) a group of RDF triples 

Figure 1. An RDF graph and its corresponding RDF triples
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Abstract—Semantic Web plays an important role in the 
Web of future. The RDF data is the key component which 
establishes the basis of the Semantic Web. In this paper, we 
conlude the usages and the possible problems of blank nodes 
of RDF with detailed analyses of the applications and 
semantics of the blank nodes in RDF graphs. Give special 
attentions to the inconsistency between RDF semantics and 
SPARQL semantics of blank nodes. Employ the concept of 
“lean graph” in the pre-process of the RDF data operation, 
propose a method of using the entailment relations between 
RDF graphs and the transformation from blank nodes to 
the URI references to eliminate the blank nodes in RDF 
graphs, and give the theoretic background to support the 
method. Lastly, some referenced methods of transforming 
the blank nodes to URI references are provided. 
 
Index Terms—blank nodes, RDF, SPARQL, lean graph, 
entailment 
 

I.  INTRODUCTION 

With the emergence of the Semantic Web, Resource 
Description Framework (RDF) has been a prevalent data 

model which is used to describe knowledge in some 
domains [1]. RDF is a graph-like data structure with 
respect to expresses the resources and the relations 
between resources using the nodes and the directed edges 
between the nodes in the graph (as can be seen in Fig. 
1(a)). According to the features of the descriptions in 
knowledge, we can also express an RD

F graph in a group of RDF triples (see Fig. 1(b)). 
Blank node is a special kind of node in RDF graphs, 

there is nothing to identify them. In RDF, a blank node is 
a node representing some resource for which a URI 
reference or literal is not given. The resource represented 
by a blank node is also called an anonymous resource. By 
RDF standard, a blank node can only be used as subject 
or object when we describe konowledge and information 
in RDF triples. Some blank nodes may have their node 
IDs, but not all blank nodes have to be labeled in all RDF 
serializations. Blank node just expresses the semantic of 
“something exists” as a tag. When we use the RDF triples 
to express an RDF graph, and mostly, we often use the 
form “_:xxx” to show this is a blank node in the RDF 
triple sets. For instance, the node 
“http://example.org/addressid/232001” was replaced by a 
blank node, and thus the RDF graph and the according 

RDF triples are shown in the Fig. 2(a) and 2(b). 
Blank nodes are used to represent these unknown 

resources, and blank nodes are also used when the 
relationship between a subject node and an object node is 
n-ary (as is the case with collections). 
This paper gives a detailed analysis about the blank node 
from two respects, one is the usabilities of the blank node 
and the other is the negative factors. In section 2, we 
conclude the usages of the blank node we analyze the 
possible of the problem and the theoretic background in 
section 3, and give the reference methods in section 4; 
lastly, we conclude the paper in section 5. 

 

 

 
Corresponding author: Lei Chen (chenleihnnu@gmail.com) 

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1993

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.1993-1999



 
(a) an RDF graph with one blank node 

exstaff:112023   exterms:has              Address  _:a1. 
_:a1                    exterms:province             "AnHui". 
_:a1                    exterms:city                 "HuaiNan". 
_:a1                    exterms:street           "DongShan". 
_:a1                    exterms:postalCode       "232001". 

(b) a group of RDF triples with one blank node 

Figure 2. An RDF graph with a blank node and its corresponding 
RDF triples 

exbook:001      exterms:author   _:auther. 
_:auther            rdf:type              rdf:Bag. 
_:auther            rdf:_1                exauthor:010. 
_:auther            rdf:_2                exauthor:015. 
_:auther            rdf:_3                exauthor:023. 

Figure 3. An rdf:Bag container in RDF 

Figure 4. A collection in RDF 

II.  THE FUNCTIONS OF BLANK NODES 

In Linked data publication, it is not proposed to 
describe information using blank nodes [2], but the 
common mechanisms of publishing linked data can not 
be avoided to use blank nodes, which gives the 
developers some conviences. The main reason is that the 
blank node has the capabilities to express some special 
semantics in knowledge description. We attribute the 

usages to 5 aspects: 

A.  Blank Nodes Have the Capability to Describe the 
Structural Information to Encapsulate the N-ary 
Association and the Closed Sets. 

