
The XM Satellite Radio Software Module of an

Embedded Car Audio System

Di Wu
Dalian University of Technology, Dalian, China

Email: wudi23893@sina.com

Chenxi Hou
Dalian University of Technology, Dalian, China

Email: xnhcx@163.com

Limin Sun
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

Email: sunlimin@iie.ac.cn

Yan Ling
Dalian University of Technology, Dalian, China

Email: lingyan321.love@163.com

Jiangchuan Liu
Simon Fraser University, Vancouver, Canada

Email: jcliu@sfu.ca

Abstract—XM radio service is an emerging satellite digital

audio radio service suitable for automotive environment, it

offers users high-quality radio programs with better signal

coverage by adopting communication satellite broadcasting

technology. In order to incorporate XM radio function into

a digital car audio system based on the embedded system

industry standard ITRON, we analyze both software and

hardware requirements of the XM function module in this

work. Architectural design that separates the XM radio

function module into five layers is given. The operating

system selected for the microcontroller used in the car audio

system is introduced. Implementation details of the XM

function module, such as control commands and device

communication protocol of the XM tuner, the state

transition matrix layer and the application layer are also

presented in this work.

Index Terms—XM radio, digital car audio system,

embedded system, ITRON, communication protocol, state

transition matrix.

I. INTRODUCTION

With the rapid development of the automobile

manufacturing industry and rapid growth of the travel

demand of consumers, the global automobile sales is

magnifying year by year. The strong demand in the

automobile consumer market has prompted the

maturation and development of a series of other related

industries, the digital car audio manufacturing industry is

a typical example of these industries. As the extension of

automobile manufacturing industry into electronic

product design and manufacturing industry, digital car

audio system [1] products are gradually getting into the

vision of more and more automobile users. The digital car

audio system products meet the visual and auditory

entertainment demand of consumers for during a car ride,

they offer brand new entertainment experience options

for car passengers and drivers on the trip, and have

transformed itself into an indispensable composing part

of on-board digital systems. In recent years, car

manufacturers are constantly launching car models by

advancing and adopting more effective design and

manufacturing techniques in order to meet the

increasingly picky taste of hypercritical automobile

consumers. The quality of digital car audio system

configuration has a considerable decisive impact on the

purchasing selection of automobile consumers. The

improvement of function and quality of digital car audio

systems is becoming ever more important for both

automobile manufacturers and automobile consumers.

This paper focuses on the design and implementation

process of a function module named the XM radio

module in a real development project of a digital car

audio system. The digital car audio is a sub-system of an

on board electronic control system, which operates within

a software environment provided by the embedded real-

time operating system compliant with industry standard

ITRON [2,3]. General development techniques and the

application status quo of car audio systems are displayed

in this work.

II. XM BROADCAST RADIO SERVICE

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1981

© 2012 ACADEMY PUBLISHER
doi:10.4304/jsw.7.9.1981-1992

XM is a SDARS (Satellite Digital Audio Radio

Service) [4,5] broadcast radio service operated by the US

company SiriusXM in North American regions including

the USA and Canada of. SDARS is a branch of digital

audio broadcasting [6] services which incorporates

multiple communication satellites for radio program

broadcasting.

XM radio program signal is delivered by five of the

nine in-orbit satellites of the SiriusXM Company. The

radio program signal is transmitted to and then broadcast

from these satellites to the ground listening devices. The

working band of XM radio service rests on the 2.3GHz S

band, with frequency ranging from 2320MHz to

2345MHz.

XM service was launched on September 25, 2001 in

the USA, providing high quality broadcast radio service

that surpasses existing radio services like FM and AM

both in sound quality and geographic coverage. In order

to maintain signal strength, in areas where signals may

weaken greatly, like places in the vicinity of high rise

buildings in downtowns and under-ground car parks

where satellite signal might be blocked, ground receivers

are installed to rebroadcast signal to guarantee constant

and full coverage for subscriber usage.

Since the XM radio service adopts a business model

base on paid subscription, various kinds of programs with

rich content and premium sound quality are provided to

the users,. At present, there are over 180 stations whose

types span of music, news & talk, sports, and traffic &

whether available in the XM radio service, some

automobile owner can listen to the XM radio service with

the eight-digit identity number called Radio ID assigned

to each on board XM tuner device for three month trial

period usually provided by the automobile manufacturer.

By the end of the year 2010, the number of subscribers to

the XM radio service operated the SiriusXM company

has exceeded 20 million to 20.19 million, showing strong

market demand for satellite broadcast radio service, the

sales of digital car audio systems with preinstalled XM

radio listening devices and corresponding software

solution will benefit from this process of market demand

growth dramatically.

III. REQUIREMENT ANALYSIS OF THE IMPLEMENTATION

OF XM BROADCAST RADIO FUNCTION

In general, the objective of the development project is

to establish a digital car audio system that consists of

microcontrollers, display screen, operation panel of keys,

multiple external devices and speakers. These

components provide users with a series of complete car

audio system functionalities that include signal

processing, system state display, user input acquisition,

playback of media content in external connected devices

and sound output to the users. XM broadcast radio is one

of the functionalities that needs to implement in the car

audio development project. The integration of XM radio

may be discussed from two perspectives. On one hand,

the XM radio module relies on the common infrastructure

shared among other digital car audio system function

modules like FM/AM radio, Bluetooth audio and so on,

on the other hand, it has several special requirements for

both software and hardware configuration of the digital

car audio system. The detailed hardware configuration

can be seen in Figure 1.

