
(a) an RDF graph
exstaff:112023 exterms:has Address exaddressid:232001.
exaddressid:232001 exterms:province "AnHui".
exaddressid:232001 exterms:city "HuaiNan".
exaddressid:232001 exterms:street "DongShan".
exaddressid:232001 exterms:postalCode "232001".

(b) a group of RDF triples

Figure 1. An RDF graph and its corresponding RDF triples

Blank Nodes in RDF

Lei Chen
College of Computer and Information, Hohai University, Nanjing, Jiangsu Province, P.R.China 210098;

Department of Computer and Information Engineering, Huainan Normal University,
Huainan, Anhui Province, P.R.China 232038

Email: chenleihnnu@gmail.com

Haifei Zhang, Ying Chen and Wenping Guo
College of Computer and Information, Hohai University, Nanjing, Jiangsu Province, P.R.China 210098

Email: { haifeizhang , yingchen_2009, gwp,}@hhu.edu.cn

Abstract—Semantic Web plays an important role in the
Web of future. The RDF data is the key component which
establishes the basis of the Semantic Web. In this paper, we
conlude the usages and the possible problems of blank nodes
of RDF with detailed analyses of the applications and
semantics of the blank nodes in RDF graphs. Give special
attentions to the inconsistency between RDF semantics and
SPARQL semantics of blank nodes. Employ the concept of
“lean graph” in the pre-process of the RDF data operation,
propose a method of using the entailment relations between
RDF graphs and the transformation from blank nodes to
the URI references to eliminate the blank nodes in RDF
graphs, and give the theoretic background to support the
method. Lastly, some referenced methods of transforming
the blank nodes to URI references are provided.

Index Terms—blank nodes, RDF, SPARQL, lean graph,
entailment

I. INTRODUCTION

With the emergence of the Semantic Web, Resource
Description Framework (RDF) has been a prevalent data

model which is used to describe knowledge in some
domains [1]. RDF is a graph-like data structure with
respect to expresses the resources and the relations
between resources using the nodes and the directed edges
between the nodes in the graph (as can be seen in Fig.
1(a)). According to the features of the descriptions in
knowledge, we can also express an RD

F graph in a group of RDF triples (see Fig. 1(b)).
Blank node is a special kind of node in RDF graphs,

there is nothing to identify them. In RDF, a blank node is
a node representing some resource for which a URI
reference or literal is not given. The resource represented
by a blank node is also called an anonymous resource. By
RDF standard, a blank node can only be used as subject
or object when we describe konowledge and information
in RDF triples. Some blank nodes may have their node
IDs, but not all blank nodes have to be labeled in all RDF
serializations. Blank node just expresses the semantic of
“something exists” as a tag. When we use the RDF triples
to express an RDF graph, and mostly, we often use the
form “_:xxx” to show this is a blank node in the RDF
triple sets. For instance, the node
“http://example.org/addressid/232001” was replaced by a
blank node, and thus the RDF graph and the according

RDF triples are shown in the Fig. 2(a) and 2(b).
Blank nodes are used to represent these unknown

resources, and blank nodes are also used when the
relationship between a subject node and an object node is
n-ary (as is the case with collections).
This paper gives a detailed analysis about the blank node
from two respects, one is the usabilities of the blank node
and the other is the negative factors. In section 2, we
conclude the usages of the blank node we analyze the
possible of the problem and the theoretic background in
section 3, and give the reference methods in section 4;
lastly, we conclude the paper in section 5.

Corresponding author: Lei Chen (chenleihnnu@gmail.com)

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1993

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.1993-1999

(a) an RDF graph with one blank node

exstaff:112023 exterms:has Address _:a1.
_:a1 exterms:province "AnHui".
_:a1 exterms:city "HuaiNan".
_:a1 exterms:street "DongShan".
_:a1 exterms:postalCode "232001".

(b) a group of RDF triples with one blank node

Figure 2. An RDF graph with a blank node and its corresponding
RDF triples

exbook:001 exterms:author _:auther.
_:auther rdf:type rdf:Bag.
_:auther rdf:_1 exauthor:010.
_:auther rdf:_2 exauthor:015.
_:auther rdf:_3 exauthor:023.