As shown in Fig.2, when the information to be 
described is of multi-component structure, and we need 
not or can not identify the whole information, we use the 
blank nodes to express the existence of the information. 
Also in RDF, we often need to describe groups of things, 
for example, several authors of a book and some students 
of a team. The container is a structural concept in RDF 
data model. There are three types of container in RDF 
model, which are Bag, Sequence and Alternative. The 
Bag (rdf:Bag) represents a group of resources or literals, 
where there is no significance in the order of the 
members; the Sequence (rdf:Seq) represents a group of 
resources or literals, possibly including duplicate 
members, where the order of the member is significant; 
and, the Alternative (rdf:Alt) represents a group of 
resources or literals that are alternatives.  And we can 
describe these three types containers data structure with 
blank nodes. Fig. 3 gives such a collection in RDF triples 
with blank nodes: 

Another case is that we can describe a collection with a 
blank node in RDF graphs. it is needed to use the blank 
node to express the anonymous nodes so that we can 
organize the members of the collections (see Fig.4). 

B.  Blank nodes Have the Capability to Describe the 
Refication.  

Refication is used to describe other RDF statements 
using the RDF format, for instance, to record information 
about when statements were made, who made them, or 
other similar information (this is sometimes referred to as 
"provenance" information). The RDF reification 
vocabulary consists of the type rdf:Statement, and the 
properties rdf:subject, rdf:predicate, and rdf:object, with 
these vocabularies, we can transform any RDF triple to 
its refication, for example, we have an RDF triple as: 

exproduts: No001 exterms:weight "2.4"^^xsd:decimal.  
Then we get the refication of the triple: 
_b   rdf:type        rdf:Statement . 
_b   rdf:subject     exproducts: No001 . 
_b   rdf:predicate   exterms:weight .  
_b   rdf:object      "2.4"^^xsd:decimal 
Here, the blank node _b is used to express the 

refication. With the refication, we can use another triple 
to describe the information about the original triple: 

exstore:No010   exterms:publish    _b. 

C.  Blank Nodes Can Hide the Unexposible Information 
In many senses, the publishers may not want to expose 

their data completely, so the blank nodes can help him or 
her to shield some sensitive information. For example, 
the shop want to publish some shopping information, we 
can replace the real customer’s identity with the blank 
node: 

_:a1  exterms:buy  exproduct:No001. 
_:a1  exterms:buyTime  “2011-6-11”^^xsd:date. 
Thus, the browsers outside just only can get the 

information about the shopping, but can not know any 
other information about the identity of the customer. The 
blank nodes protected the inner information in a good 
manner. 

D.  Blank Nodes Can Express the Multi-relationship 
RDF can only describes the binary relationship directly, 

like ),( osp , which p is the binary predicate, and s, o are 
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G                                         G’ 
ex:a  ex:b  _:b1.                  ex:a  ex:b  _:b3. 
ex:p  ex:b  _:b1.                  ex:a  ex:b  _:b3. 
ex:a  ex:b  _:b2 

Figure 5. two equivalent RDF graphs 

the two parameters of the predicate p. As to the multi-
relationship ),...,,( 21 nsssp , the RDF data structure must 
expresses this using an indirected form with the help of 
blank nodes. We can choose one participant 1s  as the 
subject of the relationship p , and a blank node as the 
object, then, we create a group of 
relationships nppp ,...,, 32  to express the relationships 
between the blank node and the participants nsss ,...,, 32 , 
respectively, we can express this in a rule below: 

),(),...,,(3),,(2),,(:),...,,( 32121 nn sbpnsbpsbpbspsssp −   (1) 

Here, b is the blank node and nppp ,...,, 32  is the 
relationship between the blank node and the nsss ,...,, 32  
respectively. Fig.2 also describes the multi-relationship 
between a person and his address. As depicted there, the 
blank node is used to connect all of the participants like a 
bridge. 

E.  Blank Node Can Describe the Entities Which Are 
Hard to Identify 

Blank node has no URI reference, but it can describe 
the entity hard to identify. For example, sometimes, data 
publishers like to identify a person with the email address, 
but the problem is when the person and his or her email 
co-occur at the same time, we can not distinguish them, 
just see the triple below: 

<mailto:leichen_2009@163.com> 
exterms:email     <mailto:leichen_2009@163.com>. 