A. Hardware Requirements

The hardware requirements of XM broadcast radio

functionality can be separated into two classes. The first

class includes hardware shared among many different

system functions, like microcontrollers on which the

operating systems run, chips that can process and adjust

audio signals, speakers that play processed audio signals

input from the main microcontroller, display screen that

displays system states, key control panels, and touch

panel display. The second class includes special hardware

specifically required by the XM broadcast radio

functionality, which includes external devices that can

receive broadcast radio signal from the satellites and the

data communication bus that establishes data exchange

on the connection between the microcontroller and the

external device. In the development project of the digital

car audio system, an XM satellite broadcast radio signal

receiver called XM tuner is adopted to receive radio

program signal from the satellites, and a data

communication bus named IEBUS is used to connect the

XM tuner to the microcontroller in the head unit of the

digital car audio system.

During the design phase of the car audio system

product, taking into account the conservation of

manufacturing cost and differences of device control and

data processing demands for the whole car audio system

in the actual environment, two microcontrollers with

different processing capabilities are adopted.

For the special demands for user interface drawing on

the LCD screen and decoding processing of video media

content, a video audio microcontroller customized for

graphics performance optimization is adopted.

The other microcontroller, namely the main

microcontroller is responsible for power management,

audio signal output to DSP chips for sound output,

detection of key press on the control panel, and data

exchange with several external devices via different kinds

of data communication buses.

The two microcontrollers are connected by 32-bit data

communication bus named CSI (Configurable System

Video-Audio

Microcontroller

Main

Microcontroller
DSP XM Tuner

IEBUS

I2S

Speaker

XM Radio Service

Satellite

Touch Panel

Display

Key Control

Panel

Figure 1. Block diagram of XM car audio system hardware
related to broadcast radio functionality.

1982 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

Interconnect). Via the CSI bus, the two microcontrollers

can exchange data with each other according tocertain

inter-microcontroller communication mechanism.

The implementation of XM function is divided onto

two microcontrollers. The video audio microcontroller

controls human-machine interaction functions like the

drawing of XM user interface on the touch panel display

and the detection and resolution of user touch input on

the touch panel when the XM radio user interfaces are

active. The main controller sends control commands to

the XM tuner device whenever a user key press input

takes place, and takes feedback execution result of

control command, and passes the display data from the

XM tuner device to the video audio microcontroller side

to refresh the user interface accordingly.

This work is mainly about the implementation of the

XM tuner device driving functions. The process of

controlling the XM tuner device is done entirely by the

main microcontroller of the car audio system.

In the digital car audio system development project, a

microcontroller of V850ES/SJ3 series produced by NEC

Company is adopted as the main controller, its highest

working frequency can reach up to 32MHz. The total

number of general registers is 32, the data length of each

register is 32bits. The data size of ROM is between

384KB and 1024KB, the data size of RAM is between

32KB and 60KB. V850ES/SJ3 microcontrollers has a

total of 128 I/O ports, its serial interfaces enable data

communication via serial buses like UART, CSI and I2C,

besides, IEBUS and CAN bus controller are also present

for data communication with external devices. The A/D,

D/A converters of V850ES/SJ3 enable conversion

between analogue and digital signals. The timing function

is provided by five timers, including three 16-bit timers, a

watch timer and a watchdog timer. To conserve power

consumption, power-saving modes named as

HALT/IDLE/STOP/subclock/sub-IDLE are provided to

the users of V850ES/SJ3 microcontrollers.

B. Software Requirements

Software requirements of XM function can also be

separated into two classes. The first class includes

software that controls fundamental hardware, like

software that controls DSP chips for audio signal

processing, which can adjust sound output effects like

volume, treble, bass and so on. The first class of software

includes not only graphics-related software that draws

user interface and manages user interface transition, but

also key press processing software that detects long

press/short press, soft key press on the touch panel,

dragging key operation and resolves pressed key type

from coordinates. Software in the second class includes a

device driver which manages and controls the working

state of the XM tuner, sends control commands to and

acquires responses and device and radio program

information from the XM tuner, an IEBUS I/O driving

software which enables data exchange between the main

microcontroller and the XM tuner device by bus reading

and writing, and a communication protocol that

encapsulates operations of IEBUS I/O driving software.

IV. ARCHITECTURE OF DEVELOPMENT FOR XM

BROADCAST RADIO FUNCTION

The digital car audio system development project

adopts a layered architecture based on the ITRON

embedded operating system standard. This architecture

includes five layers, and they are human machine

interface, state transition matrix, application, driver and

operating system layers from the top to the bottom, as

shown in Figure 2.

A. Human Machine Interface Layer

The human machine interface layer is at the top of the

whole architecture, it is responsible for the interaction

between the digital car audio system and the users. Its

responsibility includes acquiring in input from the user,

notifying the user of the current working state of the car

audio system and notifying the user of the processing

result of operation request of the user. The human

machine interface layer takes input from the user,

resolves the exact operation type, generates and passes

operation request event message to the state transition

matrix layer. The working state notification is mainly

completed by the main display screen of the car audio

system, screen text information like song name and list of

available channels is displayed to the user. The

notification of the processing result of any operation

request is mainly conducted by refreshing the user

interface, in some cases by sounding the beeper, for

instance, when continuous multiple key press operations

are conducted by the user in a short period of time, the

key press processing capacity of the system may fail to

deal with all these requests immediately, a beeping alarm

can be sounded to inform the user to prevent conducting

more invalid key press operations.

B. State Transition Matrix Layer

 Inside the car audio system, there are many time

consuming operations, each task may also receive

messages containing service requests while an on-going

processing is present. Due to the real-time requirement of

the car audio system, setting up request message queue to

postpone the processing of an incoming request message

during busy time is not allowed. To guarantee the real-

Human Machine Interface

State
Transition

Matrix

Application

Driver

Operating System

Figure 2. Layered development architecture of car audio system
based on ITRON standard.

Figure 1.