Figure 3. An rdf:Bag container in RDF

Figure 4. A collection in RDF

II. THE FUNCTIONS OF BLANK NODES

In Linked data publication, it is not proposed to
describe information using blank nodes [2], but the
common mechanisms of publishing linked data can not
be avoided to use blank nodes, which gives the
developers some conviences. The main reason is that the
blank node has the capabilities to express some special
semantics in knowledge description. We attribute the

usages to 5 aspects:

A. Blank Nodes Have the Capability to Describe the
Structural Information to Encapsulate the N-ary
Association and the Closed Sets.

As shown in Fig.2, when the information to be
described is of multi-component structure, and we need
not or can not identify the whole information, we use the
blank nodes to express the existence of the information.
Also in RDF, we often need to describe groups of things,
for example, several authors of a book and some students
of a team. The container is a structural concept in RDF
data model. There are three types of container in RDF
model, which are Bag, Sequence and Alternative. The
Bag (rdf:Bag) represents a group of resources or literals,
where there is no significance in the order of the
members; the Sequence (rdf:Seq) represents a group of
resources or literals, possibly including duplicate
members, where the order of the member is significant;
and, the Alternative (rdf:Alt) represents a group of
resources or literals that are alternatives. And we can
describe these three types containers data structure with
blank nodes. Fig. 3 gives such a collection in RDF triples
with blank nodes:

Another case is that we can describe a collection with a
blank node in RDF graphs. it is needed to use the blank
node to express the anonymous nodes so that we can
organize the members of the collections (see Fig.4).

B. Blank nodes Have the Capability to Describe the
Refication.

Refication is used to describe other RDF statements
using the RDF format, for instance, to record information
about when statements were made, who made them, or
other similar information (this is sometimes referred to as
"provenance" information). The RDF reification
vocabulary consists of the type rdf:Statement, and the
properties rdf:subject, rdf:predicate, and rdf:object, with
these vocabularies, we can transform any RDF triple to
its refication, for example, we have an RDF triple as:

exproduts: No001 exterms:weight "2.4"^^xsd:decimal.
Then we get the refication of the triple:
_b rdf:type rdf:Statement .
_b rdf:subject exproducts: No001 .
_b rdf:predicate exterms:weight .
_b rdf:object "2.4"^^xsd:decimal
Here, the blank node _b is used to express the

refication. With the refication, we can use another triple
to describe the information about the original triple:

exstore:No010 exterms:publish _b.

C. Blank Nodes Can Hide the Unexposible Information
In many senses, the publishers may not want to expose

their data completely, so the blank nodes can help him or
her to shield some sensitive information. For example,
the shop want to publish some shopping information, we
can replace the real customer’s identity with the blank
node:

_:a1 exterms:buy exproduct:No001.
_:a1 exterms:buyTime “2011-6-11”^^xsd:date.
Thus, the browsers outside just only can get the

information about the shopping, but can not know any
other information about the identity of the customer. The
blank nodes protected the inner information in a good
manner.

D. Blank Nodes Can Express the Multi-relationship
RDF can only describes the binary relationship directly,

like),(osp , which p is the binary predicate, and s, o are

1994 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

G G’
ex:a ex:b _:b1. ex:a ex:b _:b3.
ex:p ex:b _:b1. ex:a ex:b _:b3.
ex:a ex:b _:b2

Figure 5. two equivalent RDF graphs

the two parameters of the predicate p. As to the multi-
relationship),...,,(21 nsssp , the RDF data structure must
expresses this using an indirected form with the help of
blank nodes. We can choose one participant 1s as the
subject of the relationship p , and a blank node as the
object, then, we create a group of
relationships nppp ,...,, 32 to express the relationships
between the blank node and the participants nsss ,...,, 32 ,
respectively, we can express this in a rule below:

),(),...,,(3),,(2),,(:),...,,(32121 nn sbpnsbpsbpbspsssp − (1)

Here, b is the blank node and nppp ,...,, 32 is the
relationship between the blank node and the nsss ,...,, 32
respectively. Fig.2 also describes the multi-relationship
between a person and his address. As depicted there, the
blank node is used to connect all of the participants like a
bridge.

E. Blank Node Can Describe the Entities Which Are
Hard to Identify

Blank node has no URI reference, but it can describe
the entity hard to identify. For example, sometimes, data
publishers like to identify a person with the email address,
but the problem is when the person and his or her email
co-occur at the same time, we can not distinguish them,
just see the triple below:

<mailto:leichen_2009@163.com>
exterms:email <mailto:leichen_2009@163.com>.