So, if there is no a recognized way to identify some 
resource, we can use the blank node to describe the 
information about the resource temporarily, just like the 
triples below: 

_:b  exterms:email  <mailto:leichen_2009@163.com>. 
_:b  rdf:type  exterms:Person. 
_:b  exterms:name  “Chenney” 

III. THE PROBLEMS OF THE BLANK NODE AND THE 
ANALYSIS OF THE REASONS 

In RDF graph, blank node has no name and identity, it 
just entails something exists, so, in the RDF semantics, 
blank nodes can be understood as the existential variables. 
Blank node can bring some conveniences to express the 
information of the resources and the relationships 
between them, but at the same time, it also brings some 
problems and negative impacts in using them, we 
concluded the problems into three aspects: 

A.  The Problem of SPARQL Queries. 
SPARQL is the RDF query language recommended by 

the W3C and it employees the “graph pattern matching” 
in evaluating the result of a query [3]. The core 
component of SPARQL queries is a set of triple patterns 
in the form of >< ops ,, . Here, s , p , o  corresponds to 
the subject, predicate, and object of an RDF triple, but 
they can be variables as well as RDF terms. Within a 
SPARQL query, the user specifies the known RDF terms 
of triples and leaves the unknown ones as variables in 
triple patterns. A triple pattern matches a subset of the 

RDF data; here the RDF terms in triple in the triple 
pattern correspond to the ones in the RDF data. A triple 
pattern applied to an RDF graph generates an unordered 
bag of solutions. A solution is a set of bindings, each of 
which consists of a pair of a variable and its bound value, 
that is, corresponding RDF terms in the matched subset 
of the RDF data. The result of a group of triple patterns is 
the join of the results of individual triple patterns. 

In SPARQL 1.1, basic graph pattern matching is 
defined as “ A basic graph pattern is matched against the 
active graph for that part of the query. Basic graph 
patterns can be instantiated by replacing both variables 
and blank nodes by terms, giving two notions of instance: 
Blank nodes are replaced using an RDF instance mapping, 
from blank nodes to RDF terms; variables are replaced by 
a solution mapping from query variables to RDF terms. 
[10]” This shows a point that the blank nodes in RDF 
graphs should be reduced or eliminated. 

Based on the definition of the query matching in 
SPARQL [4], we also know that the blank nodes in RDF 
are treated as the RDF terms when SPARQL queries are 
evaluating over RDF graphs, which means that the labels 
of blank nodes, just like the URI references and the 
literals, are all regarded as the identities of the resources. 
This semantic of blank node in SPARQL is different from 
which in RDF semantic obviously, as can be seen in the 
example below: 

Suppose there are two RDF graphs here: 

We know that the graph G is equivalent to the graph 
G’ in terms of RDF semantics. Now we pose a SPARQL 
query over them respectively: 

q： 
select  DISTINCT  ?x 
where {  ?x  ex:b  ?y. 
              ?x  ex:b  ?z. 
              FILTER (?y!=?z) } 
Then, we get the result {ex:a} from the graph G and 

NULL from the graph G’. This means that we pose the 
same query over two logically equivalent graphs 
respectively and get different results, which shows the 
difference between the semantics of RDF and SPARQL. 
In RDF all the blank nodes are explained as the 
existential variables and the blank nodes just tell the 
existence of some resources and nothing else to describe; 
but in SPARQL, different blank nodes represent different 
values, which is the reason why we can get the result 
{ex:a} from the graph G. 

We can also see that the graph G is not lean, on the 
other hand, the graph G’ is a lean graph [5], so, according 
to the RDF semantics, the (ex:a  ex:b  _:b2) is a 
redundant triple, the meaning it expresses is involved in 
the semantics of the triple “ex:a  ex:b  _:b1”. So, as can 
be seen in this example, when there are some redundant 
triples in an RDF graph, some queries may be evaluated 
in a wrong way. 
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In other words, since RDF blank nodes allow infinitely 
many redundant solutions for many patterns, there can be 
infinitely many pattern solutions (for example obtained 
by replacing URI references with blank nodes or blank 
nodes by different blank nodes). It is necessary, therefore, 
to somehow delimit the solutions for a basic graph pattern. 
If we delete the redundant blank nodes in the original 
graph and restrict some entailments evaluation about 
blank nodes, the inconsistency of SPARQL query would 
be reduced. 