Figure 2. Note how the caption is centered in the column.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1983

© 2012 ACADEMY PUBLISHER

Multi-task Application

Kernel Interface Library

Operating System Kernel

System Hardware

Figure 3. Layers of ITRON standard compliant embedded real-time
operating system.

time character of the system, for each service request

message that has arrived at the task, the system must

decide whether an immediate processing is possible. For

those requests that are unable to be processed

immediately, a request failure notification should be

replied to the sender task, otherwise, the processing is

performed and working state is transitioned accordingly.

The differences of the event carried by the arriving

message and working state of the system can both incur

differences of system processing responses to the requests,

thus, tasks can use the state transition matrix to decide the

proper response to the arriving messages during different

working states. When a request message arrives from the

human machine interface layer, the state transition matrix

needs to recognize the current working state of the task,

and look up in the matrix cell for the processing action

that should be taken and the state to transition to after the

processing action in a matrix with row being the event of

the message and column being the current working state,

afterwards, the corresponding processing action is

conducted and state is transitioned. The state transition

matrix maintains the working state of tasks to conduct

proper processing action on the input message and

maintains the proper transition target of working state for

the processing of future incoming messages.

C. Application Layer

The design purpose of application layer is to establish

an isolation layer between the practical functions and

bottom hardware functions, hiding the impact of changes

of hardware beneath the human machine interface layer

and state transition matrix layer and providing a

collection of relatively stable application interfaces for

upper layer design. Only single functions are

implemented in the application layer interface, the actual

implementation of a single application interface may

contain call requests to multiple functions of the driver

layer underneath according to certain timing and logic

requirements. The design of using application layer hides

implementation details of lower layer to the upper layers

and improves the stability and portability of the system.

D. Driver Layer

The driver layer lies in the place nearest to the bottom

hardware in the architecture, it is mainly used to conceal

the details of the operation of digital car audio devices.

The process of driving device includes the use of certain

hardware control protocol and I/O communication

protocol software and needs to comply with certain

timing requirements and data format conventions. The

driver layer encapsulates device operation processes into

message interfaces for upper layers to implement the

control function of devices.

E. Operating System Layer

The operating system layer is the foundation of the

whole car audio system architecture, it is responsible for

the management of fundamental hardware and software

resources, accepting resource requests from tasks,

allocating and recycling shared resources and ensuring

correct and orderly use of resources. The detailed

functions of the operating system layer includes the

management of task life cycle, the scheduling of task

execution, synchronization and communication of tasks,

dynamic management of memory, interrupt management,

timer management and so on. All layers above the

operating system layer can issue system calls to request

service of the operating system and implement designed

functions under the support of the operating system.

V. ITRON STANDARD COMPLIANT EMBEDDED REAL-TIME

OPERATING SYSTEM

The two microcontrollers of the digital car audio

system, namely the video audio microcontroller and the

main microcontroller are responsible for certain different

types of system functions like computing, communication,

key press detection and device control respectively, they

must perform these functions in orderly, effective and

real-time way cooperatively. The embedded real-time

operating system is a type of operating system widely

used in embedded real-time environment. As a type of

embedded system, it has common characters of

embedded software like reducibility, low occupation of

resources and low power consumption; while as a type of

real-time system, in addition to satisfying function

requirements of application, it must further satisfy the

real-time requirements of application, meaning that

several important operation parameters measuring the

real-time level of a system, like system response time,

task switching time, interrupt delay time must be

controlled within the range permitted by the users.

ITRON (Industrial the Real-Time Operation System

Nucleus) is a real-time multi-task operating system

standard. ITRON has a standard real-time kernel and is

applicable for any small scale embedded system. ITRON

has become an important industrial standard in embedded

device industry and has been widely adopted by digital

car audio system development projects. The main

microcontroller in the car audio system development

project adopts Rx850 operating system, which complies

with ITRON v4.0 standard.

1984 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

The architecture of ITRON can be divided into four

layers, as shown in Figure 3. The lowest layer is the

system hardware layer, including ROM, RAM,

microprocessor, timer, I/O controllers and so on. Above

the hardware layer is the operating system kernel, which

is written completely in assembly code. The kernel is

designed to provide fundamental system functions like

task management, synchronization and communication,

interrupt management, memory management, timer

management, system scheduling and so on. The kernel

interface library provides system service in the form of

external functions, system calls issued in the form of

external functions can thus invoke service programs

within the operating system kernel. The multi-task

application layer represents tasks responsible for the

implementation of application level functions, which is

dependent on project development. The most important

part that needs to be implemented in the project

development phase is the design of the main functions of

tasks. The main function of a task acquires notifications

or service requests from other tasks and sends

notifications or service requests to other tasks to

implement the system function which it is responsible for.

 Task Priority and Task Scheduling of ITRON.

Tasks of ITRON acquire opportunity of execution

under the scheduling of the operating system. In the

startup configuration file, different priorities of execution

are set for different system functions according to their

real-time level requirements. When multiple tasks are in

ready state in the task scheduling queue, the kernel would

execute the first task with the highest priority, for tasks

with equal priorities, execution would start from the task

that arrives first in the scheduling queue.

 Task Structure and Message Communication

Mechanism of ITRON.

The execution of a task begins from the main function

of the task, the structure of a main function is an infinite

loop. At the beginning of the infinite loop, mail message

is received from the associate mailbox of the task.

Afterwards, the task can judge from the event code and

source task data fields of the mail about what notification

or service request is sent and which task the sending task

is, and then acquires data from the option field of the mail

message required by the execution of the service request

or the processing of the notification. Thus, task may enter

into a specific execution or processing period after the

reception of the mail message. After the reception and

processing of a mail message, the task execution would

go back to the beginning of the infinite loop and wait for

the next incoming mail message.