So, if there is no a recognized way to identify some
resource, we can use the blank node to describe the
information about the resource temporarily, just like the
triples below:

_:b exterms:email <mailto:leichen_2009@163.com>.
_:b rdf:type exterms:Person.
_:b exterms:name “Chenney”

III. THE PROBLEMS OF THE BLANK NODE AND THE
ANALYSIS OF THE REASONS

In RDF graph, blank node has no name and identity, it
just entails something exists, so, in the RDF semantics,
blank nodes can be understood as the existential variables.
Blank node can bring some conveniences to express the
information of the resources and the relationships
between them, but at the same time, it also brings some
problems and negative impacts in using them, we
concluded the problems into three aspects:

A. The Problem of SPARQL Queries.
SPARQL is the RDF query language recommended by

the W3C and it employees the “graph pattern matching”
in evaluating the result of a query [3]. The core
component of SPARQL queries is a set of triple patterns
in the form of >< ops ,, . Here, s , p , o corresponds to
the subject, predicate, and object of an RDF triple, but
they can be variables as well as RDF terms. Within a
SPARQL query, the user specifies the known RDF terms
of triples and leaves the unknown ones as variables in
triple patterns. A triple pattern matches a subset of the

RDF data; here the RDF terms in triple in the triple
pattern correspond to the ones in the RDF data. A triple
pattern applied to an RDF graph generates an unordered
bag of solutions. A solution is a set of bindings, each of
which consists of a pair of a variable and its bound value,
that is, corresponding RDF terms in the matched subset
of the RDF data. The result of a group of triple patterns is
the join of the results of individual triple patterns.

In SPARQL 1.1, basic graph pattern matching is
defined as “ A basic graph pattern is matched against the
active graph for that part of the query. Basic graph
patterns can be instantiated by replacing both variables
and blank nodes by terms, giving two notions of instance:
Blank nodes are replaced using an RDF instance mapping,
from blank nodes to RDF terms; variables are replaced by
a solution mapping from query variables to RDF terms.
[10]” This shows a point that the blank nodes in RDF
graphs should be reduced or eliminated.

Based on the definition of the query matching in
SPARQL [4], we also know that the blank nodes in RDF
are treated as the RDF terms when SPARQL queries are
evaluating over RDF graphs, which means that the labels
of blank nodes, just like the URI references and the
literals, are all regarded as the identities of the resources.
This semantic of blank node in SPARQL is different from
which in RDF semantic obviously, as can be seen in the
example below:

Suppose there are two RDF graphs here:

We know that the graph G is equivalent to the graph
G’ in terms of RDF semantics. Now we pose a SPARQL
query over them respectively:

q：
select DISTINCT ?x
where { ?x ex:b ?y.
 ?x ex:b ?z.
 FILTER (?y!=?z) }
Then, we get the result {ex:a} from the graph G and

NULL from the graph G’. This means that we pose the
same query over two logically equivalent graphs
respectively and get different results, which shows the
difference between the semantics of RDF and SPARQL.
In RDF all the blank nodes are explained as the
existential variables and the blank nodes just tell the
existence of some resources and nothing else to describe;
but in SPARQL, different blank nodes represent different
values, which is the reason why we can get the result
{ex:a} from the graph G.

We can also see that the graph G is not lean, on the
other hand, the graph G’ is a lean graph [5], so, according
to the RDF semantics, the (ex:a ex:b _:b2) is a
redundant triple, the meaning it expresses is involved in
the semantics of the triple “ex:a ex:b _:b1”. So, as can
be seen in this example, when there are some redundant
triples in an RDF graph, some queries may be evaluated
in a wrong way.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1995

© 2012 ACADEMY PUBLISHER

In other words, since RDF blank nodes allow infinitely
many redundant solutions for many patterns, there can be
infinitely many pattern solutions (for example obtained
by replacing URI references with blank nodes or blank
nodes by different blank nodes). It is necessary, therefore,
to somehow delimit the solutions for a basic graph pattern.
If we delete the redundant blank nodes in the original
graph and restrict some entailments evaluation about
blank nodes, the inconsistency of SPARQL query would
be reduced.