B.  The Problem of Merging RDF Graphs 
The main purpose of the Semantic Web is to express 

the data on the web in RDF graphs, the scope is Web-
wide-spread, so the manage and the merge the RDF data 
distributed on the Web is the important operators of the 
Web of data. It is easy to merge the graphs without the 
blank nodes, the ground graphs; the result of the merge of 
these RDF graphs is the union of these graphs. But when 
we merge some graphs with blank nodes, it should pay 
attention to whether the graphs have the same blank node 
labels or not. The blank nodes with the same labels in two 
RDF graphs could not be regarded as same because of the 
local feature of the blank nodes. In other words, the scope 
of the validity of a blank node is the RDF graph in which 
the blank node is involved. Ref.[5] proposed a method 
which renames the blank node with the unique label 
which has not been presented in the two original graphs, 
but as analyzed before, if the triples with the blank node 
represent the redundant information, after renamed the 
blank nodes and merge the two graphs, the redundant 
information are also merged into the result graph, so, we 
advise that we should ‘leanize’ the RDF graphs to be 
merged, and rename the blank node labels not eliminated 
yet before the merge operation, and thus we get a result 
graph with less redundant information. 

C.  The Problem of Publishing Linked Data 
As discussed in Linked Data community, two points 

must be solved in the process of accessing the data on the 
Semantic Web. The first was a remark that when using 
http-type URI references, there are expectations that 
something actually exists at that web URL. The second 
was the open question about how Semantic Web clients 
are supposed to find RDF data on the web. The notion of 
Linked Data is to bring the concept and benefits of 
hyperlinking between HTML documents on the World 
Wide Web to RDF documents on the Semantic Web. The 
core principle is that http-type URI references should be 
used for RDF resources, so that RDF documents can exist 
at those locations describing the resources. When those 
documents mention other resources, if they have http-
type URI references then Semantic Web clients can jump 
from document to document finding more information as 
it goes. 

Based on the acquirement of the data access, one 
principle of publishing linked data is to avoid from using 
blank nodes for blank nodes make your data untouched 
with the information outside [2]. Since blank nodes have 
no URI references, so the linkages will be broken at the 
points of the blank nodes, which will brings many 

troubles in the data query and mining. And what’s more, 
some ontology specification like FOAF has also dropped 
blank nodes in favor of URI references. So eliminate the 
blank nodes in your RDF graph is also an important pre-
process before you publish your data on the Web. 

IV. TRY TO ELIMINATE THE BLANK NODES IN YOUR RDF 
GRAPHS 

As investigated before, we recognized that the blank 
node brings both the facilities and troubles to our data 
management and process, especially on the inconsistency 
of query on the RDF datasets. The root course of the 
inconsistency between the RDF semantics and the 
SPARQL semantics on blank node is, in RDF semantics, 
blank nodes are treated as the variables, and in SPARQL 
blank nodes are treated as constant symbols. When a 
SPARQL query evaluates over an RDF graph, it treats the 
blank nodes as local constant terms. It is perhaps 
impossible to clear all the blank nodes in an RDF graph, 
but the blank nodes in the triples which represent the 
redundant information and the blank nodes which can be 
mapped into some URI references may be eliminated to 
make the RDF graph leaner and cleaner. 

We mainly propose three methods to reduce the blank 
nodes in RDF graphs, first, we employ the entailment 
relations between RDF subgraphs to make an RDF graph 
lean; and second, we utilize the 
“owl:InverseFunctionalProperty” to map some blank 
nodes to existing URI references in the RDF graph; and 
lastly, we give a heuristic method to assign URI 
references to the blank nodes. 
Definition 1 (Instance) 

Suppose U , L , B are three mutually disjoint sets of 
URI references, Literals and blank nodes, m is a mapping 
from B toULB ( BLU ∪∪ ), an RDF graph 'G  generated 
by m on the RDF graph G is an instance of G . 

According to the definition, every RDF graph is the 
instance of itself and has itself as the instance. 
Definition 2 (Proper instance) 

Suppose U , L , B are three disjoint sets of URI 
references, Literals and blank nodes respectively, m  is a 
mapping from B to UL  ( LU ∪  ), an RDF graph 'G  
generated by m on the RDF graph G is an proper instance 
of G .  