Within the ITRON standard, inter-task message

communication mechanism is established primarily by

the mail sending function snd_msg, the mail receiving

function rcv_msg, the mailbox system object and mail

data structure. The mailbox system object is set up in the

system startup configuration file and will be initiated

along with the initialization of the system. Every task that

needs to communicate with other tasks in the system is

associated with a mailbox system object. Tasks may

receive mail message from associated mailbox by the

mail receiving function rcv_msg. When tasks need to

send mail message to other tasks, they can fill parameters

into corresponding fields of mail variables, including the

target mailbox, the identifier of the current task, the event

code which identifies the type of the mail message and

the mail option field. After parameters are properly set, a

function call to the mail sending function snd_msg can

complete the mail sending process.

Intensive use of inter task message communication

mechanism can be found in the car audio system

development project, tasks cooperate with each other

frequently so as to implement system functions.

VI. LAYERED IMPLEMENTATION OF THE DRIVING

FUNCTION OF XM TUNER DEVICE

A. Control Commands of XM Tuner Device

The XM tuner device is the special device for

receiving XM radio signals, its antenna can receive

program data from the XM service satellites, and the in-

built memory can save user setting data. The IEBUS

interface can be used for receiving control commands

from the microcontroller inside the head unit of the

digital car audio system, and command response and

display data can be sent back to the microcontroller.

Upon receiving control commands from the

microcontroller, the XM tuner device can change

parameters of XM signal reception and the working state

of the XM tuner device.

The control commands used in the development

project can be classified into the following classes: preset

station commands, tune mode commands, station scan

commands, station adjustment commands, information

acquisition commands and electronic diagnosis

commands.

1. Preset Station Commands

Preset station commands are the control commands

associated with preset station list display functions. The

preset station list is a list of stations saved inside the non-

volatile memory of the XM tuner device, the items in the

station list are added by users during the listening period.

The capacity of the preset is limited in the development

project, the XM tuner device can accommodate a certain

number of stations within the internal memory. The user

may either choose an item added before in the preset

station list to start playing or save the present active

playing station into an item in the preset station list

specified by the user. When the display screen switches

into the user interface where the preset station list is

present due to some user operation, the digital car audio

system must also send request to the XM tuner for the

complete content of the preset station list. The four preset

station commands can be seen below.

 Preset Station Call

 Preset Station Write

 Preset Station List

 Preset Station Immediate Write

2. Tune Mode Commands

The tune mode is a state flag that decides whether the

command execution to be the range of all channels or the

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1985

© 2012 ACADEMY PUBLISHER

range of only channels within the current category for

some user commands.

The XM tuner device doesn’t maintain such a state flag

by itself, however, all commands related to the tune mode

are subject to the tune mode. The microcontroller has to

keep a record of the tune mode in order to map operation

requests to the commands that should really be sent to the

XM tuner device. The tune mode has two values,

corresponding to the two different modes: channel mode

and category mode. The execution range will be set up as

either for all currently available channels or for channels

only within the current category at the time of the

operation request. There are two tune mode commands:

the Tune Mode Switching command can switch tune

mode between the two available modes; the Tune Mode

Information command can query the microcontroller for

the current tune mode.

 Tune Mode Switching

 Tune Mode Information

3. Station Scan Commands

The station scan commands are the control commands

to perform station scan actions on the available channels.

The station scan action is a process in which each

available channel within the execution range specified by

the current tune mode is played for 10 seconds

sequentially for one round in the direction in which

station number increases.

The tune mode makes difference to the execution of

the station scan request. When the tune mode is channel

mode, the stations to be scanned are all available

channels at present, otherwise, when the tune mode is

category mode, the execution of the station scan action

would be confined to all available stations within the

present category. The two station scan commands are as

follows.

 Channel Mode Scan

 Category Mode Scan

4. Channel Adjustment Commands

The channel adjustment commands are the control

commands that are related to the adjustment of the

current listening station. Channel Mode Channel Up and

Channel Mode Channel Down commands are sent to the

XM tuner device when the tune mode is channel mode,

upon receiving these commands, the XM tuner device

would switch the current listening station to the previous

or the next available station to receive radio program

signals. Category Mode Channel Up and Category Mode

Channel Down commands are sent to the XM tuner

device when the tune mode is category mode, upon

receiving these commands, the XM tuner device would

switch the current listening station to the previous or the

next station within the current category to receive radio

program signals. Channel Rough Up and Channel Rough

Down commands can be sent to the XM tuner device

only when the tune mode is channel mode. Every time

these commands are received, the XM tuner device would

switch the current listening station to 10th available

station higher or lower than the present one to receive

radio program signals, these commands offer the user an

easier way to switch to the target station in big steps.

Category Up and Category Down commands would cause

the XM tuner device to switch the current listening

station to the last station in the previous or the next

category to receive radio program signals. Direct Tune

command is triggered by the user operation of directly

clicking an item within the channel list for listening, this

command carries a station number which the XM tuner

device can switch to and start receiving radio program

signals. Here is a list of the channel adjustment

commands.

 Channel Mode Channel Up/Down

 Category Mode Channel Up/Down

 Channel Rough Up/Down

 Category Up/Down

 Direct Tune

5. Information Acquisition Commands

The information acquisition commands are the

commands that are used to acquire desired information

from the XM tuner device. Normally, when the

transitions in the user interface take place, the

microcontrollers need to send these commands to the XM

tuner device to acquire the information required by the

user interface.

Active Channel Information command is used to

acquire the text or number information related to the

current listening station, information types include the

station number, the channel name, the category number,

the category name, the program title, the artist name.