B. The Problem of Merging RDF Graphs
The main purpose of the Semantic Web is to express

the data on the web in RDF graphs, the scope is Web-
wide-spread, so the manage and the merge the RDF data
distributed on the Web is the important operators of the
Web of data. It is easy to merge the graphs without the
blank nodes, the ground graphs; the result of the merge of
these RDF graphs is the union of these graphs. But when
we merge some graphs with blank nodes, it should pay
attention to whether the graphs have the same blank node
labels or not. The blank nodes with the same labels in two
RDF graphs could not be regarded as same because of the
local feature of the blank nodes. In other words, the scope
of the validity of a blank node is the RDF graph in which
the blank node is involved. Ref.[5] proposed a method
which renames the blank node with the unique label
which has not been presented in the two original graphs,
but as analyzed before, if the triples with the blank node
represent the redundant information, after renamed the
blank nodes and merge the two graphs, the redundant
information are also merged into the result graph, so, we
advise that we should ‘leanize’ the RDF graphs to be
merged, and rename the blank node labels not eliminated
yet before the merge operation, and thus we get a result
graph with less redundant information.

C. The Problem of Publishing Linked Data
As discussed in Linked Data community, two points

must be solved in the process of accessing the data on the
Semantic Web. The first was a remark that when using
http-type URI references, there are expectations that
something actually exists at that web URL. The second
was the open question about how Semantic Web clients
are supposed to find RDF data on the web. The notion of
Linked Data is to bring the concept and benefits of
hyperlinking between HTML documents on the World
Wide Web to RDF documents on the Semantic Web. The
core principle is that http-type URI references should be
used for RDF resources, so that RDF documents can exist
at those locations describing the resources. When those
documents mention other resources, if they have http-
type URI references then Semantic Web clients can jump
from document to document finding more information as
it goes.

Based on the acquirement of the data access, one
principle of publishing linked data is to avoid from using
blank nodes for blank nodes make your data untouched
with the information outside [2]. Since blank nodes have
no URI references, so the linkages will be broken at the
points of the blank nodes, which will brings many

troubles in the data query and mining. And what’s more,
some ontology specification like FOAF has also dropped
blank nodes in favor of URI references. So eliminate the
blank nodes in your RDF graph is also an important pre-
process before you publish your data on the Web.

IV. TRY TO ELIMINATE THE BLANK NODES IN YOUR RDF
GRAPHS

As investigated before, we recognized that the blank
node brings both the facilities and troubles to our data
management and process, especially on the inconsistency
of query on the RDF datasets. The root course of the
inconsistency between the RDF semantics and the
SPARQL semantics on blank node is, in RDF semantics,
blank nodes are treated as the variables, and in SPARQL
blank nodes are treated as constant symbols. When a
SPARQL query evaluates over an RDF graph, it treats the
blank nodes as local constant terms. It is perhaps
impossible to clear all the blank nodes in an RDF graph,
but the blank nodes in the triples which represent the
redundant information and the blank nodes which can be
mapped into some URI references may be eliminated to
make the RDF graph leaner and cleaner.

We mainly propose three methods to reduce the blank
nodes in RDF graphs, first, we employ the entailment
relations between RDF subgraphs to make an RDF graph
lean; and second, we utilize the
“owl:InverseFunctionalProperty” to map some blank
nodes to existing URI references in the RDF graph; and
lastly, we give a heuristic method to assign URI
references to the blank nodes.
Definition 1 (Instance)

Suppose U , L , B are three mutually disjoint sets of
URI references, Literals and blank nodes, m is a mapping
from B toULB (BLU ∪∪), an RDF graph 'G generated
by m on the RDF graph G is an instance of G .

According to the definition, every RDF graph is the
instance of itself and has itself as the instance.
Definition 2 (Proper instance)

Suppose U , L , B are three disjoint sets of URI
references, Literals and blank nodes respectively, m is a
mapping from B to UL (LU ∪), an RDF graph 'G
generated by m on the RDF graph G is an proper instance
of G .

According to the definition, the proper instances have
less blank nodes than the original RDF graph.
Definition 3 (Lean graph)

An RDF graph is lean if it has no instance which is a
proper subgraph of the graph.