According to the definition, the proper instances have 
less blank nodes than the original RDF graph. 
Definition 3 (Lean graph) 

An RDF graph is lean if it has no instance which is a 
proper subgraph of the graph. 

As we can see, Non-lean graphs have internal 
redundancy and express the same content as their lean 
subgraphs [5]. The procedure of the leanization is the 
procedure of reducing the blank nodes.   According to the 
definition of the lean graph, there are two ways to leanize 
an RDF graph, one is to use the entailments between the 
subgraphs to reduce the triples with blank nodes, and the 
other is to map some blank nodes to the URI references 
existing in the graph already. 
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G1: 
ex:a   rdf:type  foaf:Person. 
ex:a   foaf:name   “Alice”. 
ex:a   foaf:knows   ex:b 

G2: 
_:b   rdf:type  foaf:Person. 
_:b   foaf:name   “Alice”. 
_:b   foaf:knows   ex:b 

G3: 
_:b   rdf:type  foaf:Person. 
_:b   foaf:name   “Alice”. 
_:b   foaf:knows   ex:b 
_:b   foaf:mbox   <mailto:alice@work.example> 

G4: 
_:b   rdf:type    foaf:Person. 
_:b   foaf:name  “J. Alice”. 
_:b   foaf:knows  ex:b  
_:b   foaf:mbox  <mailto:alice@work.example> 

Figure 6. A group of RDF subgraphs 

A.  Use Entailments between Subgraphs to Reduce the 
Blank Nodes 

Definition 4 (Simple Interpretations) 
Let V be a set of terms. An interpretation of V is a 5-

tuple >< lsextPR lllII ,,,,  where RI is a set of resources 
containing )(VLP , PI is a set of properties, 

RR II
Pext Il ×>− 2: maps each property to a set of pairs of 

resources (the extension of the property),  
PRs IIVUl ∪>−)(:  maps each URI reference to a 

resource or a property, and RTl IVLl >−)(:  maps each 
typed literal to a resource. 
Definition 5 (Models) 

Let G be an RDF tripleset, and V  be a set of terms that 
contains the set of terms of G, i.e. such that  

VGVLGVU ⊆∪ )))(())((( . An interpretation 
>< lsextPR lllII ,,,,  of V  is a model of G  iff there exists 

a mapping PR IIGV ∪>−)(:τ such that: 

     1. for each plain literal llGVLl P =∈ )()),(( τ ; 
     2. for each typed literal )()()),(( llGVLl lT ττ =∈ ; 
     3. for each uriref )()()).(( uuGVUu sττ =∈  
     4. for each blank ;)()),(( RIbGVBb ∈∈ τ  
     5. for each triple  ))(()(),(,,, plosGops ext τττ >∈<>∈< . 
Definition 6 (Satisfiability, Entailment) 

Let G  and H  be two RDF triple-sets. We say that G  
is satisfiable if there exists an interpretation that is a 
model of G . we say that H is a semantic consequence of 
G  (we also say that G  entails H , and note G |= H ) if 
every model of G  is also a model of H . 

Entailment is the key idea which connects model-
theoretic semantics to real-world applications [5][10][13]. 
The RDF semantics specification defines four 
increasingly expressive normative entailment relations 
between RDF graphs, namely simple, RDF, RDFS, and D 
entailment, where the latter extends RDFS entailment 
with support for data-type (e.g., strings and integers). 
Support A and B are two RDF subgraphs, if A entails B, 

then any interpretation that makes A true also makes B 
true, so that an assertion of A already contains the same 
“meaning” as an assertion of B; one could say that the 
meaning of B is somehow contained in, or subsumed by, 
that of A. Furthermore, we also can define a possible 
extension of RDFS entailment that is more in line with 
description logic, namely OWL DL and OWL 2 DL. The 
difference between these specifications is the complexity 
of the entailment evaluation and the reasoning. As 
concluded in Ref.[7], simple, RDF, and RDFS entailment 
are NP-complete in the combined size of the graphs. This 
high complexity is due to the presence of blank nodes 
(essentially existentially quantified variables): if the 
entailed graph is known to be ground, the respective 
problems turn out to be decidable in polynomial time. So 
we can recognize that blank nodes increase the 
complexity of the data management and process. 