Channel List Information and Preset Channel List

Information commands are used to acquire the list of all

available channels and the list of all items of the preset

list within the internal memory from the XM tuner device,

respectively. Radio ID Information command is used to

acquire the radio identity number information of an XM

tuner device, this information is displayed when the

current listening station is set to the 0th station. The

Radio ID is a unique identity number assigned to each

XM tuner device used for subscription to the XM

broadcast radio service. The information acquisition

commands are listed below.

 Active Channel Info

 Channel List Information

 Preset Channel List Information

 Radio Id Information

6. Electronic Diagnosis Commands

The electronic diagnosis commands are specifically

used for the quality assurance process before the digital

car audio system products leave the factory. A computer

system with quality diagnosis functions would be

connected to the target system, usually to an input port of

a microcontroller. Internal diagnostic commands would

then be sent to modules of the system under diagnosis.

The execution results would be sent back for the

diagnostic system to judge whether functions of the target

product system is working correctly. The diagnosis

information has plenty of diagnosis items, indicating

whether the product quality meets the requirements and

whether the product performances reach the factory

standard. All electronic diagnosis commands are listed

below.

1986 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

Physical Address

of Sending Device

Physical Address of

Receiving Device

Frame

Header

1 bit 12 bit 12 bit

Control

Bit

Data

Length

Message

Data

variable

length
8 bit8 bit

TLTP LSLN CMDST CS

XM Tuner Device Command

IEBUS Data Frame

Figure 4. Composition of IEBUS data frame and the control command of

the XM tuner device.

Upper Module

of XM Module

IEBUS

Communication Bus

IDC IDS

Command

Sent

Command

Request
Command Send

Directive

Command Send

Result
Command

Response
XM Tuner

Command

Received

IEBUS Device Communication Protocol

Display

Data
Display

Data

Display Data

Acquisition

Notification

Figure 5. Data exchange of IEBUS device communication protocol.

 Diagnosis Mode Set

 Diagnosis QoS

 Diagnosis Change

B. IEBUS Command Format and Bus Communication

Protocol Program for XM Tuner Device

Control commands that are used to control the

operation of the XM tuner device are sent to the IEBUS

communication bus by the main microcontroller in the

digital car audio system head unit. The IEBUS

communication bus is a communication method only for

the data exchange between the microcontroller and the

XM tuner device, several other external devices in the

digital car audio system development project are

connected onto the IEBUS communication bus to

communicate with the microcontroller or other external

devices on the IEBUS communication bus. For this

reason, the IEBUS communication bus needs to define

the format of IEBUS data frames and establish a

communication protocol to distinguish different devices

on the IEBUS communication bus, mark the total length

of a data frame and provide data validation mechanism

to detect transmission errors of data frames.

As shown in Figure 4, the IEBUS data frame contains

the frame header and five data fields, which are the

physical address of sending device, the physical address

of receiving device, the control bit, the data length and

the message data. The physical address fields can identify

the sending device and the receiving device connected

onto the IEBUS communication bus, the control bit field

contains control information related to the control of the

communication process, the data length field indicates the

length of the message data, the message data field

contains all the data used in the communication between

upper applications, the control commands that are used to

control the operation of the XM tuner device are

contained in the message data field as well.

The control commands of the XM tuner device are

stored in the message data field of the IEBUS data frame,

as shown in Figure 4. The control command data consists

of a total of seven data fields, where TP is the type of a

command, CMD is the unique number of a command

within a command type, TL is the function address of the

sending device and LN is the function address of the

receiving device, LS and ST are the state information of

the sending device of the microcontroller side and the

device side, respectively, and CS is the checksum.

For each control command in any of the several classes

of XM tuner device control commands, namely the preset

station commands, the tune mode commands, the station

scan commands, the channel adjustment commands, the

information acquisition commands and the electronic

diagnosis commands, there is a definite value pair of TP

and CMD. The control process of the XM tuner device

can be completed by filling the corresponding values in

the TP and CMD field in the control command of the

IEBUS data frame, setting TL and LN fields with the

function addresses of the microcontroller and the XM

tuner device, and writing the whole IEBUS data frame to

the IEBUS communication bus to send the commands to

the XM tuner device. Upon receiving this IEBUS data

frame, the XM tuner device would resolve the control

command from the microcontroller and perform actions

corresponding to the command, thus, the operation

request of the user is received and executed.

In addition to the XM tuner device control commands,

display data frames that are sent back to the

microcontrollers are also sent via the IEBUS

communication bus. In the digital car audio system

development project, the IEBUS data frame wring and

reading operations on the microcontroller side are

encapsulated into the IEBUS device communication

protocol. The IEBUS device communication protocol is

implemented by IDC (IEBUS Device Controller) and IDS

(IEBUS Device Sender) tasks. The IDC task is

responsible for the communication with upper layer

modules and the control of the IDS task to send data

frames; the IDS task receives directives and parameters

from the IDC task, forms IEBUS data frame and writes it

to the IEBUS communication bus using the IEBUS

driving program. When the IDS task tries to write the

IEBUS data frame, a possible occupation of the IEBUS

communication bus by other external device may block

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1987

© 2012 ACADEMY PUBLISHER

the immediate completion of the data frame writing

process. Hence, a maximum number of times of writing

retries is set up in the IDS task. The writing retries

continue before the retry count reaches the maximum

number of retries. When the retry number limit is

exceeded, the IDS task would give up on data frame

writing and send busy state report message to the IDC

task.

The IEBUS device communication protocol is at the

driver layer of the XM function module, as shown in

Figure 5, its encapsulation of IEBUS writing and reading

operations offers the XM module the control command

interfaces based on message communication. The XM

module only need to set the event code and option fields

of the message according to requirements of the IDC task

and send the message to the IDC task, and then the

IEBUS device communication protocol can recognize the

message and write control commands to the IEBUS

communication bus for the XM tuner device to take

corresponding actions.