As we can see, Non-lean graphs have internal
redundancy and express the same content as their lean
subgraphs [5]. The procedure of the leanization is the
procedure of reducing the blank nodes. According to the
definition of the lean graph, there are two ways to leanize
an RDF graph, one is to use the entailments between the
subgraphs to reduce the triples with blank nodes, and the
other is to map some blank nodes to the URI references
existing in the graph already.

1996 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

G1:
ex:a rdf:type foaf:Person.
ex:a foaf:name “Alice”.
ex:a foaf:knows ex:b

G2:
_:b rdf:type foaf:Person.
_:b foaf:name “Alice”.
_:b foaf:knows ex:b

G3:
_:b rdf:type foaf:Person.
_:b foaf:name “Alice”.
_:b foaf:knows ex:b
_:b foaf:mbox <mailto:alice@work.example>

G4:
_:b rdf:type foaf:Person.
_:b foaf:name “J. Alice”.
_:b foaf:knows ex:b
_:b foaf:mbox <mailto:alice@work.example>

Figure 6. A group of RDF subgraphs

A. Use Entailments between Subgraphs to Reduce the
Blank Nodes

Definition 4 (Simple Interpretations)
Let V be a set of terms. An interpretation of V is a 5-

tuple >< lsextPR lllII ,,,, where RI is a set of resources
containing)(VLP , PI is a set of properties,

RR II
Pext Il ×>− 2: maps each property to a set of pairs of

resources (the extension of the property),
PRs IIVUl ∪>−)(: maps each URI reference to a

resource or a property, and RTl IVLl >−)(: maps each
typed literal to a resource.
Definition 5 (Models)

Let G be an RDF tripleset, and V be a set of terms that
contains the set of terms of G, i.e. such that

VGVLGVU ⊆∪)))(())(((. An interpretation
>< lsextPR lllII ,,,, of V is a model of G iff there exists

a mapping PR IIGV ∪>−)(:τ such that:

 1. for each plain literal llGVLl P =∈)()),((τ ;
 2. for each typed literal)()()),((llGVLl lT ττ =∈ ;
 3. for each uriref)()()).((uuGVUu sττ =∈
 4. for each blank ;)()),((RIbGVBb ∈∈ τ
 5. for each triple))(()(),(,,, plosGops ext τττ >∈<>∈< .
Definition 6 (Satisfiability, Entailment)

Let G and H be two RDF triple-sets. We say that G
is satisfiable if there exists an interpretation that is a
model of G . we say that H is a semantic consequence of
G (we also say that G entails H , and note G |= H) if
every model of G is also a model of H .

Entailment is the key idea which connects model-
theoretic semantics to real-world applications [5][10][13].
The RDF semantics specification defines four
increasingly expressive normative entailment relations
between RDF graphs, namely simple, RDF, RDFS, and D
entailment, where the latter extends RDFS entailment
with support for data-type (e.g., strings and integers).
Support A and B are two RDF subgraphs, if A entails B,

then any interpretation that makes A true also makes B
true, so that an assertion of A already contains the same
“meaning” as an assertion of B; one could say that the
meaning of B is somehow contained in, or subsumed by,
that of A. Furthermore, we also can define a possible
extension of RDFS entailment that is more in line with
description logic, namely OWL DL and OWL 2 DL. The
difference between these specifications is the complexity
of the entailment evaluation and the reasoning. As
concluded in Ref.[7], simple, RDF, and RDFS entailment
are NP-complete in the combined size of the graphs. This
high complexity is due to the presence of blank nodes
(essentially existentially quantified variables): if the
entailed graph is known to be ground, the respective
problems turn out to be decidable in polynomial time. So
we can recognize that blank nodes increase the
complexity of the data management and process.

Here we just only consider the simple entailment
defined as a foundation of the entailment in RDF
semantics.

Blank node is regarded as existential variable in RDF
semantics, it means “there exists something”, so, when
the triples with blank nodes occur with some common
triples (the triples without blank nodes component) in a
RDF graph, the meaning they have asserted perhaps has
already been involved in some other triples. In other
words, the subgraph composed of some common triples
entails the subgraph composed of some triples with some
blank nodes.

However, since an infinity of interpretations must be
evaluated according to the definition of the entailment in
RDF semantics, We give a theorem below to help to
determinate if a entailment relation exists between two
RDF subgraphs or not.