Here we just only consider the simple entailment 
defined as a foundation of the entailment in RDF 
semantics. 

Blank node is regarded as existential variable in RDF 
semantics, it means “there exists something”, so, when 
the triples with blank nodes occur with some common 
triples (the triples without blank nodes component) in a 
RDF graph, the meaning they have asserted perhaps has 
already been involved in some other triples. In other 
words, the subgraph composed of some common triples 
entails the subgraph composed of some triples with some 
blank nodes.  

However, since an infinity of interpretations must be 
evaluated according to the definition of the entailment in 
RDF semantics, We give a theorem below to help to 
determinate if a entailment relation exists between two 
RDF subgraphs or not. 

Theorem 1(Interpolation Lemma) 
Let G and H be two RDF subgraphs. Then G |= H iff 

there exists an instance 'H of H such that GH ⊆' . 
Suppose G1, G2, G3 and G4 are four RDF subgraphs 

below: 
If G1 and G2 co-occur in an RDF graph, according to 

the definition of entailment in RDF semantics, the 
meaning of G2 is contained in the meaning of G1, so we 
consider that the information expressed by G2 is 
redundant, and to avoid to the inconsistency of SPARQL 
query and other operations, subgraph G2 should be 
eliminated.  

Compared G1 with G3, as we can not tell whether the 
value of foaf:mbox of the resource ex:a is 
<mailto:alice@work.example> or not, so we can not 
decide whether G1 entails the G3 or not; Based on the 
definition, we know G1 does not entail G4 obviously. 

B.  Use Owl:Inverse Functional Property to Map Blank 
Nodes to URI References 

If a property is declared to be inverse-functional, the 
object of a property statement uniquely determines the 
subject (some individual). More formally, if we state that 
p is an owl:InverseFunctionalProperty, then this asserts 
that a value y can only be the value of p for a single 
instance x, i.e. there cannot be two distinct instances x1 
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G: 
ex:a  rdf:type   foaf:Person. 
ex:a  foaf:mbox  <mailto:alice@work.example> 
_:b   rdf:type   foaf:Person. 
_:b   foaf:name  “Alice”. 
_:b   foaf:knows  ex:b. 
_:b   foaf:mbox  <mailto:alice@work.example> 

G’: 
ex:a  rdf:type   foaf:Person. 
ex:a  foaf:name  “ Alice”. 
ex:a  foaf:mbox  <mailto:alice@work.example> 
ex:a  foaf:knows  ex:b. 
Figure 7. map a blank node to a URI reference existing

G:                                        G’: 
ex:a   ex:b   _:c.                  ex:a   ex:b   skol:c. 
_:d   ex:e   ex:f                   skol:d   ex:e   ex:f 

Figure 8. Skolemization of blank nodes 

and x2 such that both pairs (x1, y) and (x2, y) are 
instances of p. 

owl:InverseFunctionalProperty is just like the concept 
of primary key in the relational schema of database. To 
an entity, the inverse functional property value is unique 
[6], so we can use the character to determine if the entity 
described by a blank node and the entity described by a 
URI reference are the same entity or not, which means 
that, if the value of the owl:InverseFunctionalProperty 
(for example, the e-mail address) of the entity described 
by a blank node is equivalent to the corresponding value 
of the entity described a URI reference, then we can 
believe the two entities are same. 

In Fig.7, although G is a lean graph according to the 
RDF semantics, as we can see, the values of 
owl:InverseFunctionalProperty of the blank node _:b and 
the URI reference ex:a are equivalent, so we can say the 
entity described by ex:a and the entity described by _:b is 
the same entity, and we can map ‘_:b’ to ‘ex:a’ and 
eliminate some triples in G. The result after the operators 
is G’. As we can see, the graph G’ is ‘leaner’ than G’. 

Specially in OWL 2 recommended by W3C, the 
property InverseFunctionalProperty is replaced with 
HasKey, which states that each instance of some class is 
uniquely identified by one object property expression—
that is, no two distinct instances can coincide on the 
values of all object property of the HasKey and all data 
property expressions. The HasKey property is similar to 
the property InverseFunctionalObjectProperty, the main 
differences being that the former property is applicable 
only to individuals that are explicitly named in an 
ontology, while the letter property is also applicable to 
individuals whose existence is implied by existential 
variable. We refer the interested readers to Ref. [8]. 