C. State Transition Matrix Layer of XM Module

There are multiple states for the XM broadcast radio

function module during the real operation of the digital

car audio system. The system state can be divided into

standby and normal states, the XM module can also stay

in standby and normal states. Because the car audio

system have multiple sound sources, like XM, FM,

AM ,CD and others, the XM module have source on and

source off states. The user key press operations may

cause the XM tuner device to enter into long lasting

action states, like station scan. During this period of

ongoing actions, the user might want to try changing the

state of the XM tuner device by key presses, and the XM

module need to choose between to accept or to reject

such operation requests according to the current action

state of the XM tuner device. At the end of a long lasting

action, the XM tuner device would send state change

notification to the XM module, and the XM module need

to adjust its state accordingly to keep its action state

consistency with the XM tuner device.

The existence of different states causes different

processing methods of external inputs for the XM module.

Hence, the XM module needs to establish a state

mechanism to guarantee appropriate processing for each

input request, response or notification message. The state

transition matrix offers the XM module the method to

establish the state mechanism, a XMSTM task is formed

in the XM module to maintain the state transition matrix

and process input messages.

 The state transition matrix is two-dimension table, with

the two dimensions being the state and the event, the cells

of the table contains the processing action and the target

transition state. The state dimension corresponds to

different states of the XM module, and the event

dimension corresponds to the input messages of the XM

module. When a message arrives at the XMSTM task, the

XMSTM task would query the current state and look up

for the corresponding cell along with the event contained

in the message in the state transition matrix. With the

content of each cell, the XMSTM task executes the

processing action and alters the state of the XMSTM task

to the target transition state. The completion of the state

transition is also the completion of the processing of an

input message, and then the XMSTM task will then wait

for the next input message of the XM module.

There are a variety of events of input messages to the

XMSTM task, whose source task may be one of the

power manager task, the RPCAPP task, the sound task

and the XMAPP task. The power manager task sends

power management messages to notify the XM module to

enter or leave standby state, the RPCAPP task sends to

the XM tuner device control requests and XM sound

source on/off requests, the sound task sends response

messages of turning on or off the sound output in the XM

tuner device control process, and the XMAPP task of the

XM module sends response messages to report the result

of XM tuner device control commands.

The working states of the XM module are divided into

several layers, forming an obvious layered hierarchy. A

top-down layered tree hierarchy stems from the

containing relationship of states. Each group of states that

can be changed by the same collection of events are

organized into a state transition matrix and the event

collection is mapped into one single event in the upper

state transition matrix, in the upper matrix cell, a call to

the lower matrix would start the processing process for

each event in the collection of events. Therefore, the

XMSTM task can use multiple state transition matrices in

the tree hierarchy for state maintenance and message

processing, as shown in Figure 6.

Standby and

Source Matrix

Source Action

Matrix

Preset Station

Operation Matrix

Preset Station

Call Matrix

Preset Station

Write Matrix

Preset Station Immediate

Write Matrix

Diagnosis

Matrix

Info Acquisition

Matrix

Figure 6. Tree hierarchy of state transition matrices of XMSTM task.

1988 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

Standby and normal states would affect processing of

other message events, the XM source on and source off

events affect message events only next to Standby and

normal states, these four states are put on the top layer of

the XMSTM task to maintain. When the XM sound

source is turned on, there are normal receiving, channel

scan and preset transition states for each of the two tune

modes, channel mode and category mode, there is also a

channel rough up/down state for the channel mode, the

seven states should be maintained considering the instant

setting of the tune mode, they can form a state transition

matrix at the second layer. Because all preset station

operation-related XM tuner device control commands

involves the enabling and disabling of the sound output,

the third and fourth layer are formed for state

maintenance of the preset operations. States associated

with diagnosis and information acquisition operations are

only affected by the state transition matrix at the top layer,

so both of them are also put on the second layer.

D. Application Layer of XM Module

The application layer of the XM module lies between

the state transition matrix layer and the driver layer,

bridging the communication between the two layers. The

state transition matrix layer takes processing actions

whenever an input event arrives, for control command

events, the processing actions include passing the type of

the control command and corresponding parameters to

the IEBUS device communication protocol and then drive

the XM tuner device to perform corresponding operations.

The application layer is primarily responsible for the

conversion of message from the original form to the

format ready for the IEBUS device communication

protocol to send.

At this layer, API functions are defined for calls from

the state transition matrix layer. API functions

encapsulate the process of sending control command

messages to the XMAPP task of the XM module. Upon

receiving messages, the XMAPP task resolves the event

type, converts the message into the required format and

sends it to the IDC task of the IEBUS device

communication protocol for control command generation

and writing to the IEBUS communication bus.

The trunk of the XMAPP task is designed into an

infinite loop, which begins by receiving an event from the

associated mailbox into a variable whose type is a mail

structure , subsequently the event code of the event is

read from the variable whose type is the mail structure.

The values of all event codes are divided into three

consecutive segments, corresponding to three types of

events consisting of request, response and information

notice events. According to the requirements of XM radio

functionality, there are several tens of kinds of request

and response events, each pair of request event and its

corresponding response event share nearly the same

structure when it comes to event processing. Manual

coding would generate abundant redundant code for the

processing of the two kinds of events. This results in two

consequences. On one hand, the memory occupation

would dramatically increase when the whole project is

compiled, on the other hand, the code comprehension and

code maintenance in the future would be greatly

complicated.

Therefore, a framework for event processing named as

Process Engine is introduced to perform concentrated and

standard processing on the request and response events.

1. Implementation Principle of Process Engine

A Process Engine can be seen as a collection of a

group of associated process tables, each process table can

be called as a top-level process table, the Process Engine

uses an address table to record the starting addresses of

all top-level process tables. In the Process Engine, the

execution of a top-level process table corresponds to the

processing of each pair of request and response events.