Theorem 1(Interpolation Lemma)
Let G and H be two RDF subgraphs. Then G |= H iff

there exists an instance 'H of H such that GH ⊆' .
Suppose G1, G2, G3 and G4 are four RDF subgraphs

below:
If G1 and G2 co-occur in an RDF graph, according to

the definition of entailment in RDF semantics, the
meaning of G2 is contained in the meaning of G1, so we
consider that the information expressed by G2 is
redundant, and to avoid to the inconsistency of SPARQL
query and other operations, subgraph G2 should be
eliminated.

Compared G1 with G3, as we can not tell whether the
value of foaf:mbox of the resource ex:a is
<mailto:alice@work.example> or not, so we can not
decide whether G1 entails the G3 or not; Based on the
definition, we know G1 does not entail G4 obviously.

B. Use Owl:Inverse Functional Property to Map Blank
Nodes to URI References

If a property is declared to be inverse-functional, the
object of a property statement uniquely determines the
subject (some individual). More formally, if we state that
p is an owl:InverseFunctionalProperty, then this asserts
that a value y can only be the value of p for a single
instance x, i.e. there cannot be two distinct instances x1

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1997

© 2012 ACADEMY PUBLISHER

G:
ex:a rdf:type foaf:Person.
ex:a foaf:mbox <mailto:alice@work.example>
_:b rdf:type foaf:Person.
_:b foaf:name “Alice”.
_:b foaf:knows ex:b.
_:b foaf:mbox <mailto:alice@work.example>

G’:
ex:a rdf:type foaf:Person.
ex:a foaf:name “ Alice”.
ex:a foaf:mbox <mailto:alice@work.example>
ex:a foaf:knows ex:b.
Figure 7. map a blank node to a URI reference existing

G: G’:
ex:a ex:b _:c. ex:a ex:b skol:c.
_:d ex:e ex:f skol:d ex:e ex:f

Figure 8. Skolemization of blank nodes

and x2 such that both pairs (x1, y) and (x2, y) are
instances of p.

owl:InverseFunctionalProperty is just like the concept
of primary key in the relational schema of database. To
an entity, the inverse functional property value is unique
[6], so we can use the character to determine if the entity
described by a blank node and the entity described by a
URI reference are the same entity or not, which means
that, if the value of the owl:InverseFunctionalProperty
(for example, the e-mail address) of the entity described
by a blank node is equivalent to the corresponding value
of the entity described a URI reference, then we can
believe the two entities are same.

In Fig.7, although G is a lean graph according to the
RDF semantics, as we can see, the values of
owl:InverseFunctionalProperty of the blank node _:b and
the URI reference ex:a are equivalent, so we can say the
entity described by ex:a and the entity described by _:b is
the same entity, and we can map ‘_:b’ to ‘ex:a’ and
eliminate some triples in G. The result after the operators
is G’. As we can see, the graph G’ is ‘leaner’ than G’.

Specially in OWL 2 recommended by W3C, the
property InverseFunctionalProperty is replaced with
HasKey, which states that each instance of some class is
uniquely identified by one object property expression—
that is, no two distinct instances can coincide on the
values of all object property of the HasKey and all data
property expressions. The HasKey property is similar to
the property InverseFunctionalObjectProperty, the main
differences being that the former property is applicable
only to individuals that are explicitly named in an
ontology, while the letter property is also applicable to
individuals whose existence is implied by existential
variable. We refer the interested readers to Ref. [8].

C. Treat Blank Nodes as Constant Symbols and the
Skomemization

Perhaps the blank nodes are stubborn yet after we use
the entailment and the simple inference to leanize a RDF
graph. How to process the blank nodes in the RDF graphs
is an important but easy to overlook to applications and
developers. Most of the current platforms just regard the
blank nodes as constant symbols simply. It is noteworthy
that, these constants should be local to the RDF graph in
which the blank nodes embedded.

The mechanism of treating blank nodes as local
constant symbols is the main reason for the inconsistency

between the applications like SPARQL query engines and
the RDF semantics.

Sometimes, the skolemization mechanism from logic
perhaps help to give a constant name to the blanknodes.