C.  Treat Blank Nodes as Constant Symbols and the 
Skomemization 

Perhaps the blank nodes are stubborn yet after we use 
the entailment and the simple inference to leanize a RDF 
graph. How to process the blank nodes in the RDF graphs 
is an important but easy to overlook to applications and 
developers. Most of the current platforms just regard the 
blank nodes as constant symbols simply. It is noteworthy 
that, these constants should be local to the RDF graph in 
which the blank nodes embedded.  

The mechanism of treating blank nodes as local 
constant symbols is the main reason for the inconsistency 

between the applications like SPARQL query engines and 
the RDF semantics. 

Sometimes, the skolemization mechanism from logic 
perhaps help to give a constant name to the blanknodes. 

Blank nodes do not have an intrinsic name in the RDF 
abstract syntax. In situations where such a name is 
required, implementations may systematically replace 
blank nodes in an RDF graph with some constant 
symbols. Systems wishing to do this should use a Skolem 
function employed in the field of logics to generate a 
constant symbol for each blank node in an RDF graph. 
We call this the skolemization constant. 
The use of Skolemization in the definition of some 
entailment regime (e.g. simple entailment in RDF 
semantics) makes blank nodes explicit described. For 
example, the subgraph G bellows can be transformed to 
G’ with the skomemization mechanism: 

Since we skolemize the blank nodes after leanizing the 
RDF graph, the result graph involved the skolemized 
subgraph like G’ does not have inner redundancy. And 
the skolemization constants can be regarded as local 
identifies of some resources. The meaning of the 
skolemization is to transform the variables (the blank 
nodes) to the constants respectively which helps the 
reasoning on the RDF graphs. 

D.  Transform Blank Nodes into URI References 
The most suitable method may be to give each blank 

node a URI reference. One of the rules of publishing 
linked data is to identify your resource with a URI 
reference, which makes others link to the resources you 
have published, and thus the Web of data does. Systems 
may wish to mint some Skolem URI references in such a 
way that they can recognize the URI references as having 
been introduced solely to replace a blank node, and map 
back to the source blank node where possible. Also, 
systems which want the Skolem URI references to be 
recognizable outside of the system boundaries should use 
a well-known URI/IRI with a registered name. The 
common manner is to find out the primary key 
information of the entity which can identify it uniquely, 
like the email address, student’s id and the post code etc., 
and then give a URI reference which has the primary key 
information as its component. For example, if you 
identify a student entity, you may use the 
“http://example/students/id/2009070503” as the URI 
reference; if you identify an address, you may use the 
“http://example/city/zip-code/210098” as another URI 
reference. Here the components “2009070503” is the 
student id and the “210098” zip code respectively. The 
principles about how to choose the URI references is that 
the URI references you use can 1) identify the entity 
uniquely; 2) express the identity information of the entity; 
and, 3) exist formally and permanently. 
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V. CONCLUSION 

In this paper, we investigated the meaning and the 
drawback of blank nodes in RDF, specially, we compared 
the semantics of blank nodes in RDF semantics and 
SPARQL semantics, and showed a mismatch between the 
semantics of blank nodes in RDF and SPARQL. We also 
concluded the conveniences and the inconveniences of 
blank nodes when using them and gave a detailed 
analysis. We proposed that a leanization pre-process 
should be excuted when we pose some operations like 
SPARQL queries over the RDF graphs, and we got a 
conclusion that the triples with blank nodes as their 
components which represent the redundant information is 
the main course of the inconsistency when we evaluate 
SPARQL queries over some RDF graphs. Although we 
believed that blank nodes in RDF will still play an 
important role, we still discourage the use of blank nodes 
because of the impossible access to some RDF data 
through RDF links; Merging data from different sources 
also becomes difficult when blank nodes are involved in 
the graphs to be merged, so we must harmonize the 
usages and the shortcomings of the blank nodes, in other 
words, some acknowledged methods to reduce the blank 
nodes and transform the blank nodes to some URI 
references are needed. 
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