A process table is the collection of a group of

processes, which is embodied as an array of process

structure in the implementation program of the Process

Engine. The processes of a process table lie in the array

in a certain order, and each process is called a stage of a

process table, which is referenced by array index

corresponding to the process in the process table.

The smallest execution unit of a Process Engine is a

process, the execution of a Process Engine is required to

start from a specified process. Before the execution of a

Process Engine, both the starting process table and the

starting stage or the position of the starting process of the

starting process table need to be specified when setting

the Process Engine.

A process represents the execution of a series of

programs, it could either be the execution of a process

table consisting of other processes or merely be the

execution of one single subroutine. The return value of

the execution of processes in a process table can be one

of two different return values, the control flow may jump

into one of two branches according to the return value

following the execution completion, and each branch is

bound with one return value corresponding to the jump.

The target of the jump may either be another process of

the same process table, namely the stage of the process

table or the tail of the process table containing the

currently executing process, that is to say, following this

jump, the execution of the whole process table is over. To

non-top-level process tables, the control flow goes back

to the execution environment of the process table which

contains the current process, and the stage of that process

table needs to jump correspondingly, similarly, two jump

branches are also present, and the jump is performed

according to the return value that would be set following

the jump after the current process.

At the end of process execution, the jump target setting

of two branches should also include information

concerning continued or discontinued execution after the

process jump of the Process Engine. For continued

execution, the Process Engine performs the execution of

the next process immediately after the process jump,

while for discontinued execution, the Process Engine

stops execution and exits after the process jump, and if no

reset is performed on the starting process of the Process

Engine before the next execution of the Process Engine,

the execution would continue be performed right after the

previous exiting process. This feature allows the Process

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1989

© 2012 ACADEMY PUBLISHER

Execution
Request

Setting Flag

Active Buffer

Number

Process Engine

Buffer Pointer

Process Engine
Process Table
Address Table

Pointer

Subroutine
Address

Table

Process Table

Number

Execution Stage

Number

Buffer Element 1

Buffer Element n

Buffer Element 2

······

Process Engine Buffer Element

Process Table

Flag
Index

1st Branch

Stage Number

1st Branch

Return Value

2nd Branch

Stage Number

2nd Branch

Return Value

Process Table 1

Address

Process Table n

Address

Process Table 2

Address

······

Process 1

Process n

Process 2

······

Process

Table

Process Table

Address Table

Process Stucture

Subroutine 1
Address

Subroutine n
Address

Subroutine 2
Address

······

Process Control Table Block

Figure 7. Data structure of process engine.

Engine to do the following, when the processing of a

request event is finished, a process jump with

discontinued execution may be done so that the execution

of the Process Engine may stop before the processing

process of the response event corresponding to the

request event, until the response event arrives, the

execution of the Process Engine is triggered and the

processing of the response event may be completed.

The Process Engine uses a group of data structures and

interface functions to implement the setting and execution

initiation of the Process Engine, which is stated in detail

in the following.

2. Data Structure of Process Engine

The mechanism of Process Engine relies on three data

structures to implement: process control table block

structure, process engine buffer element structure and

process structure. The most important data structure is the

process control table block structure, a variable defined in

this type can be seen as a Process Engine. The process

engine buffer element structure and the process structure

are used to define the members of a process control table

block structure variable respectively.

The process control table block structure contains a

total of five comprising members, which are execution

request setting flag, active buffer number, process engine

buffer pointer, process engine process table address and

subroutine address table, as shown in Figure 7.

The execution request setting flag is a one byte

unsigned integral data whose effective value is either true

of false, represented by 1 and 0, the field is used to mark

whether the Process Engine has been requested to execute.

Only by setting this field true before calling interface

function to start the execution of Process Engine can the

function call really start the execution of the Process

Engine. Whenever the Process Engine finishes its

execution, this field is set back to false.

The process engine buffer pointer is the pointer to

process engine buffer element structure type, it points to

the memory space required by the execution of Process

Engine. Two members constitutes the process engine

buffer element structure, they are process table number

and execution stage number. The process table number

1990 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

references the position in the process engine process table

address table which holds the process table containing the

current process, the execution stage number references

the position of the current process in the current process

table. Each element of the process engine buffer

represents a process table and its stage of execution. At

the beginning of the execution of the Process Engine, the

first element of process engine buffer is provided for the

first process to be executed by the Process Engine, the

two members of the process engine buffer element

structure together specify the process table and the stage

to start from. Subsequently, with the advance of the

execution of the Process Engine, the actual size process

engine buffer would expand or shrink, each initialization

of the execution of a process that represents a process

table would cause the process engine buffer to expand by

one element, and the process table number of the newly

expanded element is the position of the process table in

the process table address table, with the stage number of

the newly expanded element being 0, the two members

together specify the first stage of the process table to be

the process to be executed next. If the execution comes to

the end of the current process table, then the process

engine buffer would shrink by one element, and the

buffer element that represents the process table recently

executed would be discarded, and the Process Engine

would go back to the next stage of the process table one

level higher over the discarded process table to continue

the execution.

The active buffer number is a one byte unsigned

integral value which is used to reference the element

corresponding to the current executing process in the

process engine buffer, this element records both the

process table and the corresponding stage for the current

executing process. The process engine buffer is in fact the

stack memory required by the execution of the Process

Engine, and each element in the stack represents the

process table and its executing stage, the active buffer

number is the current stack top pointer, with the advance

of the execution of the Process Engine, the value of active

buffer number increase or decrease to reflect the

expansion and shrinking of the process engine buffer, and

the process table to be executed is pushed into the stack

and the process table to be discarded on execution

completion is popped from the stack. When one process

is over and the next stage of the same process table is

going to be executed, the stage number of the process

engine buffer referenced by the active buffer number

needs also to be modified by the Process Engine to the

stage number of the process to be executed, which is in

fact the modification of the content of the top element in

the stack memory for the advance of the execution.