Blank nodes do not have an intrinsic name in the RDF
abstract syntax. In situations where such a name is
required, implementations may systematically replace
blank nodes in an RDF graph with some constant
symbols. Systems wishing to do this should use a Skolem
function employed in the field of logics to generate a
constant symbol for each blank node in an RDF graph.
We call this the skolemization constant.
The use of Skolemization in the definition of some
entailment regime (e.g. simple entailment in RDF
semantics) makes blank nodes explicit described. For
example, the subgraph G bellows can be transformed to
G’ with the skomemization mechanism:

Since we skolemize the blank nodes after leanizing the
RDF graph, the result graph involved the skolemized
subgraph like G’ does not have inner redundancy. And
the skolemization constants can be regarded as local
identifies of some resources. The meaning of the
skolemization is to transform the variables (the blank
nodes) to the constants respectively which helps the
reasoning on the RDF graphs.

D. Transform Blank Nodes into URI References
The most suitable method may be to give each blank

node a URI reference. One of the rules of publishing
linked data is to identify your resource with a URI
reference, which makes others link to the resources you
have published, and thus the Web of data does. Systems
may wish to mint some Skolem URI references in such a
way that they can recognize the URI references as having
been introduced solely to replace a blank node, and map
back to the source blank node where possible. Also,
systems which want the Skolem URI references to be
recognizable outside of the system boundaries should use
a well-known URI/IRI with a registered name. The
common manner is to find out the primary key
information of the entity which can identify it uniquely,
like the email address, student’s id and the post code etc.,
and then give a URI reference which has the primary key
information as its component. For example, if you
identify a student entity, you may use the
“http://example/students/id/2009070503” as the URI
reference; if you identify an address, you may use the
“http://example/city/zip-code/210098” as another URI
reference. Here the components “2009070503” is the
student id and the “210098” zip code respectively. The
principles about how to choose the URI references is that
the URI references you use can 1) identify the entity
uniquely; 2) express the identity information of the entity;
and, 3) exist formally and permanently.

1998 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

V. CONCLUSION

In this paper, we investigated the meaning and the
drawback of blank nodes in RDF, specially, we compared
the semantics of blank nodes in RDF semantics and
SPARQL semantics, and showed a mismatch between the
semantics of blank nodes in RDF and SPARQL. We also
concluded the conveniences and the inconveniences of
blank nodes when using them and gave a detailed
analysis. We proposed that a leanization pre-process
should be excuted when we pose some operations like
SPARQL queries over the RDF graphs, and we got a
conclusion that the triples with blank nodes as their
components which represent the redundant information is
the main course of the inconsistency when we evaluate
SPARQL queries over some RDF graphs. Although we
believed that blank nodes in RDF will still play an
important role, we still discourage the use of blank nodes
because of the impossible access to some RDF data
through RDF links; Merging data from different sources
also becomes difficult when blank nodes are involved in
the graphs to be merged, so we must harmonize the
usages and the shortcomings of the blank nodes, in other
words, some acknowledged methods to reduce the blank
nodes and transform the blank nodes to some URI
references are needed.

REFERENCES
[1] Graham Klyne, Jeremy J. Carroll and Brian. McBridge,

“Resource Description Framework (RDF): concepts and
abstract syntax”, http://www.w3.org/TR/rdf-concepts/,
February 2004.

[2] Chris Bizer, Richard Cyganiak and Tom Heath, “How to
publish linked data on the Web”, http://sites.wiwiss.fu-
berlin.de/suhl/bizer/pub/LinkedDataTutorial/, July 2007.

[3] Eric Prud'hommeaux and Andy Seaborne, “SPARQL
query language for RDF”, http://www.w3.org/TR/rdf-
sparql-query/, January, 2008.

[4] Enrico Franconi and Sergio Tessaris “The Semantics of
SPARQL” http://www.inf.unibz.it/krdb/w3c/sparql/, 2005.

[5] Patrick Hayes and Brian McBride. RDF Semantics.
http://www.w3.org/TR/rdf-mt/, February 2004.

[6] M Dean, Guus Schreiber, Sean Bechhofer, Frank van
Harmelen, Jim Hendler and Ian Horrocks et.al, “OWL
Web Ontology Language Reference”
http://www.w3.org/TR/owl-ref/, February 2004.

[7] Jos de Bruijn and Stijn Heymans, “Logic foundations of
RDFS(S) with datatypes”, Journal of Artificial Intelligence
Research, vol.38, Issue 1, pp. 535-568, May 2010.

[8] Pascal Hitzler, Markus Krotzsch, Bijan Parsia, Peter F.
Patel-Schneider and Sebastian Rudolph, “OWL 2 Web
Ontology Language Primer”, http://www.w3.org/TR/owl2-
primer/, October 2009.

[9] Frank Manola, Eric Miller and Brian McBride, “RDF
Primer”, http://www.w3.org/TR/rdf-syntax/, February
2004.

[10] Steve Harris, Andy Seaborne, Eric Prud’hommeaux,
“SPARQL query language”,
http://www.w3.org/TR/sparql11-query/, May 2011.

[11] Birte Glimm, Chimezie Ogbuji, Sandro Hawke, Ivan
Herman, Bijan Parsia and Axel Polleres, et.al, “SPARQL
1.1 entailment regimes”, http://www.w3.org/TR/2011/WD-
sparql11-entailment-20110512/, May 2011.

[12] Jean-Francois Baget, “RDF entailment as graph
homomorphism”, Lecture Notes in Computer Science,
Volume 3729, 2005, pp.82-96.

[13] Herman J. and ter Horst, “Extending the RDFS entailment
lemma”, Lecture Notes in Computer Science, Volume
3298, 2004, pp.77-91.

[14] Reinhard Pichler, Axel Polleres, Sebastian Skritek and
Stefan Woltran, “dRDF: entailment for domain-restricted
RDF”, Lecture Notes in Computer Science, Volume 5021,
2008, pp.200-214.

[15] Reinhard Pichler, Axel Polleres, Sebastian Skritek and
Stefan Woltran, “Redundancy elimination on RDF graphs
in the presence of rules, constraints, and queries”, Lecture
Notes in Computer Science, Volume 6333, 2010, pp.133-
148.

[16] Ian Hrrocks, Peter F., Patel-Schneider, “Reducing OWL
entailment to description logic satisfiability”, Lecture
Notes in Computer Science, Volume 2870, 2003, pp.17-29.

[17] Jos de Bruijn and Stijn Heymans, “Logical Foundations of
(e)RDF(S): complexity and reasoning”, Lecture Notes in
Computer Science, Volume 4825, 2007, pp.86-99.

[18] Herman Horst, “Semantic Web Ontologies and entailment_
complexity aspect”, Intelligent Algorithms in Ambient and
Biomedical Computing, 2006, Part III, pp.215-242.

[19] Giovambattsta Lanni, Thomas Krennwallner, Alessandra
Martello and Axel Pollers, “Dynamic querying of mass-
storage RDF data with rule-based entailment regimes”,
Lecture Notes in Computer Science, Volume 5823, 2009,
pp. 310-327.

[20] Georgios Meditskos and Nick Bassiliages, “Combining a
DL reasoner and a rule engine for improving entailment-
based OWL reasoning”, Lecture Notes in Computer
Science, Volume 5318, 2008, pp. 277-292.

[21] Dean Allemang and James Hendler, “Semantic Web for
the Working Ontologist”, Elsevier (Singapore) Pte Ltd,
2009.

[22] T. Berners-Lee, W. Hall, J. Hendler, K. O’Hara, N.
Shadbolt and D. J. Weitzner. “A Framework for Web
Science”, Foundations and Trends in Web Science,
Volume 1, No 1, 2006.

[23] A. Borgida, “On the Relationship between Description
Logic and Predicate Logic Queries”, Proceedings if the
Third International Conference on Information and
Knowledge Management, 1994

Lei Chen, born in 1980, Ph.D. candidate in college of computer
and information, Hohai University. He is also a lecture in the
Dept. of computer and information engineering of HuaiNan
normal university. His research interests focus on Semantic
Web, databases, and ontology engineering.

Haifei Zhang, born in 1980, Ph.D. candidate in college of
computer and information, Hohai University. His research
interests focus on logics, GIS, and databases.

Ying Chen, born in 1980, PhD. Candidate in college of
computer and information, Hohai University. His research
interests focus on data mining and databases.

Wenping Guo, born in 1978, Ph. D. candidate in college of
computer and information, Hohai University. His research
interests focus on ontology annotation, network security, and
Semantic Web.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1999

© 2012 ACADEMY PUBLISHER