The process engine process table address pointer is the

pointer to the process address table, the type of each

process table address table is the array of process

structure. The process structure represents process,

namely the smallest execution unit of the Process Engine.

The process structure consists of a total of six members,

process table flag, index, first branch stage number, first

branch return value, second stage number and second

stage return value. Both the process table flag and the

index are one byte unsigned integral data, the process

table flag is used to mark whether a process represents a

subroutine or a process table, a subroutine is specified

when the process table flag is set 0, the index is the

position of the subroutine in the subroutine address table;

a process table is specified when the process table is set 1,

the index is the position of the process table in the

process engine process table address table. The first

branch stage number and second stage number is the

target stage number following the current executed

process, they could either be the actual target stage

number to be executed next or one of the two special

values that indicate the finish of the current process table

with 0 or 1 as return value respectively. The first branch

return value and second branch return value are the return

values to be set for the whole process engine on the finish

of every process, usually, this return value is used to

return certain values concerning the timeout of message

reception of tasks, which limits the longest waiting time

for continued execution of the process engine.

The subroutine address table is defined as the array of

function pointers of all subroutines used by the process

engine. Because an array is formed to facilitate the

process to reference the subroutine by index, all

subroutines should have the same prototype, with no

arguments present and one byte integral value be returned

as return value. Subroutines that require argument input

should use global variables to pass necessary input before

any function call. The return values of subroutines are

formulated into only two different values, corresponding

to the two return branches on process execution

completion, the two values represent whether the control

flow continues along the first branch or the second branch

respectively.

3. Interface Function of Process Engine

The interface function of process engine is used for

initialization setting, state query and ultimate execution

start of process engine. Defining a process control table

block structure variable begins the use of a process

engine, this variable record all the setting information and

execution environment for the whole process engine. The

process control table block structure variable will be used

as an argument throughout all interface function to

construct and operate the process engine.

Four steps are needed to create, set and execute a

process engine, corresponding to four interface function

calls, process engine set interface, execution request set

interface, starting process set interface and process engine

execution interface.

The process engine set interface does initialization

settings on the process engine, besides arguments like

process control table block structure, several members

that need to be initialized externally are also included in

the arguments, the process engine buffer pointer, process

engine process table address table pointer and subroutine

address table. The interface associate the externally

created resources to the process engine and clear state

values like execution request setting flag and active

buffer number back to the original state.

JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012 1991

© 2012 ACADEMY PUBLISHER

The execution request setting interface has process

control table block structure as its only argument. Only

by setting the execution request flag to valid value can

the process engine execution interface function call

effectively start the execution of the process engine.

The starting process setting interface has arguments of

process control table block structure and the process table

number of the starting process. This interface sets the

active buffer number to zero, set the process table number

of the active buffer element according to the argument

value, and initialize to zero the execution stage number of

the active buffer element. This interface makes the first

stage of the specified process table the process to start

from of the whole process engine.

The process engine execution interface has only

process control table block structure as its argument,

when the execution request setting flag of this structure is

set to valid state, the process engine is able to execute

according to existing settings.

VII. CONCLUSION

This paper shows the design ideology and

implementation method of the XM satellite broadcast

radio function module in a software application

development scenario with ITRON standard compliant

real-time operating system and hierarchical architecture

of a digital car audio system project. The XM function

module is installed in the Rx850 embedded operating

system within the digital car audio system project after

compilation. After software defect elimination in the

testing phases of unit test, integration test and system test,

the real operation results of the digital car audio system

suggests that the XM function module is compatible with

other function modules in the system, it responds to user

operations correctly and timely, and it is able to drive the

XM tuner device to receive and play XM broadcast radio

program.

ACKNOWLEDGEMENT

This work is supported by the Open Research Fund

from the Key Laboratory for Computer Network and

Information Integration (Southeast University, Ministry

of Education, China), the Fundamental Research Funds

for the Central Universities, the Program of National

Natural Science of China (Grant No. 60933011 and

61073014), and the State Key Development Program for

Basic Research of China (Grant No. 2011CB302902)

REFERENCES

[1] J. Kontro, A. Koski, J. Sjoberg, “Digital car audio system,”

IEEE Transactions on consumer electronics, vol. 39, pp.

514-521, August 1993.

[2] A. Hassan,, “RTK-spec TRON: A simulation model of an

ITRON based RTOS kernel in SystemC,” Proceedings -

Design, Automation and Test in Europe, vol. 1, pp. 554-

559, 2005.

[3] H. Du, S. Wang, X. Sun, “Research of hybrid OS

architecture based on Linux on ITRON,” Jisuanji

Gongcheng/Computer Engineering, vol. 32, pp. 84-86,

2006.

[4] Mariottini, Francesco, “Design of a compact GPS and

SDARS integrated antenna for automotive applications,”

IEEE Antennas and Wireless Propagation Letters, vol. 9,

pp. 405-408, 2010.

[5] S. DiPierro, R. Akturan, R. Michalski, “Sirius XM satellite

radio system overview and services,” 2010 5th Advanced

Satellite Multimedia Systems Conference and the 11th

Signal Processing for Space Communications Workshop,

pp. 506-11, April 2010.

[6] M. Nariman, H. Hamed, F. Mehdi, “Digital audio

broadcasting system modeling and hardware

implementation,” Advanced Microsystems for Automotive

Applications 2004, pp. 313-324, 2004.

1992 JOURNAL OF SOFTWARE, VOL. 7, NO. 9, SEPTEMBER 2012

© 2012 ACADEMY PUBLISHER

